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Free-surface flow under a sluice gate of an
inclined wall from deep water
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Abstract

Nonlinear solutions of free surface flow under a sluice gate are
studied. Upstream, the fluid is assumed to be infinitely deep, and
the gate is at an angle to the horizontal axis. The flow emerges from
the gate and produces a uniform flow far downstream. The problem
is solved numerically by a boundary element method derived from
an integral equation along the free surface. An analytical function is
constructed, related to the upstream flow, so that the integral equation
is solvable. As a result, a free surface flow with smooth detachment
from the edge of the gate is obtained for relatively large upstream
Froude numbers. As the Froude number decreases, a free surface with
back flow near the edge of the gate occurs, until at a certain Froude
number a stagnation point occurs.
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1 Introduction

We study a steady two dimensional irrotational flow of an ideal fluid in
a domain bounded by an infinite horizontal floor, an inclined wall at an
angle β to the horizontal axis, representing a sluice gate, and a free surface,
as illustrated in Figure 1a. Physically, the infinitely deep fluid flows through
a slit under the inclined wall, and forms a stream with the free surface as a
boundary. Far downstream the flow is uniform. When the net volume flux of
the fluid approaching the slit is Q and the height of the slit measured from
the floor is D, the free surface profile is calculated near the edge of the gate.

Most sluice gate flow calculations assume the fluid is of finite depth up-
stream [1, 2, 3, 4, 5, 6]. The solutions are characterised by uniform and
supercritical flow far downstream, and the flow far upstream is supercritical
or subcritical. A train of waves are obtained when the upstream flow is
subcritical. Binder and Vanden Broeck [7] considered a problem involving
multiple disturbances on the bottom of the channel and the free surface;
such as a submerged obstacle, a pressure distribution or a sluice gate. They
obtained solutions subject to a radiation condition; waves form near the gate
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and decay, so that the flow is uniform far upstream. However, all types of
solution exhibit uniform and supercritical flow far downstream. Here, we
find the same flow characteristics with an infinite fluid depth upstream. The
difference with the finite depth solutions is the existence of back flow near the
edge of the gate, eventually becoming a stagnation point. The free surface
separates from the inclined wall at an angle of 2π/3. This limiting case agrees
with the result obtained by Vanden-Broeck and Tuck [8] who observed the
free surface flow locally near a vertical wall. The problem in this paper is a
generalisation of the vertical sluice gate solved by Wiryanto et al. [9].

Most of the works cited solve the problem numerically using a boundary
element method. This method is also used to solve other free surface flows.
Wiryanto and Tuck [10, 11] applied the method to free surface flow producing
one and two jets. Free surface flows caused by a line sink or source were
studied by Wiryanto [10] and Hocking and Forbes [13, 14]. The boundary
element method is constructed from an integral equation for the hodograph
complex variable corresponding to the particle velocity. After expressing the
real part of the variable in terms of the imaginary part, the Cauchy integral
theorem is applied. Problems using the boundary element method usually
have the hodograph variableΩ satisfying the conditions of the Cauchy integral
theorem, that is, analytic and Ω(ζ)→ 0 as |ζ|→∞ , where ζ is an artificial
complex variable determined by a conformal mapping of the physical plane.
However, we consider fluid of infinite depth upstream, so the second condition
Ω(ζ) → 0 of the Cauchy integral theorem is no longer satisfied, since the
fluid velocity far upstream is radially uniform. Therefore, we construct an
appropriate function, so that we can apply the Cauchy integral theorem.

The construction of the analytic function is explained in Section 2. A similar
problem was studied for the case of zero gravity by Wiryanto [15], but the
floor was terminated so that the flow became a waterfall, and analytical
solutions are obtained. Section 3 presents the numerical procedure for solving
the integral equation. Using the trapezoidal rule, we approximate the integral
equation by a nonlinear system of equations, which is solved via a Newton
iteration. Section 4 presents some plots of the surface profile and discusses
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the numerical results.

2 Formulation

We consider the steady two dimensional irrotational flow of an inviscid and
incompressible fluid in a dam of infinite depth, bounded by an inclined wall as
a sluice gate with slit of height D. We choose Cartesian coordinates with the
x-axis along the bottom and y-axis directed vertically upward intersecting
the edge of the inclined wall. The volume flux emerging from the dam is Q
per unit distance perpendicular to the plane of flow, and the flow is assumed
to leave the edge of the gate tangentially; see Figure 1a.

We introduce a complex potential f = φ + iψ whose derivative df/dz =
u − iv gives the fluid velocity at z = x + iy . For convenience, we work
in dimensionless variables so that Q = 1 and D = 1 , and require φ = 0

and ψ = 0 at z = 0 . Therefore, the f-plane is a strip of height 1, the
non-dimensional height of the slit; see Figure 1. In the flow domain,

∇2φ = 0 .

The dynamic boundary condition is expressed by the Bernoulli equation

1

2
F2
(
φ2x + φ

2
y

)
+ y = constant (1)

along the free boundary representing hydrostatics pressure, where the Froude
number

F =
Q√
gD3

, (2)

and g is the acceleration due to gravity. The kinematic boundary condition,
along both the solid and free boundaries, is that the normal derivative of φ
vanishes,

∂φ

∂n̄
= 0 . (3)
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Physically, this condition means that fluid particles on the boundary remain
on the boundary.

To determine φ, we first introduce a hodograph variable Ω = τ− iθ related
to the complex velocity by

df

dz
= eΩ. (4)

We then introduce a second artificial variable ζ = ξ+ iη , related to f by

f = −
1

π
log ζ . (5)

The conformal mapping (5) is obtained using Schwarz and Christoffel’s
theorem [16]. Downstream J is mapped to ζ = 0 and the bottom edge
of the gate A is mapped to ζ = −1 , as shown in Figure 1b.

Instead of solving for φ directly, we determine the hodograph variable Ω as
a function of ζ, satisfying

∇2Ω = 0

subject to the dynamic boundary condition (1). This boundary condition
transforms to

1

2
F2e2τ + y = c , −1 < ξ < 0 , (6)

where c is an unknown constant; and the kinematic boundary condition (3)
becomes

θ =

{
β− π , −∞ < ξ < −1 ,

0, 0 < ξ <∞ .
(7)

Here θ is unknown for −1 < ξ < 0 .

A relation between θ and τ is required to determine the unknown variables.
This is obtained from the Cauchy integral theorem. The complex function

χ(ζ) = Ω−
β− π

π
log ζ (8)
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Figure 1: Sketch of the flow under a sluice gate (a) in the physical z-plane,
(b) in the f-plane and the artificial ζ-plane.
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is analytic and is constructed such that χ→ 0 for |ζ|→∞ , so the Cauchy
integral theorem can be applied. We arrive at (8) since the upstream flow far
from the slit is uniform with velocity df/dz→ 0 , the streamlines bounded
by the horizontal floor and inclined wall having angle θ as given in (7), and
the modulus of the velocity is the exponent of τ. The logarithm function has
the character described above, so

Ω→ β− π

π
log ζ for |ζ|→∞ ,

and this is used to construct χ in (8).

Consider the closed contour consisting of the line segments from ξ+R to ξ+δ
and from ξ − δ to ξ − R , together with the semicircle s = ξ + δe−iα for
0 < α < π and s = ξ + Reiα for π < α < 2π . By applying the Cauchy
integral theorem to χ, and then sending δ→ 0 and R→∞ , we obtain

χ(ξ) = −
1

iπ
−

∫∞
−∞

χ(s)

s− ξ
ds for −∞ < ξ <∞ . (9)

Here, −
∫

denotes a Cauchy principal value integral. The function χ is then
expressed in terms of τ and θ on both sides of (9), and the real part is

τ(ξ) =
β− π

π
log |1+ ξ|+

1

π
−

∫ 0
−1

θ

s− ξ
ds for − 1 < ξ < 0 . (10)

The last task before obtaining the integral equation is to determine y along
the free surface. We use (4) and (5) to obtain

dz

dζ
= −

e−Ω

πζ
, (11)

and the imaginary part along the free surface is

dy

dξ
= −

e−τ sin θ

πξ
. (12)



3 Numerical procedure C799

Therefore, by integrating (12),

y(ξ) = 1−

∫ ξ
−1

e−τ(s)

πs
sin θ(s)ds , (13)

where τ in (13) is evaluated from (10). The formulae for y in (13) and τ in (10)
are then substituted into (6), to obtain a nonlinear integral equation for θ.

3 Numerical procedure

The nonlinear integral equation (6) converts to a set of N algebraic equations
in N unknowns, if we approximate the integration (10) by summation in a
suitable manner. The interval of integration (−1, 0) is first discretised by
defining the end-points of N − 1 subintervals ξ0 = −1 < ξ1 < ξ2 < · · · <
ξN−1 = −ε , and then we let θj = θ(ξj) for j = 1, 2, . . . ,N − 1 , be the
N− 1 unknowns. Here, −ε is a small value representing the position of the
free surface relatively far from the slit, and we need this number to truncate
the integration (10), as it is impossible to know the end of the free surface,
but we need the subinterval (−ε, 0) to obtain a closed form of the equation
system.

To evaluate the Cauchy principle-value singular integral in (10), we approx-
imate θ(ξ) as varying linearly on the interval (ξj−1, ξj), and evaluate the
integral over each such interval exactly. For any ξ∗j ∈ (ξj−1, ξj),

τ(ξ∗j ) ≈
β− π

π
log |1+ ξ∗j |

+

N−1∑
l=1

(θl−1 − θl) +

{
θl + (θl−1 − θl)

ξ∗j − ξl

ξl−1 − ξl

}
log

∣∣∣∣∣ξl−1 − ξ∗jξl − ξ∗j

∣∣∣∣∣ . (14)

Similarly, the integral (13) determining the y-coordinate of the free surface is
evaluated by numerical approximation, such as the trapezoidal rule

y(ξ∗j ) ≈ y(ξ∗j−1)
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−
1

2

(
e−τ(ξ

∗
j )

πξ∗j
sin θ(ξ∗j ) +

e−τ(ξ
∗
j−1)

πξ∗j−1
sin θ(ξ∗j−1)

)
(ξ∗j − ξ

∗
j−1).(15)

In obtaining the N algebraic equations, we use N collocation points ξ∗j as
the mid-point in each subinterval (ξj−1, ξj), except ξN = −ε/2 and also
define θ(ξ∗j ) as the midpoint of θj−1 and θj. For each point ξ∗j , the integral
equation (6) gives one algebraic equation, so that there are N equations for
unknowns θ1, θ2, . . . , θN−1 and the constant c in (6). The Froude number F
is given, and we define θ0 = −π/2 at the edge of the gate and θN = 0

representing the uniform flow. In our computations, the nonlinear system of
equations is solved by a fortran subroutine, dnsqe, that does not require
the user to provide a routine for the Jacobian matrix. When the iteration
converges, N-point coordinates (xj,yj) of the free surface are determined from

dx

dξ
= −

e−τ

πξ
cos θ (16)

and (15) for y. Numerical integration is applied to (16) to get x(ξ∗), using θ
obtained in the previous process. We then plot the coordinates (xj,yj) to get
the surface profile.

4 Results

Most calculations of the numerical procedure described above use N = 250
and ε = 0.000001 . These numbers are chosen as the numerical solution gives
the best accuracy for the value of c. We determine the accuracy following
Wiryanto and Tuck [10]. A typical free surface for moderate Froude number
is shown in Figure 2a. The flow produces a stream with a smooth free surface
on leaving the inclined wall, without any waves on the free surface. The
stream tends to uniform far downstream and the fluid depth is less than the
height of the slit. We computed the free surface in Figure 2a for F = 0.8
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Figure 2: (a) Free surface flow under a sluice gate for F = 0.8 and β = 5π/9 ;
(b) Free surface with a stagnation point, for the same value of β and F = 0.225 .

and β = 5π/9 . For higher Froude numbers, we obtain a slightly deeper flow
downstream.

For small Froude numbers F, we are interested in the values of θ near the
edge of the gate. For F = 0.8 , we find that θ increases when increasing ξ, and
θ > β− π = −1.396 , indicating the direction of the stream when separating
from the gate. The θ-behaviour for F = 0.4 is similar to, but smaller than θ
for F = 0.8 .

For F < 0.37 we obtain some values of θ less than −1.396. We define the
minimum value of the curve by the coordinates θmin at ξmin, and we collect
results from various F. The coordinates are plotted in Figure 3 and indicate
that the stream separates from the wall smoothly, but flows increasing to
the left of the separation point with decreasing θmin corresponding to a small
Froude number. The position of θmin shifts, as θmin decreases, as seen in
Figure 3 approaching the separation point, ξmin → −1 . Our numerical
scheme fails for F < 0.24 indicated by a sharp change in the θ-curve near the
separation point, since we define θ(−1) = β − π conflicting with the value
at the next discrete point ξ. We extrapolate F for θmin → β− 4π/3 , giving
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Figure 3: Plot θmin versus ξmin.

F = 0.225 , as the limiting case, characterised by the 2π/3 angle of the stream
separating the inclined wall. The free surface flow has a stagnation point
at the edge of the inclined wall. We show this limiting free surface flow in
Figure 2b.

When the wall is inclined with at angle β = 0.38π , we calculate the free
surface flow for various Froude numbers. First, we solve the problem for
Froude number F = 0.25 , and obtain a smooth free surface. A free surface
with back flow occurs for F < 0.25 , and a stagnation point is obtained for
F = 0.13 . For smaller β, a free surface flow with a stagnation point can be
obtained for smaller F, until β = π/3 , at which point the stream separates
from the wall horizontally, making an angle of 2π/3 to the inclined wall.

5 Conclusions

We solved numerically the free surface flow under a sluice gate from deep
fluid using a boundary element method. The deep fluid upstream requires a
complex analytic function constructed indirectly from the hodograph variable
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and including a term representing the character of the flow far from the slit
of the gate. The resulting free surface flows without waves and with a smooth
detachment at the edge of the inclined wall for the upstream Froude numbers
F > F0 , where F0 depends on the wall angle β; that is, F0 = 0.37 for β = 5π/9
and F0 = 0.25 for β = 0.38π . Meanwhile solutions with back flow occur for
Froude numbers smaller than F0, and the limiting flow has a stagnation point
at the edge of the gate. All types of solutions are uniform and supercritical
(F∞ > 1) far downstream.
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