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Numerical methods for computing the Evans
function
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Abstract

This article presents the Lie midpoint method, the fourth order
Magnus method and the Gauss–Legendre method for the numerical
evaluation of the Evans function, a Wronskian-like determinant which
arises in the study of the stability of pulse-type waves. Numerical
examples and comparisons illustrate the three methods and their
relative merits. The main advance is the ability to compute the Evans
function for smaller step sizes. The efficiencies of the various methods
are further illustrated by increasing the domain size.
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1 Introduction

The Evans function, D, is a Wronskian-type analytic function which is widely
used to trace the spectrum of ordinary differential operators, Lo. Such oper-
ators frequently appear due to linearising around exact solutions of partial
differential equations. A major aim of such linearisations is to study the
stability of such solutions, particularly travelling wave and other solutions
which have physical significance. This function was named the Evans function
by Alexander, Gardner and Jones [3] who generalized its definition consid-
erably. Since then, the Evans function has been used frequently in stability
analyses for numerical computations [2, 4, 5, 6, 10] and for analytic treat-
ments [8, 13, 19, 22, 23]. The review article by Sandstede [20] gives a broad
overview of the field.

The zeros of the Evans function give the eigenvalues of the linearised operator,
with the order of the zero being the multiplicity of the corresponding eigenvalue.
Hence, one obtains information about the spectrum of the operator by finding
the zeros of the Evans function, which can be done either analytically or
numerically. The focus here is on a numerical approach. In particular, Magnus
methods are used to compute the Evans function for spectral problems which
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arise when determining the linear stability of travelling wave solutions to
reaction-diffusion and related partial differential equations.

Section 2 presents the Magnus methods. The construction of the Evans
function is done in section 3. Finally, section 4 employs Magnus methods
to compute the Evans function for spectral problems which arise when de-
termining the linear stability of pulse-type solutions of reaction-diffusion
and related partial differential equations. The present methods enable much
smaller step sizes to be used than in previous work [16], so that more accurate
determinations of the eigenvalues are obtained. Malham and Niesen [16]
discussed the numerical evaluation of the Evans function for h = 0.02 , 0.1
and 0.2. They did not mention what problems they faced. So we try to
examine these methods to the values for smaller step sizes. We also illus-
trate the efficiencies of the various methods by increasing the domain size.
Compared with the work of Malham and Niesen [16], we carry out further
computations to examine smaller step sizes than those they considered. In
addition, we explore how the size of the truncated domain affects the accuracy
of the numerically computed Evans function; Malham and Niesen [16] did not
consider this issue. Since the theoretical Evans function is calculated using
solutions defined on the unbounded real line, we expect that increasing the
size of the domain used for numerical computations will increase the accuracy.
This is indeed what we find.

2 Numerical methods

Magnus [15] showed that the solution of the linear differential equation u ′(x) =
A(x)u(x) can be written in the form u(x) = exp{Ω(x)}u(0), where using [., .]
to denote the matrix commutator [A,B] = AB− BA , the matrix Ω(x) is the
infinite series

Ω(ξ) =

∫ ξ
0

A(x)dx−
1

2

∫ ξ
0

[∫ x1
0

A(x2)dx2,A(x1)

]
dx1
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+
1

12

∫ ξ
0

[∫ x1
0

A(x2)dx2,

[∫ x1
0

A(x2)dx2,A(x1)

]]
dx1

+
1

4

∫ ξ
0

[∫ x1
0

[∫ x2
0

A(x3)dx3,A(x2)

]
dx2,A(x1)

]
dx1 + · · · . (1)

Moan and Niesen [17] proved that this series converges if
∫x
0
‖A(ξ)‖dξ < π .

The Magnus series (1) can be used to solve linear differential equations
numerically if the infinite series is truncated and the integrals are evaluated
numerically. For instance, if we retain only the first term in the series and
approximate the integrand A(x) by its value at the midpoint of the range [0, ξ],
we obtain Ω(ξ) ≈ hA(ξ/2), then the resulting one-step method is

uk+1 = exp

{
hA

(
xk +

1

2
h

)}
uk , (2)

where h denotes the step size and uk is the numerical solution at xk = x0+kh .
This method is termed the Lie midpoint or exponential midpoint method. A
fourth order method is obtained by truncating the Magnus series (1) after
the second term. After some manipulation the scheme

uk+1 = exp {Ωk}uk (3)

results, where

Ωk =
1

2
h [A(x1,k) +A(x2,k)] −

√
3

12
h2 [A(x1,k),A(x2,k)] . (4)

The points x1,k and x2,k are the Gauss–Legendre points

x1,k = xk +

(
1

2
−
1

6

√
3

)
h , x2,k = xk +

(
1

2
+
1

6

√
3

)
h . (5)

Niesen [18] gave details on Magnus methods.

Most reported numerical computations of the Evans function use a Runge–
Kutta method: in particular the classical explicit, fourth order method, and
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the two stage Gauss–Legendre method. As the differential equation we want
to solve in the present work is stiff, we use the two stage Gauss–Legendre
method. This method is

uk+1 = uk +
1

2
h(S1 + S2), (6)

where

S1 = A(x1,k)

{
uk +

1

4
hS1 +

(
1

4
−

√
3

6

)
hS2

}
, (7)

and

S2 = A(x2,k)

{
uk +

1

4
hS2 +

(
1

4
+

√
3

6

)
hS1

}
. (8)

Let us now consider the application of this numerical scheme on the inter-
vals [−L, 0] and [0,L], with the step size h = L/N , where N is the number of
points used to discretise the interval.

2.1 Solution on [0,L]

To compute the solution u+ satisfying the right hand boundary condition we
shall use and compare the exponential midpoint method, the fourth order
Magnus method, and the fourth order Gauss–Legendre method. In detail,
the midpoint method is

uk+1 = exp {−hA(xk − h/2)}uk , (9)

the fourth order Magnus method is

uk+1 = exp {Ωk}uk , (10)

where

Ωk = −
1

2
h {A(x1,k) +A(x2,k)}−

√
3

12
h2 [A(x1,k),A(x2,k)] , (11)
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and the fourth order Gauss–Legendre method is

uk+1 =

{
1+

6h (A(x1,k) +A(x2,k))

12− 3A(x1,k)h− 3A(x2,k)h+A(x1,k)A(x2,k)h2

}
uk . (12)

In these schemes

xi,k = xk −

(
1

2
∓
√
3

6

)
h , i = 1, 2 , k = 1, 2, . . . ,N , (13)

and
xk = x0 − kh , x0 = L , k = 1, 2, . . . ,N . (14)

2.2 Solution on [−L, 0]

To compute the solution u− satisfying the left hand boundary condition, we
again use and compare the exponential midpoint method, the fourth order
Magnus method, and the fourth order Gauss–Legendre method. As in the
previous subsection, the midpoint method is

uk+1 = exp {hA(xk + h/2)}uk , (15)

the fourth order Magnus method is

uk+1 = exp {Ωk}uk , (16)

where

Ωk =
1

2
h {A(x1,k) +A(x2,k)}−

√
3

12
h2 [A(x1,k),A(x2,k)] , (17)

and the Gauss–Legendre method is

uk+1 =

{
1−

6h (A(x1,k) +A(x2,k))

12+ 3A(x1,k)h+ 3A(x2,k)h+A(x1,k)A(x2,k)h2

}
uk . (18)
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Here

xi,k = xk +

(
1

2
∓
√
3

6

)
h , i = 1, 2 , k = 1, 2, . . . ,N , (19)

and
xk = x0 + kh , x0 = −L , k = 1, 2, . . . ,N . (20)

3 The Evans function

Let us consider the specific case of a reaction-diffusion equation on an un-
bounded one-dimensional domain. Such equations have the general form

ut = Kuxx + f(u), (21)

where K is an n × n diagonal matrix with positive entries (the diffusion
coefficients), and the function f : Rn → Rn describes the reaction term. The
steady state solution u0 is the solution of

K(u0(x))xx + f(u0(x)) = 0 . (22)

We assume the limits u0± = limx→±∞ u0(x) exist. For a front-type wave we
have u0+ 6= u0− , whereas pulse-type solutions have u0+ = u0− . To study
the stability of these solutions, we perturb about the steady state

u(x, t) = u0(x) + εu(x)e
λt +O(ε2). (23)

Substituting (23) into (21) gives, to first order in ε,

λu = Kuxx + fu(u0(x))u =: Lou . (24)

The stability of the steady state is then determined by the spectrum of the
operator Lo. The steady state is unstable if there exists λ ∈ C such that
<λ > 0 . The spectrum σ is defined as the set of all λ ∈ C such that Lo − λI
is not boundedly invertible [1, 20]; that is, either the inverse operator does
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not exist or it is not bounded. The spectrum is broken down into the essential
spectrum

σess = {λ ∈ C : Lo − λI is not Fredholm of index zero}

and the point spectrum σp = σ\σess , which is the set of all isolated eigenvalues
of finite multiplicity. The complement of σ in C is the resolvent set of Lo. The
spectrum of Lo has been widely investigated. The essential spectrum has been
estimated; for example by Henry [11], and in Smoller’s statement of Weyl’s
Lemma [12]. This estimation can be done using exponential dichotomies
for the first order system (24) [7, 21]. Fredholm properties are also relevant
when determining the spectrum of Lo [9, 21]. The relation between these two
concepts has been studied [14, 21].

The eigenvalue problem (24) can be cast as the first order non-autonomous
differential equation

Ux = A(x; λ)U , U ∈ Cn, −∞ < x <∞ . (25)

Rewrite (25) in the form

Ux = (A0(λ) +A1(x))U , (26)

with

A0(λ) =

(
0 1

K−1λ 0

)
, A1(x) =

(
0 0

−fu(u0(x)) 0

)
(27)

and
U = (u, v)T . (28)

Let us first consider the equation

Ux = Ao(λ)U , λ ∈ C . (29)

We assume that A0(λ) has eigenvalues with positive real part, say µ+
i (λ),

for i = 1, . . . ,k , and eigenvalues with negative real part, say µ−
i (λ), for
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i = k + 1, . . . ,n . The eigenvectors associated with µ±i (λ) are denoted
by η±i (λ). We define the subspaces

Es = {Ui(λ) | <(µi(λ)) < 0 , i = 1, . . . ,k},

Eu = {Ui(λ) | <(µi(λ)) > 0 , i = k+ 1, . . . ,n}.

The solutions that belong to Es are bounded as x→∞ , while the solutions
that belong to Eu are bounded as x→ −∞ . We then label these solutions
as Us(λ) or Uu(λ) according to whether they are bounded as x → ∞ or
x→ −∞ . These solutions satisfy

lim
x→−∞Usi(x, λ)e−µ

+
i (λ)x = η+

i (λ), i = 1, . . . ,k , (30)

and
lim
x→+∞Uui (x, λ)e−µ

−
i (λ)x = η−

i (λ), i = k+ 1, . . . ,n . (31)

To determine the essential spectrum of Lo we compute <(µ(λ)) = 0 . The
essential spectrum is contained within the parabolic curves of the continuous
spectrum. In many cases σess is shown to be in the left-half complex plane.
In these cases the stability is therefore determined by the position of the
point spectrum. To determine this point spectrum we must solve a linear
system with non-constant coefficients, which, in general, can only be done
numerically.

The Evans function D is defined as the determinant of the Wronskian of the
fundamental matrix solution generated by Es and Eu. In general, this Evans
function is nonzero; that is, Es and Eu together form a basis for the solution
space. However, for any specific value of λ to be in the point spectrum,
Es and Eu must be linearly dependent and therefore the Wronskian must be
zero. Thus, zeros of the Evans function D correspond to isolated eigenvalues
in the point spectrum of the linearised operator [1, 3, 20]. We further note
that any solution that satisfies both boundary conditions at ±∞ must be lie
in Es(λ) ∩ Eu(λ).
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Now bases for the stable and unstable subspaces are numerically determined
in the following way. We calculate the eigenvalues of A0(λ) with negative
real part and their corresponding eigenvectors. Then, by choosing a suffi-
ciently large L to numerically approximate the infinite domain, we solve the
homogeneous equation Ux = (A0(λ) + A1(x))U for x ∈ [0,L] starting from
the right end point x = L with the boundary condition U(L) = η−

i (λ)e
µ−i (λ)L

for i = 1, . . . ,k . These solutions at x = 0 form a basis for Es. Similarly, by
numerically solving the differential equation for x ∈ [−L, 0], we obtain a basis
for Eu.

4 Applications

We choose two specific examples to illustrate and compare the use of the
exponential midpoint method, the fourth order Magnus method, and the
fourth order Gauss–Legendre method for computing the Evans function.

4.1 Example 1

Let us consider the one dimensional reaction-diffusion equation

ut = uxx − u+ 2u3. (32)

This equation has a steady pulse solution given by u0(x) = sech x . Perturbing
about this steady solution, we have

u(x, t) = sech x+ εu(x)eλt +O(ε2). (33)

Substituting (33) into (32) gives, to first order in ε,

uxx − (λ+ 1)u+ 6 sech2 x = 0 . (34)

The stability of the steady pulse is then determined by the spectrum of the
operator ∂xx−1+6 sech2 x , consisting of a discrete spectrum and a continuous
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spectrum. As the steady solution 6 sech2 x→ 0 as x→ ±∞ , the location of
the continuous spectrum on the spectral plane follows from considering the
limits of the operator ∂xx − 1 . Therefore the continuous spectrum lies along
the portion of the negative real axis P =

{
λ | λ = −ω2 − 1 , ω ∈ R

}
. The

transition to instability occurs when discrete eigenvalues move from the left
half-plane to the right half-plane.

For the reaction-diffusion equation (32),

A0(λ) =

(
0 1

λ+ 1 0

)
and A1(x) =

(
0 0

−6 sech2 x 0

)
. (35)

We now show how the Evans function is used to deduce the above stability
result: limx→±∞A1(x) = 0 and that this decay is exponential. The eigenvalues
of A0(λ) are

µ±(λ) = ±
√
1+ λ , (36)

and the corresponding eigenvectors are

η±(λ) = (1,µ±(λ))T . (37)

One constructs solutions U(x, λ) of equation (26) which satisfy

lim
x→−∞Us(x, λ)e−µ

+(λ)x = η+(λ), (38)

lim
x→+∞Uu(x, λ)e−µ

−(λ)x = η−(λ). (39)

The Evans function is

D(λ) = det(Us,Uu)(x, λ). (40)

By Abel’s formula it is independent of x [3].

We now determine a basis of the stable subspace numerically. We take an
eigenvalue of A0(λ) with negative real part and its corresponding eigenvector.
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Then, by choosing a sufficiently large computational domain length L, we
solve the homogeneous equation

Usx = (A0(λ) +A1(x))U
s (41)

for x ∈ [0,L] starting from the right end point with

Us(L) = η−e
µ−L. (42)

We then obtain linearly independent solutions of the differential equation.
Their values at x = 0 form a basis for Es. We obtain a basis for the unstable
subspace numerically in the following manner. We take an eigenvalue of A0(λ)
with positive real part and its corresponding eigenvector. Then, by choosing
a sufficiently large domain length L, we solve the homogeneous equation

Uux = (Ao(λ) +A1(x))U
u (43)

for x ∈ [−L, 0] starting with

Uu(−L) = η+e
µ+(−L). (44)

We then obtain linearly independent solutions of the differential equation and
their values at x = 0 form a basis of Eu.

Let us now use the exponential midpoint method, the fourth order Magnus
method, and the fourth order Gauss–Legendre method to solve (41–44)
numerically. With these numerical solutions the Evans function is

D(λ) = det
(
Us Uu

)
. (45)

The Evans function for the reaction-diffusion equation (32) for step size
h = 0.001 and L = 10 is shown in Figure 1. The Evans function has two
discrete eigenvalues at λ = 0 , due to the translation invariance, and λ = 3 .
Thus we conclude that the pulse wave is unstable.
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We compute the eigenvalues of (32) analytically. By using the transforma-
tion ξ = tanh x the reaction-diffusion equation (32) becomes the associated
Legendre equation(

1− ξ2
)
uξξ − 2ξuξ +

(
6−

λ+ 1

1− ξ2

)
u = 0 , −1 < ξ < 1 , (46)

of order m =
√
λ+ 1 and degree ν, where ν(ν + 1) = 6 , so that ν = 2

or −3. Solutions of this equation have a branch point at ∞. The Legendre
equation equation (46) has two regular singular points at ξ = ±1 . In terms
of the original variable x they correspond to regular singular points of (34) at
x = ±∞ . The eigenvalues of (46) are

√
λ+ 1 = 1, 2 .

Results are presented in Table 1 to illustrate the error in evaluating the
Evans function using the different numerical methods for different values
of h. Here Eexp, EMag and EGL denote the absolute errors associated with
the exponential midpoint method, the fourth order Magnus method, and the
fourth order Gauss–Legendre method, respectively. Malham and Niesen [16]
noted that the error in calculating the Evans function using the Magnus
method is O(λ−1/2h4), whereas the Gauss–Legendre and the exponential
midpoint methods converge more slowly as the error for these method is
O(λ−1/2h2) [16]. Malham and Niesen’s results confirm this behaviour [16].

In summary, we conclude from Table 1 that

• the Magnus method is more accurate than the other two methods; and

• the results of our numerical computations for the Magnus and the
Gauss–Legendre and exponential midpoint methods are consistent with
the theoretical results of Malham and Niesen [16].

4.2 Example 2

Let us now consider the vector (coupled) reaction-diffusion system

ut = uxx + (1− u)v , vt = vxx − (1− u)v . (47)
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Table 1: Errors in D(λ) for the exponential midpoint method Eexp, the
Magnus method EMag and the Gauss–Legendre method EGL, respectively, for
equation (45) for different values of h and L = 10 , λ = 3 .

h Eexp EMag EGL

0.2 7.6× 10−4 1.4× 10−5 1.5× 10−5
0.05 4.7× 10−5 5.6× 10−8 8.7× 10−6
0.025 1.2× 10−5 3.5× 10−9 4.3× 10−6
0.02 7.6× 10−6 1.4× 10−9 3.2× 10−6
0.01 1.9× 10−6 8.9× 10−11 1.1× 10−6
0.005 4.8× 10−7 5.6× 10−12 3.2× 10−7
0.0025 1.2× 10−7 3.5× 10−13 8.6× 10−8
0.002 7.6× 10−8 1.4× 10−13 5.6× 10−8
0.001 1.9× 10−8 7.7× 10−15 1.4× 10−8
0.0005 4.8× 10−9 6.8× 10−16 3.7× 10−9
0.0002 7.6× 10−10 1.7× 10−15 6.0× 10−10

This coupled system has the pulse solution u0(x) =
3
2

sech2 x/2 and v0(x) =

− 3
2

sech2 x/2 . Equation (26) is now

Ux = (A0(λ) +A1(x))U, (48)

where

A0(λ) =


0 0 1 0

0 0 0 1

λ −1 0 0

0 1+ λ 0 0

 , (49)

A1(x) =


0 0 0 0

0 0 0 0

− 3
2

sech2 x
2

sech2 x
2

0 0
3
2

sech2 x
2

− 3
2

sech2 x
2
0 0

 (50)
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and

U =


u

v

ux
vx

 . (51)

The eigenvalues of A0(λ) are

µ±1 (λ) = ±
√
λ and µ±2 (λ) = ±

√
1+ λ , (52)

with the associated eigenvectors

η±1 =
(
1/µ±1 0 1 0

)T
and η±2 =

(
1/µ±2 1/µ∓2 −1 1

)T
. (53)

As for Example 4.1, we use Magnus methods to solve the homogeneous
equation (48) for <λ > 0 . By choosing a sufficiently large domain size L we
solve equation (48) for x ∈ [0,L] with the boundary conditions

Us1,2(L) = e
µ−1,2(L)η−1,2 , (54)

and (48) for x ∈ [−L, 0] with the boundary conditions

Uu1,2(−L) = e
µ+1,2(−L)η+1,2 . (55)

The solution of these equations at x = 0 then forms a basis for Es(λ) and Eu(λ).
Therefore the Evans function is

D(λ) = det
(
Us1 Us2 Uu1 Uu2

)
. (56)

An example of an Evans function calculated using this numerical method is
shown in Figure 2 for step size h = 0.001 and L = 10 . This Evans function
has one discrete eigenvalue at λ = 5/4 , so that the steady pulse wave is
unstable.

Now if we let v = −u in the reaction-diffusion system (47), we obtain

ut = uxx − u(1− u). (57)
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Table 2: Errors in D(λ) for the exponential midpoint method Eexp, the
Magnus method EMag and the Gauss–Legendre method EGL for different
values of h and L = 10 , λ = 5

4
for the system (56).

h Eexp EMag EGL

0.2 1.4× 10−6 8.6× 10−9 3.4× 10−8
0.05 8.6× 10−8 3.5× 10−11 3.6× 10−8
0.025 2.2× 10−8 3.3× 10−12 1.7× 10−8
0.02 1.2× 10−8 2.1× 10−12 1.2× 10−8
0.01 3.5× 10−9 1.3× 10−12 4.0× 10−9
0.005 8.6× 10−10 1.2× 10−12 1.1× 10−9
0.0025 2.2× 10−10 1.2× 10−12 3.1× 10−10
0.002 1.4× 10−10 1.2× 10−12 2.0× 10−10
0.001 3.6× 10−11 1.2× 10−12 5.2× 10−11
0.0005 9.9× 10−12 1.2× 10−12 1.4× 10−12
0.0002 2.6× 10−12 1.2× 10−12 3.3× 10−12

As for the reaction-diffusion equation (32), we find the eigenvalue λ analytically
as 3 = 2

√
λ+ 1 . Table 2 shows the same comparison of the error in the

calculation of the Evans function obtained using the three numerical methods
as that shown previously in Table 1. Again the Magnus method is the most
accurate.

Finally, we investigate the effect of increasing or decreasing the numerical
domain length L on the overall accuracy of the three different schemes. We
keep the step size h = L/N fixed by adjusting the number N of mesh points
appropriately for each choice of L to isolate the the effects of changing the
domain length L. The results are shown in Tables 3 and 4: increasing L
decreases the error, as expected. As for the results shown in Tables 1 and 2,
the Magnus method is the most accurate. The accuracy of the exponential
midpoint and the Gauss–Legendre methods increases to eight decimal places
and then does not change as L is increased further. In contrast, for the
Magnus method the error eventually fluctuates around a very small value
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Table 3: Errors in D(λ) for the exponential midpoint method Eexp, the
Magnus method EMag and the Gauss–Legendre method EGL for different
values of L, with h = 0.0005 , λ = 3 for equation (45).

N L Eexp EMag EGL

2000 1 2.1× 10−2 2.1× 10−2 2.1× 10−2
4000 2 4.9× 10−5 4.9× 10−5 4.9× 10−5
6000 3 1.3× 10−7 1.2× 10−7 1.2× 10−7
8000 4 5.1× 10−9 3.0× 10−10 4.0× 10−9

10000 5 4.8× 10−9 7.5× 10−13 3.7× 10−9
12000 6 4.8× 10−9 1.6× 10−15 3.7× 10−9
14000 7 4.8× 10−9 1.4× 10−16 3.7× 10−9
16000 8 4.8× 10−9 8.4× 10−17 3.7× 10−9
18000 9 4.8× 10−9 2.5× 10−16 3.7× 10−9
20000 10 4.8× 10−9 6.8× 10−16 3.7× 10−9

100000 50 4.8× 10−9 6.5× 10−16 3.4× 10−9
200000 100 4.8× 10−9 9.7× 10−16 3.1× 10−9
400000 200 4.8× 10−9 1.4× 10−15 2.5× 10−9
600000 300 4.8× 10−9 1.7× 10−15 2.1× 10−9

as L keeps increasing. This suggests that the errors of the midpoint and
Gauss–Legendre methods are dominated for lower values of L by the step
size, while increasing the domain length L for the Magnus method gives a
much more accurate solution that is limited by L and not by the chosen step
size. We conclude that increasing the value of L leads to a more accurate
approximation, as expected as the real domain length is infinite.

5 Conclusions

We discussed three numerical methods for computing the Evans function.
These numerical methods are illustrated by calculating the Evans function for
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Table 4: Errors in D(λ) for the exponential midpoint method Eexp, the
Magnus method EMag and the Gauss–Legendre method EGL for different
values of L, with h = 0.0005 , λ = 5

4
for equation (56).

N L Eexp EMag EGL

2000 1 1.6× 10−2 1.6× 10−2 1.6× 10−2
4000 2 2.3× 10−4 2.3× 10−4 2.3× 10−4
6000 3 4.1× 10−5 4.1× 10−5 4.1× 10−5
8000 4 4.9× 10−6 4.7× 10−6 4.7× 10−6

10000 5 6.1× 10−7 4.3× 10−7 4.4× 10−7
12000 6 2.1× 10−7 3.6× 10−8 3.6× 10−8
14000 7 1.7× 10−7 2.9× 10−9 2.8× 10−9
16000 8 1.7× 10−7 2.2× 10−10 2.3× 10−10
18000 9 1.7× 10−7 1.7× 10−11 2.9× 10−11
20000 10 1.7× 10−7 1.2× 10−12 1.4× 10−11
30000 15 1.7× 10−7 3.9× 10−18 1.3× 10−11
40000 20 1.7× 10−7 3.9× 10−19 1.3× 10−11

100000 50 1.7× 10−7 5.9× 10−19 1.2× 10−11
120000 60 8.6× 10−12 2.3× 10−18 8.1× 10−12
140000 70 8.6× 10−12 9.5× 10−19 3.4× 10−10
160000 80 7.3× 10−12 2.3× 10−19 1.7× 10−8

two sample problems. The errors produced in calculating the Evans function
using the three different methods were compared and the Magnus method
found to be the most accurate. We also considered the effect on the error
of increasing the length of the computational domain for equations on the
infinite line, which has not been considered in previous studies [16]. Our
results again showed that the fourth order Magnus method was the most
accurate method. The numerical results presented were done with the aid of
Mathematica.
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