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Parameter estimation for a phenomenological
model of the cardiac action potential
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Abstract

The action potential of a cardiac cell is made up of a complex
balance of ionic currents which flow across the cell membrane in
response to electrical excitation of the cell. Biophysically detailed
mathematical models of the action potential have grown larger in
terms of the variables and parameters required to model new findings in
subcellular ionic mechanisms. The fitting of parameters to such models
has seen a large degree of parameter and module re-use from earlier
models. An alternative method for modelling electrically excitable
cardiac tissue is a phenomenological model, which reconstructs tissue
level action potential wave behaviour without subcellular details. A
new parameter estimation technique to fit the morphology of the action
potential in a four variable phenomenological model is presented. An
approximation of a nonlinear ordinary differential equation model is
established that corresponds to the given phenomenological model of
the cardiac action potential. The parameter estimation problem is
converted into a minimisation problem for the unknown parameters.
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A modified hybrid Nelder–Mead simplex search and particle swarm
optimisation then solves the minimisation problem for the unknown
parameters. The successful fitting of data generated from a well
known biophysically detailed model is demonstrated. A successful
fit to an experimental action potential recording that contains both
noise and experimental artefacts is also produced. The parameter
estimation method’s ability to fit a complex morphology to a model
with substantially more parameters than previously used is established.
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1 Introduction

The action potential (ap) of a cardiac cell is caused by the flow of ions across
the cell membrane through proteins known as ion channels. The opening and
closing of many of these ion channels depends on the potential difference across
the membrane, referred to as the membrane potential. The cell remains at a
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steady state or resting potential until the membrane potential is perturbed
by either an injection of current into the cell through an electrode or a flow
of charged ions from a neighbouring cell through gap junctions, a type of
ion channel. This slight change in membrane potential causes the sodium
channels to open which depolarizes the cell as positively charged sodium ions
flow into the cell, inducing a sharp rise in the membrane potential known as
the upstroke. Following the upstroke, an outward flux of potassium from the
cell is opposed by a flow of calcium into the cell, producing a low gradient
or plateau phase. Repolarisation of the cell and a return to the steady
state potential results from the deactivation of the calcium current and the
continuation of the potassium currents into the cell until the rest potential
is reached. During the final stage of the ap, potassium and sodium ions are
extruded from the cell through a series of pumps and ionic exchangers. If
the cell is stimulated again before it has completed this process then the
duration of the ap is shortened as there remains insufficient calcium outside
the cell to counteract the outward flow of potassium. This property is known
as ap duration restitution. The velocity and magnitude of the upstroke will
also be reduced, slowing the conduction velocity of the ap in tissue, known
as conduction velocity restitution. The phases of the ap are labelled in
Figure 1 [1].

The construction and parameterisation of a model of the electrical activity
of a cardiac cell is a complex and difficult process. Mathematical models of
the ap of a ventricular myocyte, the commonest electrically active cell in
the heart, may feature as many as 67 variables [2] and include subcellular
phenomena such as calcium handling and complex Markov formulations of
ion channel gating kinetics. These biophysically detailed models have seen a
large degree of parameter and module re-use from earlier models [3] which
is inconsistent in factors such as species or temperature in the experiment
performed. Often the data required to parameterise and validate a model for
a particular current in the species in question cannot be found within the
literature as it is either difficult or impossible to obtain, too time consuming
to generate or is of insufficient interest to experimentalists. Given a valid
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parameter set, such models often need to be refitted to different regions of the
same heart which can exhibit heterogeneity in electrophysiological properties,
such as the conductances of various currents and the overall morphology of
the ap.

An alternative method for modelling cardiac tissue is a phenomenological
model [4, 5], which seeks to reconstruct the behaviour of the ap without
resorting to the use of a biophysically detailed model. Properties such as
ap morphology, dynamic restitution and conduction velocity restitution may
all be fitted using this approach given appropriate experimental data from
microelectrode or optical mapping experiments. The resulting model may
then be used to investigate tissue level phenomena such as spiral waves during
ventricular fibrillation.

A new parameter estimation technique to fit the morphology of the ap in the
four variable, Bueno-Orovio phenomenological model [5] is proposed. The
model is described in Section 2. The parameter space of the model, whilst
significantly smaller than those in biophysically detailed models, is of large
dimension (29 parameters). Many of these parameters have effects that only
manifest themselves during certain temporal regions of the ap. In published
parameter sets [5, 6] large ranges are seen in the values of parameters between
different fits to the data. Furthermore, some parameters have a strong role in
defining the ap morphology, whereas others control other properties such as
dynamic restitution and thus have little effect on morphology. The parameter
surface of the model therefore has regions of low and high sensitivity which
vary with dimension and size of the parameter.

The parameter estimation of the model is converted into a minimisation
problem for the unknown parameters. A modified hybrid Nelder–Mead
simplex search and particle swarm optimisation is then used to minimise the
objective function. This is discussed further in Section 3. Finally, both data
generated from the Luo–Rudy model [7], paced at both 500ms and 1000ms
cycle lengths, and an experimentally recorded ap from an isolated guinea pig
ventricular myocyte [6] are used as target data for the minimisation process
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and to assess the success of the procedure by reference to a least squares
objective function.

2 Model structure

The work presented in this section is based on the phenomenological model [5]
of the ventricular ap. This phenomenological model is based upon the
Fenton–Karma model [4]. This version of the model was chosen because the
additional fourth variable provides the flexibility required to fit a wide variety
of experimentally observed ap morphologies, whereas earlier versions were
unable to reproduce ap morphology satisfactorily. As ap morphology is the
focus of this paper this model property is the overriding concern.

The model consists of a total of four variables. The dimensionless voltage
variable u is rescaled to dimensions of millivolts (mV) using the formula
VmV = Vu + R. As u generally takes the value zero at rest, R is in effect
the rest potential of the data, that is to say the transmembrane potential at
which the cell sits at a steady state when exposed to no external stimulus at
physiological extracellular ionic concentrations. The other three variables v,
w and s act as gating variables, and control the activation and deactivation
of the currents. The model equations are

∂u

∂t
= ∇

(
D∇u

)
− (Jfi + Jso + Jsi + Jstim), (1)

∂v

∂t
= [1−H(u− θv)](v∞ − v)/τ−v −H(u− θv)v/τ

+
v , (2)

∂w

∂t
= [1−H(u− θw)](w∞ − v)/τ−w −H(u− θw)w/τ

+
w , (3)

∂s

∂t
= ({1+ tanh[ks(u− us)]}/2− s)/τs , (4)

where H is the Heaviside function. The currents Jfi, Jso and Jsi are

Jfi = −vH(u− θv)(u− θv)(uu − u)/τfi , (5)
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Jso = (u− uo)[1−H(u− θw)]/τo +H(u− θw)/τso , (6)

Jsi = −H(u− θw)ws/τsi , (7)

and Jstim is the applied stimulus current. Furthermore, some of the time
constants themselves depend on the membrane potential as follows

τ−v = [1−H(u− θ−v )]τ
−
v1 +H(u− θ−v )τ

−
v2 , (8)

τ−w = τ−w1 + (τ−w2 − τ
−
w1){1+ tanh[k−w(u− u−

w)]}/2 , (9)

τso = τso1 + (τso2 − τso1){1+ tanh[kso(u− uso)]}/2 , (10)

τs = [1−H(u− θw)]τs1 +H(u− θw)τs2 , (11)

τo = [1−H(u− θo)]τo1 +H(u− θo)τo2 . (12)

The steady state values are

v∞ =

{
0, u < θ−v ,

1, u > θ−v ,
(13)

w∞ = (1−H(u− θo))(1− u/τw∞) +H(u− θo)w
∗∞ . (14)

The model employs a diffusion term in Equation (1) and so is similar to
the monodomain equations used to simulate cardiac electrophysiology for
biophysically detailed models [8]. However, in the course of simulation,
diffusion is taken to be constant at 1.171 cm2/s, based on experimental
measurements of human ventricular cell size and conductances. Thus, the
relation in (1) becomes the Laplacian as the constant diffusion coefficient
may be moved outside of the gradient operator. It is noted that this model
can equally well take into account factors such as fibre orientation by setting
the diffusion parameter D to be a conductivity tensor, at which point this
property will no longer hold [4]. As the parameter estimation method is
concerned only with ap morphology, D = 0 is used in this study.

The currents represent an approximation to groups of currents observed in
the cell rather than having a biophysical meaning. The behaviour of the
model is shown in Figure 1 using the human epicardial cell parameter set from
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Figure 1: Simulated data using the epicardial data set provided after five
stimuli to reach steady state at a pacing frequency of 1000ms. The variables
of the model u, v, w and s and the currents Jfi, Jso and Jsi over the same
ap are shown. In the first figure, the four basic phases of the ap are shown
against the variable u. The point A marks the upstroke, B the plateau phase,
C repolarization, and D the resting phase.

Bueno–Orovio et al. [5] in response to a stimulus current of non-dimensional
magnitude −0.5 and of duration 2ms. The behaviour of the potential u, the
gating variables v, w and s and the currents Jfi, Jso and Jsi are shown. The
same stimulus magnitude and duration are used for the parameter fitting
process.
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This model reproduces physiological properties such as maximum velocity of
upstroke, threshold of excitation, ap morphology, dynamic restitution curves
and conduction velocity restitution curves.

3 Parameter estimation technique

Nonlinear programming methods have been applied to solve the global opti-
mization of continuous-variable functions [9]. Searching a continuous-variable
function under a given search domain must locate the global optimum without
being trapped in local solutions. Optimization techniques can be classified
into two broad categories: traditional direct search techniques (such as simplex
search methods) and evolutionary techniques (such as the particle swarm opti-
mization). The Nelder–Mead method [10] is a simple direct search technique
that has been widely used in various unconstrained optimization scenarios.
One of the reasons for its popularity is that the method is easy to imple-
ment and does not need the derivatives of the function under exploration.
However, one has to be very careful when using the Nelder–Mead method
since it can be sensitive to the choice of initial points and is not guaranteed
to attain the global optimum. Eberhart and Kennedy [11] proposed a new
heuristic algorithm called particle swarm optimization (pso). The theory
of pso lets each particle fly through a multidimensional search space while
the particles’ velocity and position are constantly updated based on the best
previous performance of the particle and of the particles’ neighbours, as well
as the best performance of particles in the entire population. pso has been
successful in optimizing various continuous nonlinear functions, including
nonlinear unknown parameters and unknown domains of parameters.

A new parameter estimation technique is proposed, that is, a modified hybrid
Nelder–Mead simplex search and a particle swarm optimization method to fit
the morphology of the ap in the four variable Bueno–Orovio phenomenological
model.
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The governing deterministic dynamical system can be written as a system of
differential equations with m unknown parameters,

dy(t)

dt
= f(t,y, λ1, λ2, . . . , λm), 0 6 t 6 T , (15)

y(0) = y0, (16)

where y = (y1,y2, . . . ,yn)
T and f = (f1, f2, . . . , fn)

T are n-dimensional vector
functions, fi (i = 1, 2, . . . ,n) may be nonlinear with respect to the unknown
parameters λi (i = 1, . . . ,m), m is the number of parameters, n is the number
of species.

The differential/algebraic system solver was used to solve the system of
differential equations. The differential/algebraic system is based on the
backward difference formulas, and approximates the derivatives using the
kth order backward difference formulas, where k ranges from one to five. At
every step it chooses the order k and stepsize based on the behaviour of the
solution.

Let (λ1, λ2, . . . , λm) ∈ R, where R is a bounded domain of the form

R = [λ
(min)
1 , λ

(max)
1 ]× [λ

(min)
2 , λ

(max)
2 ]× · · · × [λ(min)

m , λ(max)
m ]. (17)

Let yi(tk) be given target solutions of (15) and (16), while the yi,k are
numerical solutions of (15) and (16) using differential/algebraic system solver
for given λ = (λ1, λ2, . . . , λm) ∈ R. The error of the given parameter vector
λ∗ = (λ∗1 , λ

∗
2 , . . . , λ∗m) ∈ R of (15) is

g(λ∗) = min
λ∈R

g(λ) = min
λ∈R

 1n
n∑
i=0

√∑N
k=0(yi(tk) − yi,k)

2

N+ 1

 (18)

where T = Nτ and τ is a time step.

A modified hybrid Nelder–Mead simplex search and a particle swarm opti-
mization method that tries to find a potential global minimum g(λ∗) of a
multimodal, continuous-variable function in (15) is now described.
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The novel mh–nmss-pso is based on the Nelder–Mead simplex search method
(nmss) [10] and the particle swarm optimization (pso) algorithm [11] for the
optimization of multimodal functions. The nmss focuses on “exploitation”;
the pso focuses on “exploration”. The first major difference between nmss
and pso is the choice of initial points. In the nmss, the initial points are
pre-determined, but they are a set of random points in pso. The second
difference is with the directions and conditions of the preceding steps. The
pso proceeds by moving towards those points that have better (objective)
function values, whereas the nmss evolves by moving away from a point that
has the worst performance.

Taking the better characteristics of each method, a modified hybrid Nelder–
Mead simplex search and particle swarm optimization method is proposed.

An initial population, 3m+ 1 particles, is constructed in two parts. Firstly,
the standard starting point is used in the nmss to form an initial simplex
of m+ 1 particles, and an additional 2m particles are randomly generated
in the pso part. The population of 2m particles in the pso part may be
a worthy investment as they may bring about an early convergence to the
vicinity of the global optimum.

A total of 3m+ 1 particles are sorted by their objective function value g(λ∗)
in (18), and the best m particles are saved for subsequent use in the simplex
search part of the hybrid method. Joined by the m best particles and the
(m + 1)th particle, the last 2m particles are adjusted by the pso method
(that is, selection and velocity update). The procedure for adjusting the last
2m particles involves selection of the global best particle, selection of the
neighbourhood best particles, and finally velocity updates.

The modified hybrid Nelder–Mead simplex search and particle Swarm opti-
mization (mh–nmss–pso) algorithm is summarised in Algorithm 1.



3 Parameter estimation technique C492

Algorithm 1: mh–nmss–pso

Input: Intervals
R = [λ

(min)
1 , λ

(max)
1 ]× [λ

(min)
2 , λ

(max)
2 ]× · · · × [λ

(min)
m , λ

(max)
m ] to

search for solution within, initial velocities, given target
solutions yi(tk), (i = 1, . . . ,m; k = 1, . . . ,n), the error
parameter ε and the number of iterations Niter.

Output: The best parameter estimation values λ∗ = (λ∗1 , λ
∗
2 , . . . , λ∗m).

Generate a population of size 3m+ 1;1

for IT = 1 : Niter do2

(i) Evaluation and Ranking: evaluate the objective function3

value g(λ) in (18) of each particle;

(ii) Nelder–Mead simplex search method: apply a nmss operator to4

the best m+ 1 particles and replace the (m+ 1)th particle with the
update;
(iii) Particle Swarm Optimisation: apply the pso operator for5

updating 2m particles with the worst objective function value;
if the stopping criterion Sc < ε then6

break;7

end8

end9

The stopping criterion is then

SC =

[
m+1∑
i=1

(ḡ−
√
gi)

2

m+ 1

]1/2
< ε, (19)

where

g∗i = g(Pi) =
√
gi =

√
gi(λ1,i, λ2,i, . . . , λm,i) , ḡ =

m+1∑
i=1

g∗i
m+ 1

,

and ε is a small error parameter.
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All numerical methods and mh-nmss-pso have been implemented in For-
tran 77 on a pc.

4 Results

The mh-nmss-pso algorithm and numerical technique are employed to esti-
mate the parameters for the phenomenological model of the ap described in
Section 2. The ranges used for our parameter estimation are based on [5] and
behaviour of the potential u.

4.1 Example: Fitting Luo–Rudy 500ms data and
Luo–Rudy 1000ms data

Using the mh-nmss-pso algorithm and numerical technique, parameter es-
timates are obtained to fit the phenomenological model to data generated
by the Luo–Rudy model [7] paced at both 500 ms and 1000 ms cycle lengths.
The dimensionless voltage variable u is rescaled to dimensions of Millivolts
using the equation VmV = Vu+ R to produce the final fits to the data that
are shown in Figure 2. The estimated parameter values are listed in Table 1.
Here Pa denotes parameter and gp denotes Guinea Pig.

4.2 Example: Fitting to experimental data

Using the mh-nmss-pso algorithm and numerical technique, parameter values
are obtained to fit the phenomenological model to an experimentally recorded
ap from an isolated guinea pig ventricular myocyte paced at a cycle length
of 1000 ms. The experimental data used in this study has previously been
detailed by Walmsley et al. [6]. The experiment was conducted in accordance
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Figure 2: A comparison of the deterministic model obtained by refitting
the parameters of the original model [5] to a sample ap generated by the
Luo–Rudy model at cycle lengths of 500ms and 1000ms. The first figure has
a 500ms (2Hz) cycle length and the second figure has a 1000ms (1Hz) cycle
length. The horizontal axis has been truncated at 400ms to better display
the fit.



4 Results C495

0 500 1000
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time in ms

N
o
n
d
im

e
n
s
io

n
a
l 
m

a
g
n
in

it
u
d
e
 o

f 
v
a
ri
a
b
le

s

 

 

u

v

w

s

0 100 200 300
−100

−80

−60

−40

−20

0

20

40

60

80

Time in ms

M
e
m

b
ra

n
e
 P

o
te

n
ti
a
l 
in

 V
m

 

 
Experimental−Data

Fit Ex−Data

Figure 3: A comparison of the deterministic model obtained by refitting the
parameters of the original model to a sample ap drawn from the experimental
data for a guinea pig isolated ventricular myocyte. The horizontal axis has
been truncated at 300ms to better display the fit in the second figure.
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Table 1: Fitted parameter values
Pa lr 500 lr 1000 gp Pa lr 500 lr 1000 gp
θv 0.4509 0.3647 0.3200 θw 0.0917 0.1265 0.1300
θ−v 0.0000 0.0060 0.1900 θo 0.0000 0.0003 0.0060
us 0.9185 0.9324 0.9800 u−

w 0.0000 0.0251 0.0175
uso 0.7785 0.6324 0.7072 uu 1.9180 1.7530 1.6200
uo 0.0000 0.0000 0.0000 τ∞w 0.09323 0.0865 0.0410
τo1 571.000 521.2769 456.3476 τo2 8.8481 6.6474 6.1000
τs1 4.1762 2.7342 3.0600 τs2 12.5582 13.2947 2.1900
τso1 44.1989 56.4735 30.9000 τso2 1.3781 1.2295 1.2874
τ−w1 58.2595 53.2368 6.1828 τ−w2 18.2595 125.8942 140.000
τ−v1 85.8577 71.7017 76.0000 τ−v2 973.0652 13.4584 10.300
τsi 5.0682 3.8715 2.7844 τ+v 2.5500 2.1623 1.3500
τ+w 371.0585 348.6196 276.000 τfi 0.2369 0.1809 0.1100
w∗∞ 0.8523 0.8266 0.8430 kso 2.2857 2.0647 2.0100
k−w 61.9641 152.3928 206.9896 ks 2.0874 2.0952 2.8100
V 77.5000 81.6499 90.5000 R −83.720 −84.400 −76.100

with the UK Home Office guidance on the Operation of Animals (Scientific
Procedures) Act of 1986.

The estimated parameter values are shown in Table 1. The dimensionless
voltage variable u is rescaled to dimensions of millivolts using the equation
VmV = Vu + R to produce the final fit to the experimental data, shown
together with nondimensional magnitude of current variables in Figure 3.

The simulations produced give an excellent agreement with both the generated
ap morphologies from the Luo–Rudy model and the experimental data.

5 Conclusions

The modified hybrid Nelder–Mead simplex search and particle swarm op-
timization is a valid method for the fitting of ap morphology in a cardiac
electrophysiology tissue model. The closeness of fit achieved by the model
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to data both artificially generated from a biophysically detailed cardiac elec-
trophyslogy model and experimental data taken from an isolated ventricular
myocyte has been shown. ap duration restitution properties, as described in
Section 1, are not recovered adequately but this was not an aim of this study.
This is shown by the variation in parameters between the 500 ms and 1000 ms
columns in Table 1. Ideally, one set of parameters would describe both sets of
data. The different results obtained indicate that fitting the model to an ap
morphology derived from one cycle length is insufficient to fully parameterise
all aspects of the model using this method. Extra data at different cycle
lengths is required to do this. The program runs to a successful completion
in a few minutes for the initial parameter ranges. However, the efficacy of
this approach is very much dependent on the choice of initial ranges for the
parameters. These techniques can be applied to the parameter estimation of
other kinds of differential algebraic equations [12].
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