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Stability characteristics of conjugate natural
convection boundary layers
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Abstract

Flow in a differentially heated two dimensional rectangular cavity,
partitioned in the centre by an infinitely conducting vertical wall, has
been examined with numerical simulations over Rayleigh numbers
around 1010 at Prandtl number 7.5. The configuration is an idealised
version of a flow which occurs commonly in engineering settings and
is of fundamental importance. Heat is transferred between both sides
of the cavity through the conducting wall with natural convection
boundary layers forming on all vertical surfaces. We show for the
first time that the flow becomes oscillatory above Rayleigh number
1.2× 1010 for cavity height to width ratio of two, and above Rayleigh
number 1.4× 1010 for cavity height to width ratio of one. The results
indicate that the instability is a convective boundary layer instability
which becomes absolutely unstable as a result of the thermal coupling
across the partition wall.
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1 Introduction

When a hot fluid and a cold fluid are separated by a conducting vertical
plate heat is transferred through the plate and natural convection boundary
layers form on both sides, with the boundary layer in the hot fluid flowing
downwards and that in the cold fluid flowing upwards. This heat transfer
system is very common in many industrial settings for example in solar
collectors, nuclear reactors, electronic equipment and hvac of buildings. A
common configuration of this flow is the partitioned cavity geometry illustrated
in Figure 1. In this configuration the left and right outer walls are held at
fixed ‘hot’ and ‘cold’ temperatures respectively. The top and bottom walls
are adiabatic and the central vertical wall is conducting. In fully developed
flow the cores of the cavities are stratified and nearly quiescent. The natural
convection boundary layers on the vertical walls flow onto the horizontal
walls forming intrusions driving clockwise circulations around the cavities.
The important governing parameters for this cavity flow are the Rayleigh
number, Prandtl number and cavity aspect ratio (A = H/W) [1]. We refer
to the coupled boundary layers on the conducting wall as ‘conjugate natural
convection boundary layers’.

The prior work in this configuration is predominately limited to the study of
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(a) (b)

Figure 1: Configuration studied with flow circulation and coordinate sys-
tem (a). Contours of mean temperature illustrated at Ra = 1.4× 1010 and
A = 2 in (b).

the mean heat transfer behaviour [2, 3]. The unsteady characteristics and
the stability properties of the flow are also important. From an engineering
design point of view, understanding the modes of oscillation may lead to
opportunities for heat transfer enhancement or control. In the non-partitioned
cavity configuration prior work has shown that the transition from steady
flow to time dependent flow depends on Rayleigh number, Prandtl number
and cavity aspect ratio and the mechanism by which this transition occurs
depends on the Prandtl number [4, 5, 6, 1, 7, 8, 9, 10, 11, 12]. In this work
we consider high Prandtl number flow in which the first unstable mode of
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oscillation is associated with the natural convection boundary layers [10]. At
Pr = 4 and A = 1 the transition from steady to unsteady flow occurs at
Ra = 2.51× 1010 [10]. The critical Rayleigh number for this bifurcation is not
well defined for Pr = 7.5 but is thought to be greater than 1011 [13]. These
critical Rayleigh numbers represent a value for the absolute instability of the
system, unconditional on external forcing. At a smaller Rayleigh number
natural convection boundary layers can be convectively unstable, meaning
that if a perturbation of frequency fc is imposed on the flow, the signal will be
amplified by the boundary layer. Once the exciting perturbation ceases the
oscillations will decay. In isothermal cavity flow the critical Rayleigh number
for convective instability in the boundary layers is Ra ≈ 106 at Pr = 7.5 [11].

Convectively unstable boundary layers can become absolutely unstable if there
is a reinforcing feedback mechanism. In conjugate boundary layers, a feedback
mechanism exists through the temperature field across the conducting wall.
We show that this coupling allows the boundary layers on either side of the
conducting wall to become absolutely unstable at a lower Rayleigh number
than for a similar aspect ratio isothermal cavity. We use direct numerical
simulations to locate the critical Rayleigh number for this flow configuration.

2 Numerical formulation

The two dimensional Navier–Stokes equations for incompressible flow with
the Oberbeck–Boussinesq approximation for buoyancy are [11],
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where Pr = ν/α is the Prandtl number, and the Rayleigh number is Ra =
gβ∆θH3/να . The kinematic viscosity and thermal diffusivity of the fluid
are ν and α, β is the coefficient of thermal expansion, and gravitational
acceleration is g. The dimensional velocity (Ũi), temperature (θ̃), pressure (P̃),
time (T̃) and length (X̃i) are made non-dimensional as Ui = Ũi/U

∗, φ =
(θ̃ − θ̃r)/∆θ̃ , p = P̃/ρU∗2, t = T̃U∗/H and xi = X̃i/H respectively. ∆θ̃ =
θ̃H − θ̃C is the temperature difference between the hot and cold walls and the
reference temperature θ̃r = 0.5(θ̃H + θ̃C). The characteristic velocity U∗ =
κRa1/2 /H [5]. The height of the cavity is H and κ is the fluid conductivity.

The discretised governing equations were solved in finite volume form on a
non-staggered Cartesian grid. The spatial derivatives were discretised using
second order central finite differences except for the advective terms which were
discretised using the third order accurate quick scheme [14]. The advective
terms were advanced in time using the second order Adams–Bashforth scheme
while the viscous terms were advanced using the Crank–Nicolson scheme [15].
The system of equations was solved using the bicgstab solver with a multi-
grid Jacobi pre-conditioner [15]. The code has been extensively benchmarked
and validated in similar flows [16].

We performed a series of simulations over the range Ra = 1.0–1.6× 1010 at
a Prandtl number of Pr = 7.5 and with A = 1–2 with an initial condition
of (φ,u, v) = 0 . These simulations were continued until the flow reached
full development and the flow was statistically invariant with time. The grid
size at the vertical walls was ∆xw = 5× 10−5 and ∆y = 0.002 . The grid is
uniform in the vertical (y) direction and has 0.5–1% linear stretching in the
horizontal (x) direction giving ny = 517 and nx = 776 computational nodes
at A = 2 and nx = 1032 at A = 1 . A time step of ∆t = 7.1× 10−5 was used.
Figure 1 indicates the coordinate system used in this study, with x zero at
the partition wall, positive in the right cavity and negative in the left cavity.
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3 Results

The development of the flow from an initial condition φ = 0 is shown in
Figure 2 for Ra = 1.4 × 1010 and A = 2 , where temperature φ is plotted
with time at a location on the bottom left side of the conducting wall. A
short time after start-up, natural convection boundary layers form on the
vertical isothermal walls and flow into the intrusions with the remainder of
the cavity quiescent. After t ≈ 3.5 , the horizontal intrusions meet the vertical
partition wall and the cavity begins to fill up and stratify. Waves generated in
this region propagate across the cavity and excite oscillations in the vertical
boundary layer on the isothermal walls. Between t = 30–50 , the oscillations
related to the start-up flow are reduced but the oscillations on the conducting
wall are self-sustaining and persist. These oscillations are amplified along
the natural convection boundary layers on the vertical walls but are also
present at much reduced magnitude in the intrusions and cavity cores. From
t = 50–400 the mean flow field asymptotically approaches its final solution.
The initially multi-modal oscillations in the flow field become increasingly
dominated by a single mode of oscillation shown in Figure 2(inset).

All the simulations in this study are well above Rac = 106, so the natural
convection boundary layers on both the isothermal and conducting walls are
expected to be convectively unstable and amplify oscillations within a specific
band of frequencies f1 to f2, where f1 and f2 may vary with height or local
Rayleigh number. Figure 2 demonstrates that the flow in the partitioned
cavity with a conjugate boundary layer is not only convectively unstable
but is absolutely unstable at Pr = 7.5 , A = 2 and Ra = 1.4 × 1010 as the
oscillations are sustained with no external forcing. The critical Rayleigh
number for a non-partitioned isothermal cavity is not known for Pr = 7.5 flow
but we performed additional numerical simulations of an isothermal cavity
up to Ra = 2× 1010 at A = 4 and Pr = 7.5 and confirm that the flow does
not bifurcate at these values. The instability observed here in the partitioned
cavity flow therefore occurs at a lower Rayleigh number than in isothermal
cavity flow and has a different character, being predominately single modal
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Figure 2: Time trace of temperature φ for Ra = 1.4× 1010 and A = 2 at
y = 0.1 and x = −0.005 . The inset plot illustrates the dominant mode of
oscillation at full development.

rather than weakly turbulent.

The temperature perturbation is defined as φ ′ = φ− 〈φ〉 where 〈〉 indicates
time averaging. Figure 3 plots φ ′ along the conducting wall (y-direction)
at time t = t1 and a short time later t = t1 + 0.071 , on either side of the
conducting wall. The direction of the travelling wave is inferred on either
side of the conducting wall. On the left side of the wall the boundary layer
is travelling down the wall in the negative y direction. On this same side
below y ≈ 0.7 , the wave travels in the direction of boundary layer flow and
is strongly amplified in this direction as illustrated by the arrows. Above
y ≈ 0.7 the wave travels against the direction of flow and is amplified in the
positive y direction. This perturbation is not generated in the flow but is
apparently conducted through the wall from the conjugate boundary layer.
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The phase lag between the oscillations on either side of the wall is a function
of the horizontal distance. The transmission of the oscillations away from the
partition wall is inferred from the temperature variance 〈φ ′φ ′〉0.5 in Figure 4.

This coupling mechanism between the two boundary layers provides a feed-
back mechanism which allows the system to become absolutely unstable at
sufficiently high Rayleigh number. This instability is illustrated as follows.
If an initial forcing is applied to the system at an unstable frequency f, the
signal will be amplified along one boundary layer, conducted through the
wall and then be amplified in the opposing direction on the other side of the
partition wall. If the flow is above a critical Rayleigh number Rap, then the
perturbations grow in time until ultimately the growth of the oscillations in
the system is limited by dissipation in the boundary layer. In this way the
instability appears to be a convective boundary layer instability which is able
to persist through a feedback loop.

Additional simulations were performed to determine the range of Rayleigh
numbers for which the system is unstable at A = 2 and A = 1 . At A = 2

results are presented here for Ra = 1.0 × 1010 where the flow is initiated
from the Ra = 1.4× 1010 flow field. The sudden change in Rayleigh number
introduces a large perturbation into the flow. Figure 5 gives the time trace of
temperature φ. The flow rapidly adjusts to the new Rayleigh number and
large oscillations appear in the vertical boundary layers. The oscillations grow
spatially in the direction of mean flow along the boundary layers indicating
that the flow is convectively unstable. Temporally though, the oscillations
decay with time asymptotically approaching a steady solution, indicating that
the flow is not absolutely unstable. At Ra = 1.2×1010 and A = 2 a simulation
was performed initiated from a quiescent initial condition and the flow was
found to be absolutely unstable, indicating the transition from convectively
unstable flow to absolutely unstable found occurs between Ra = 1.0× 1010
and Ra = 1.2× 1010 at A = 2 .

A smaller aspect ratio simulation at A = 1 was performed at Ra = 1.4× 1010
from the quiescent φ = 0 initial condition and the flow was found to be
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Figure 3: φ ′ at Ra = 1.4× 1010 and A = 2 plotted against vertical location
at two horizontal locations, x = −0.002 (solid lines) just to the left of the
conducting wall and x = 0.002 (dashed lines) just to the right of the wall.
Thick lines indicate data at t = t1 and thin lines data at t2 = t1 + 0.071 .
Arrows indicate direction of the waves in the coupled boundary layers. Inset
is the same data presented on a linear scale.

absolutely unstable. A further test was performed at Ra = 1.2 × 1010 at
A = 1 and found to be convectively unstable but not absolutely unstable,
as opposed to flow at A = 2 at the same Rayleigh number, indicating that
the critical Rayleigh number has an aspect ratio dependence. This difference
in stability properties is attributed to the small changes in the mean flow
field between the A = 1 and A = 2 results. Another possibility is that the
transmission of waves around the cavity is altered and that this makes the
flow more stable.
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Figure 4: 〈φ ′φ ′〉1/2 at Ra = 1.4× 1010 and A = 2 with distance from the
conducting wall in the right cavity.

Figure 5: Time trace of temperature φ for Ra = 1.0× 1010 and A = 2 at
y = 0.125 and x = −0.005 . The inset gives φ ′ = φ − 〈φ〉 on a log scale
where 〈φ〉 is the final mean non-dimensional temperature at this location.
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Figure 6: The discrete Fourier transform of velocity u(t) from t = 650–700
at y = 0.1–0.9 and x = −0.005 (at the conducting wall) with Ra = 1.4× 1010
and A = 2 .

Figure 6 shows the spectrum of the velocity u signal at locations along the
left side of the conducting wall for the Ra = 1.4 × 1010 and A = 2 result.
The dominant mode of oscillation has a frequency of f = 1.413 with higher
harmonics of this signal also present. This dominate frequency is constant
across the height of the cavity indicating that the oscillations induced in
the upstream end of the boundary layer, which travel against the mean
flow, have the same frequency as the oscillations in the downstream end of
the boundary layer travelling in the opposite direction. Normalising this
dominant mode with the natural convection boundary layer time scale gives
f+ = fν1/3/(gβ∆θ)2/3 ≈ 0.0145 , slightly smaller than the most unstable
mode in convectively unstable isothermal cavity flow [17]. The normalised
frequencies of this oscillation in all the simulations performed in this study
range over f+ = 0.0142–0.0147 irrespective of aspect ratio or Rayleigh number.
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4 Concluding remarks

Flow in a partitioned cavity with isothermal outer walls and a conducting
partition wall is shown to becomes oscillatory at Pr = 7.5 between Rap =
1.0 − 1.2 × 1010 for A = 2 , and between Rap = 1.2 − 1.4 × 1010 for A = 1 .
The bifurcation is manifested as a single mode of oscillation with f+ ≈ 0.0145
originating in the conjugate natural convection boundary layers formed on
either side of a conducting wall. The instability appears to be a result of
a convective boundary layer instability which becomes absolutely unstable
via the thermal coupling between the boundary layers on either side of
the partition wall. The results show that, unlike isothermal cavity flow,
partitioned cavity flow with conjugate natural convection boundary layers has
an additional regime of behaviour between the convectively unstable regime
and weakly turbulent flow regime.
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[15] J. H. Ferziger and M. Perić. Computational Methods for Fluid
Dynamics. Springer, 2002. C700

[16] S. E. Norris. A Parallel Navier–Stokes Solver for Natural Convection
and Free Surface Flow. PhD thesis, University of Sydney, 2000. C700

[17] R. Janssen and S. Armfield. Stability properties of the vertical
boundary layers in differentially heated cavities. Int. J. Heat Fluid Flow,
17(6):547–556, 1996. doi:10.1016/S0142-727X(96)00077-X C706

Author addresses

1. N. Williamson, School of Aerospace, Mechanical and Mechatronic
Engineering, University of Sydney, Australia.
mailto:nicholas.williamson@sydney.edu.au

2. S. W. Armfield, School of Aerospace, Mechanical and Mechatronic
Engineering, University of Sydney, Australia.

http://dx.doi.org/10.1017/S0022112001006553
http://dx.doi.org/10.1016/0045-7825(79)90034-3
http://dx.doi.org/10.1016/S0142-727X(96)00077-X
mailto:nicholas.williamson@sydney.edu.au

	Introduction
	Numerical formulation
	Results
	Concluding remarks
	References

