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Reconstruction with blobby shapes
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Abstract

We investigates fitting a surface to an object using blobby models as
a coarse level approximation. The aim is to achieve a given quality of
approximation with relatively few parameters. This process involves an
optimisation procedure where a number of blobs (ellipses or ellipsoids)
are separately fitted to a cloud of points. Then the optimised blobs
are combined to yield an implicit surface approximating the cloud of
points. The results for our test cases in two and three dimensions
are very encouraging. For many applications, the coarse level blobby
model itself will be sufficient. For example, adding texture on top of
the blobby surface can give a surprisingly realistic image.
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1 Introduction

The wide spread adoption of 3D scanning devices has enabled the acquisition
of many large ‘cloud of points’ data sets. These represent a variety of objects,
from sculptures, body parts, and machine parts, through to the interiors of
mines. For various applications, it is required to convert the point clouds into
a ‘water tight’ surface.

The motivation of this work is to identify the basic structure of an object
by a blobby model representation. We present an automatic method to
approximate the shape of a given cloud of points with a low parameter model:

• using ellipses in two dimensional space (2D); and

• using ellipsoids in three dimensional space (3D).

Our aim is to find a very efficient coarse level approximation for hierarchical
implicit curve (2D), or surface (3D), models. By efficient we mean a coarse
level approximation that reproduces the overall shape of the underlying
object while being very fast to evaluate. The speed of evaluation of the coarse
level approximation is critical as it is used for every function evaluation when
rendering the surface. Implicit radial basis function models [1] and hierarchical
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radial basis function models (unpublished), indicate that the current method
easily outperforms radial basis function models for this application.

The two stage process involves automatic initialisation and optimisation
of blobs (ellipses or ellipsoids) approximating parts of a point cloud. The
parts approximated by the different blobs are not identified explicitly and
usually overlap. Next, an implicit blobby model is fitted by combining all the
optimised blobs through least squares fitting to all the data.

Suitable objective functions and heuristics have been developed which work
well on our test cases, particularly in fitting the outline of a hand in 2D and 3D.
We review some related work in the following section. Shape reconstruction
in 2D using ellipses is discussed in section 3. The method of fitting ellipsoids
to points in 3D is presented in section 4.

2 Previous work

Söderkvist [6] gave a good general overview of various methods used in
surface reconstruction prior to 1999. Since we focus on blobby model shape
reconstruction, we only review related research; particularly that reported in
the last decade.

Bischoff and Kobbelt [3] presented a technique for fitting ellipsoids to the
volume bounded in a given mesh. The robust transmission of geometric
objects in the ellipsoidal decomposition guarantees a good approximation
even if some parts of the data are lost during transmission.

Simari and Singh [5] restructured and re-meshed polygon meshes using el-
lipsoidal based segmentation. Their algorithm allows fitting the ellipsoids
to a given mesh by surface or volume enclosed orientation. They also take
‘negative ellipsoids’ as primitives to capture bowl shaped concavities. The
shape of the model is then obtained by smoothing segmentation boundaries.

Jin et al. [7] proposed an automatic algorithm for approximating polygonal
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meshes with blobby objects. They constructed a medial axis sphere-tree
of the given mesh and used the spheres as initial blobs to approximate the
object’s shape. Once the sphere representation is achieved, an isosurface of
the object is generated employing field functions in the blobby model. An
implicit representation of the object is constructed through minimising the
distance between the isosurface of blobs and the given mesh.

Recently, Liu et al. [4] extended the work of Jin et al. [7] and reconstructed a
blobby model using ellipsoidal blobs. Their work employed a modified scheme
of Bischoff and Kobbelt [3] in the ellipsoidal decomposition process. Their
main contributions are applying the ellipsoidal blobby model in geometry
data reduction and giving two geometric based schemes for cloud animation.

3 Fitting ellipses in 2D

Given a set of scattered data points in the plane, (xi,yi) where i = 1, 2, . . . ,N ,
we approximate part of the shape of the scattered points by an ellipse.
Generally, an arbitrarily oriented ellipse is defined by

(x− c)TA(x− c) = 1 , (1)

where x = (x,y) are points on the ellipse, c = (xc,yc) is the centre of the
ellipse and A is a symmetric positive definite matrix. The matrix A can be
decomposed as A = QDQT where the rotation matrix

Q =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
. (2)

The eigenvalues of A are given by D = diag(σ1,σ2) and the columns of Q
are corresponding eigenvectors. These eigenvalues are the inverse squares of
the lengths of the major and minor semi axes of the ellipse, a and b.

In this work, ellipses are fitted inside the object independently of each other.
Thus, in the first stage, we set up the fitting problem as a constrained
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Figure 1: Parameters of an ellipse used in the optimisation algorithm.

optimisation problem of the form

minimise f(z) such that lb 6 z 6 ub (3)

where z =
[
xc yc a b θ

]T
.

Here, we set xc, yc, a, b and θ as the five parameters to be optimised, see
Figure 1. Parameter θ represents the angle of rotation of the ellipse counter
clockwise from the x-axis. For each point xi = (xi,yi),

ρi = (xi − c)TA(xi − c) − 1 (4)

is the offset of xi from the ellipse. The offset ρi is positive if xi lies outside
the ellipse, equals zero if xi is on the ellipse, and is negative if xi lies inside
the ellipse. Thus, to encourage points outside to be on the ellipse, we set our
objective function as

f
(
z
)
=

N∑
i=1

[ρi]
2
+

K+ [ρi]2+
(5)
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for some K > 0 and defining [ρi]+ = max
(
ρi, 0

)
. The constraints consist of

simple bounds on the decision variables

xmin 6 xc 6 xmax , ymin 6 yc 6 ymax ,

`min 6 a,b 6 `max , 0 6 θ 6 π ,

together with the nonlinear constraints ci = −ρi 6 0 , which are designed to
prevent any data point from lying inside the optimised ellipse.

Once we obtain all optimised ellipses, we need a method to blend these ellipses
to describe the shape of the scattered data points. Each optimised ellipse has
the form of equation (1) for some symmetric matrix A and centre c. The left
hand side of equation (1) is a positive definite quadratic form. The square
root of a quadratic form,

s =
√

(x− c)TA(x− c) , (6)

is suitable for representing a single ellipse via the equation s(x) = 1 , but not
for combining several ellipses. The difficulty with the root quadratic form in
equation (6), is that it becomes larger as one moves away from the ellipse’s
centre. In a linear combination of such functions the distant ellipses’ root
quadratic forms can swamp those of closer ellipses. To avoid this effect we
need a function which is negligible (and preferably zero) far from an ellipse.

To this end we introduce the sigmoidal function

φ(s) =



2, if t 6 0 ,

2− t3/(3h3), if 0 < t 6 h ,

2−
(
1
3
+ t−h

h
+ (t−h)2

h2
− 2(t−h)3

3h3

)
, if h < t 6 2h ,

(3h− t)3/(3h3), if 2h < t 6 3h ,

0, otherwise,

(7)

where h > 0 is the skirt width parameter, s =
√

(x− c)TA(x− c) , and
t = s−

(
1− 3

2
h
)
.
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Figure 2: The sigmoidal function φ(s).

The sigmoidal function φ(s) equals two for small s and decreases monotonically
as s increases through the interval

[
1− 3

2
h, 1+ 3

2
h
]
, as is shown in Figure 2.

For large s, φ(s) = 0 so this particular φ vanishes when far from its ellipse.
A single ellipse is recovered from φ(s) via the equation φ(s) = 1 . Different
ellipses give rise to different distance functions sj. Applying the sigmoidal
function we define

ψ(x) =
∑
j

λjφ(sj(x)). (8)

The curve corresponding to the combined ellipses is given by ψ(x) = 1 . The
λj’s are chosen to optimise the fit of ψ(x) = 1 to the data points. This is
done by performing a least squares solution of the system

ψ(xi) =
∑
j

λjφ(sj(xi)) ≈ 1 , for all i, (9)

where xi is the ith data point. This system is usually overdetermined as
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the interesting case is when the number of ellipses is small compared to the
number of data points.

3.1 2D results and discussion

Our optimisation algorithm requires an initial estimate of the parameters.
Therefore we set up an automatic algorithm to identify potential centres of
ellipses to be optimised one by one. We first optimise the largest inscribed
ellipse. This is done by generating the midpoints of some randomly chosen
pairs of data points. Then, choose the midpoint that has the largest distance
from its closest data point as the initial centre of an inscribed ellipse. A
kd-tree structure is constructed to find the nearest point in the given data
set, to any specified point.

Once we have identified the first ellipse, we use the implicit function ψ(x) = 1
to determine potential centres. Note that any data point on the implicit
curve ψ(x) returns the value one. Therefore we can locate data points that
are far away from the first ellipse. To insert an ellipse for optimisation, we
identify one far away data point xfar and its neighbouring data points. We fit
a best line through this cluster of points and return the inward normal nin of
the line. We define

x∗ = xfar + kdnin, (10)

where x∗ is the estimated centre of the new ellipse, d is the distance from xfar

to the closest data point and k is some parameter with 1 < k < 2 .

After each optimisation step, we calculate the residual sum of squares (rss),

rss =

N∑
i=1

(ψ(xi) − 1)
2 , (11)

for all data points. The process of updating the implicit curve ψ(x) = 1 and
inserting an ellipse is repeated until the change in rss due to adding a new
ellipse is less than some constant, in this case 1.
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(d) The final shape of the hand.

Figure 3: Reconstructing the coarse shape of a hand using ellipses.
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Figure 3 shows the process of constructing the coarse shape of a hand using
ellipses. A prototype implementation was written in matlab. The 151 points
of a hand are shown in Figure 3(a). Figure 3(b) shows the largest inscribed
ellipse. A total of six optimised ellipses are identified for gross features
using K = 1 in equation (5) and k = 1.7 in equation (10). To blend the
ellipses, h = 0.6 is used in equation (7). Figure 3(d) shows the extracted
contour ψ(x) = 1 of the implicit function. The shape of the hand is clearly
reconstructed.

4 Fitting ellipsoids in 3D

We extend the previous method and algorithm to obtain a coarse approx-
imation to a shape in three dimensional space. Given a set of scattered
data points in 3D, (xi,yi, zi) where i = 1, 2, . . . ,N , we fit the shape of the
scattered points by some ellipsoids. The equation of an ellipsoid is

(x− c)TA(x− c) = 1

where x = (x,y, z) is point on the ellipsoid, c = (xc,yc, zc) is the centre of
the ellipsoid and A is a 3× 3 symmetric positive definite matrix. Matrix A
has spectral decomposition A = QDQT , where D = diag(σ1,σ2,σ3) are the
eigenvalues of A and Q is a rotation matrix. The eigenvalues give information
about the semi axes of the ellipsoid,

a =
1√
σ1

, b =
1√
σ2

and c =
1√
σ3

, (12)

shown in Figure 4. The semi axes lengths a, b and c are all positive real
numbers that determine the shape of the ellipsoid.

To represent the ellipsoid’s orientation, we use Rodrigues’ formula to write the
rotation matrix in exponential representation [2]. Other choices such as Euler
angles, or a quaternion representation have disadvantages in the optimisation
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Figure 4: Parameters of an ellipsoid used in the optimisation algorithm.

procedure. Euler angle representations include bounds that must be dealt
with, and quaternions use one additional parameter.

In the exponential representation, Q = eŵ is a rotation about axis w through
‖w‖ radians where the skew symmetric matrix

ŵ =

 0 −w3 w2
w3 0 −w1
−w2 w1 0

 . (13)

Given w ∈ R3, Rodrigues formula gives the matrix exponential

eŵ = I+
ŵ

‖w‖ sin ‖w‖+ ŵ2

‖w‖2 (1− cos ‖w‖) . (14)

To avoid loss of significance when ‖w‖ is small, we rewrite equation (14) by
applying a half angle formula obtaining

eŵ = I+
ŵ

‖w‖ sin ‖w‖+ 2 sin2
(‖w‖
2

)
ŵ2

‖w‖2 . (15)
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Figure 5: Original data set of a hand with 57, 126 laser scan points.

From equation (15), the matrix exponential eŵ → I as ‖w‖ → 0 . The
rotation matrix Q is therefore given by (15) when w 6= 0 , and is I when
w = 0 . Using this definition, the optimiser can adjust w without constraint.

In fitting an ellipsoid, the same optimisation algorithm as described in section 3
is used, with minor modifications. We now have nine parameters to be
optimised, three to indicate the ellipsoid’s centre, three to represent the
lengths of the semi axes, and three to represent its orientation, that is,

z =
[
xc yc zc a b c w1 w2 w3

]T
.

4.1 3D results and discussion

For the 3D case, we also developed an automatic method for identifying the
initial ellipsoids for the coarse level approximation. For a given set of 3D
‘on surface’ points and their corresponding point normals, we form an initial
centre of an ellipsoid using equation (10). In this case, the first ellipsoid is
selected by choosing the largest ellipsoid from a small number of ellipsoids
generated from random starting data points. After that, a procedure similar
to the 2D case is used, that is, update the implicit function ψ, identify a
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(b) The first optimised ellipsoid.
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(c) The original data points with 15 opti-
mised ellipsoids.

(d) The final isosurface generated by com-
bining the ellipsoids.

Figure 6: Reconstructing the coarse shape of a hand using ellipsoids.
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poorly fitted region and insert subsequent ellipsoids for optimisation in that
region.

The 3D hand model used in our test case contains 1905 data points. It
is a heavily down-sampled version of the 57, 126 point laser scan shown in
Figure 5 and supplied to us by Brent Price of Applied Research Associates
New Zealand Limited. Even the original data set contains significant holes,
particularly on sides of the fingers and the thumb, and at the wrist. The
down-sampled dataset also has holes at the fingertips. Since our optimisation
algorithm is designed such that any ellipsoid will extend between the data
points, ellipsoids may extend through the holes. In our experience ellipsoids
that are completely outside the data do not improve the model. These
were therefore detected and removed, increasing the simplicity of the model.
Detecting such ellipsoids is easily done by comparing normals to the ellipsoids
and data normals at data points lying on the ellipsoid.

The first optimised ellipsoid, shown in Figure 6(b), partly extends outside
the data range. The final fifteen optimised ellipsoids are shown in Figure 6(c)
using parameters K = 1 in equation (5) and k = 1.3 in equation (10). However,
we are only interested in recovering the coarse surface of the approximation
within the data range. In regards to that, our final implicit surface is not
affected by ellipsoids that partly extend outside the data range. Figure 6(d)
shows the isosurface of ψ corresponding to ψ(x) = 1 with h = 0.6 .

5 Conclusions

We demonstrated a method to approximate a given point cloud with an implicit
blobby representation. Our work focused on a coarse level approximation with
relatively few parameters. The results show that the reconstructed curves
and shapes can describe the original point clouds well in both 2D and 3D.
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