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On the numerical solution of the chemical
master equation with sums of rank one tensors
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Abstract

We show that sums of rank one tensors (or separable functions)
representing the so-called Candecomp/Parafac or cp-decomposition
is used effectively to solve the chemical master equations as in many
cases the effective tensor rank of the probability distribution only
grows slowly with time. Both theoretical bounds and computational
experiments are presented which support this claim. The proposed
numerical algorithm is thought to provide an effective tool for the
computational study of stochastic biochemical systems involving large
numbers of different chemical species.
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1 Introduction

A well stirred chemical system is characterised by a vector X(t) of copy num-
bers of its relevant chemical species. According to Kurtz and collaborators [2],
such a system is modelled as a stochastic process X(t) satisfying

X(t) = X(0) +

k∑
i=1

Yi

(∫ t
0

λi(X(s))ds

)
zi . (1)

Here X(0) is the initial condition, Yi(ν) are independent standard Poisson
processes with parameter ν, λi(x) ∈ R is the propensity and zi ∈ Zd the
stoichiometric vector of reaction i for i = 1, . . . ,k . One can use this equation
to generate simulation algorithms like the Gillespie method [3] and even the
kinetic rate equations as by the application of the law of large numbers one
gets Yi(ν) → ν for ν→ ∞ . Section 2 uses a related consequence of the law
of large numbers.

Here we consider the conditional distribution p(t; x) = Pr[X(t) = x | X(0)]
of the stochastic process X(t) defined by equation (1). If x ∈ Zd is inter-
preted as an index then p(t; x) is the xth entry of a tensor p(t). Such a
conditional distribution is used, for example, to compute the likelihood of
data X(t1), . . . ,X(tN) in a maximum likelihood method for the determination
of parameters of the propensities λi, see for example the article by Tian et
al. [8].



1 Introduction C630

Van Kampen [9] showed that p(t) satisfies the chemical master equations
(cme)

dp(t)

dt
= Ap(t), (2)

where

Ap =

k∑
i=1

(Szi − I) λi ~ p , (3)

and where Szu(x) = u(x + z) denotes the shift along z and λi ~ p is the
Hadamard or point-wise product.

Typically, p(t) is a d-dimensional tensor with Md entries where M is the
size of state space in one dimension. This exponential dependency of the
complexity on the dimension is the curse of dimension. However, there are
tensors which can be represented in a sparse format and therefore do not
suffer under this curse [6]. In particular, if

p(t; x) =

d∏
i=1

pi(t; xi)

for some pi where xi is the ith component of x, then one only requires the
storage of dM numbers, namely M for each pi. This is a rank one tensor.
More generally, a tensor of rank r is of the form

p(t; x) =

r∑
j=1

sj

d∏
i=1

pj,i(t; xi). (4)

The storage requirement here is rdM and there is no curse for low r. In the
following we provide some evidence that such low rank r approximations of
the solution of the master equation are effective.

A related approach to the one discussed here was suggested by Jahnke and
Huisinga [5]. Their approach is based on the Dirac–Frenkel–McLachlan varia-
tional principle while the algorithm suggested here is based on more general
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approximation with low rank tensors. We also provide some explanation
why the chemical master equation admits low rank approximations. Alter-
natives to tensor product approximations were suggested by Munsky and
Khammash [7] using the finite state projection method and by Hegland et
al. [4] using (dimension) adaptive sparse grids. While especially the adaptive
sparse grids have been shown to work well even for very high dimensions,
the theory of these earlier approaches for high dimensions is less clear. As
the chemical master equations have a natural low rank structure we think
that the tensor product approaches are more promising for some very high
dimensional problems, and in particular for modelling of reaction cascades.

Section 2 discusses when and why the solution of the chemical master equation
can be approximated by low rank tensors. In particular, the law of large num-
bers is used to demonstrate the accuracy of (local) rank one approximations.
Section 3 introduces the new algorithm which is based on a combination of a
standard initial value problem solver and low rank compression. To show the
potential of the approach, Section 4 provides some computational results and
show that the new method works well at least for two dimensional problems
where it appears to have a spectral-like complexity.

2 Low rank approximations of p(t)

When solving the cme for the conditional probability p(t; x) = Pr[X(t) = x |
X(0) = x0] one often observes that there exist ε-approximations for which the
rank grows initially (p(x, 0) has rank one), then has some phases where the
rank is relatively stable and others where the rank decreases. We show under
which conditions these situations arise. For this we consider ε-approximations
obtained by approximating the propensities λi of the cme. The effect of such
a modification on the solution is bounded by the following lemma.
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Lemma 1. Let p(t) and p̃(t) solve the chemical master equations

dp

dt
=

k∑
i=1

(Szi − I) λi ~ p , (5)

dp̃

dt
=

k∑
i=1

(Szi − I) λ̃i ~ p̃ , (6)

for p(0) = p̃(0). If X(t) is the stochastic process with distribution p(t) then

‖p(t) − p̃(t)‖1 6 2
k∑
i=1

∫ t
0

E
[∣∣λi(X(s)) − λ̃i(X(s))∣∣] ds .

Proof: Let A and Ã be the operators of the equations (5) and (6), respec-
tively such that

Au =

k∑
i=1

(Szi − I) λi ~ u and Ãu =

k∑
i=1

(Szi − I) λ̃i ~ u ,

for u ∈ `1(Zd). Let in the following ‖u‖1 =
∑

x∈Zd |u(x)| be the `1(Zd) norm.
A standard variation of the constant argument gives

p(t) − p̃(t) =

∫ t
0

eÃ(t−s)(A− Ã)p(s)ds .

Using the triangle inequality and the `1-contractivity of eÃt one gets the
bound

‖p(t) − p̃(t)‖1 6
∫ t
0

‖(A− Ã)p(s)‖1 ds .

Another application of the triangle inequality combined with the contractivity
of the shifts Szi then shows

‖p(t) − p̃(t)‖1 6 2
k∑
i=1

∫ t
0

‖λi ~ p(s) − λ̃i ~ p(s)‖1 ds .
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The bound follows from the definitions of the `1 norm and expectation. ♠

If A has operator rank one, that is A = A1 ⊗ · · · ⊗Ad , then the rank of the
solution p(t) of the corresponding cme does not change over time. Lemma 1
then provides a condition under which a constant rank approximation of p(t)
exists—when A applied to p(t) is well approximated by a rank one operator.

If the propensities λi have tensor rank one, then the rank of λi ~ p is the
same as the rank of p. As in this case the rank of Sziλi is also one, the rank
of Ap (which has 2k terms) is 2k times the rank of p. For sufficiently small
time steps ∆t one approximates p(t+ ∆t) using the Euler method as

p(t+ ∆t) = p(t) + ∆tAp(t).

The rank of p(t+ ∆t) is then at most 2k+ 1 times the rank of p(t). Conse-
quently we expect to find that ε-approximations of p(t) have a tensor rank
which grows over time. While the discussion suggests exponential growth in
time the growth is slower in practice.

In order to understand what may happen in practice, we consider a simple
example with two reactions S1 → S′

1 and S2 → S′
2 . The state is defined

by the counts of S1 and S2. Assume that the propensities are λ1(x) = κ1x1
and λ2(x) = κ2x1x2/n1 where n1 is the initial count of S1. Choose λ̃1 = λ1
and λ̃2(x) = λ2(E[X1(t)], x2) = κ2e

−κ1tx2 . The identity E[X1(t)] = e
−κ1tn1 is

obtained from the explicit determination of the marginal distribution of X1(t).
This distribution satisfies a master equation with propensity λ1(x1) = κ1x1 and
is thus binomial. The approximating system has two statistically independent
reactions where the second propensity depends on time. The approximating
tensor p̃(t) thus has rank one.

Proposition 2. Let p(t) and p̃(t) be the probability distributions for the two
systems defined in the previous paragraph. Then the error is bounded by

‖p(t) − p̃(t)‖1 6
√

2

n1κ1
κ2
(
1− e−κ1t

)√∫ t
0

E[X2(s)2]ds
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Proof: An application of Lemma 1 gives

‖p(t) − p̃(t)‖1 6 2
∫ t
0

E
[∣∣λ2(X(s)) − λ̃2(X(s))∣∣] ds.

Inserting the values of the propensities one gets by Cauchy–Schwarz

E
[∣∣λ2(X(s)) − λ̃2(X(s))∣∣] 6 κ2

n1

√
var(X1(s))

√
E[X2(s)2]

= κ2 n
−1/2
1

√
e−κ1s(1− e−κ1s)

√
E[X2(s)2].

Integration over t and another application of Cauchy–Schwarz gives∫ t
0

√
e−κ1s(1− e−κ1s)

√
E[X2(s)2]ds

6

√∫ t
0

e−κ1s(1− e−κ1s)ds

√∫ t
0

E[X2(s)2]ds ,

from which the result follows. ♠

One can see that the error of the approximation λ̃2 first increases and then
decreases with time. Interestingly, the error also decreases with the initial
count n1 of S1, this is a consequence of the law of large numbers.

When the error grows to a certain threshold, one partitions the domain into
two parts and does the rank one approximation for each part separately.
(An alternative to using domain partitioning would be to use a partition of
unity.) This is how one gets higher rank approximations and one can use the
proposition to get error bounds for all the components and thus for p(t).

To further illustrate the consequence of the law of large numbers consider the
original system from above. This was solved for different parameters n1 using
the cmepy software mentioned in Section 4 to get the exact solution. An
approximation was obtained using the singular value decomposition (svd)
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Figure 1: Ranks of truncated svd approximation.

and truncating all components with singular values σi < 10
−5. One can see

that the ranks of the resulting approximation decrease with increasing n1.
Thus the probability of larger systems are approximated by tensors with
smaller ranks, see Figure 1.

3 The algorithm

The numerical solution of the initial value problem (2) uses a discretisation of
time t0 = 0 < t1 < · · · < tK . For example, one may choose tk = kτ but more
generally, the grid widths τk = tk− tk−1 are not all equal. Denote a numerical
approximation to p(tk) by pk ∈ RΩ where Ω contains the support of p(tk).
As the differential equation associated with the initial value problem (2) is
stiff, one needs to use stable solvers. To illustrate the suggested approach we
use very simple solvers.
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Furthermore, one needs a tensor class which has two operations: addition of
tensors and (point-wise, Hadamard) multiplication. The sum of a rank r1
and a rank r2 tensor is (at most) of rank r = r1 + r2 , whereas the Hadamard
product is a tensor of rank r1r2.

We consider the implicit Euler or Rothe method where the approximation pk
is defined as the solution of the linear system of equations

(I− τkA)pk = pk−1 , k = 1, . . . ,K .

The discretisation tk is chosen such that the error of the Rothe method is at
most some ε.

The determination of pk is done with a gradient descent method. This class
of iterative methods defines a sequence p

(n)
k by

p
(n+1)
k = p

(n)
k −ωn[(I− τkA)p

(n)
k − pk−1].

Iterate from n = 0, . . . ,N and choose N such that the error of the descent
method is again bounded by ε. In the analysis one utilises the fact that the
pk−1 is also only known approximately. For example, the parameter ωn is
chosen according to the steepest descent method.

The main computational ingredient is the matrix vector product

Ap =

k∑
i=1

(Szi − I)Λip .

As Λi are diagonal we first consider the values of (the tensor) (λi(x))x. In
the simplest case which uses counts of species for the states and the law of
mass action all these tensors are of rank one. Consequently the Λi p all have
the same rank as p, thus no rank reduction is required. In other cases a low
rank representation of the tensor containing the values of the propensities
is explicitly computed; here an approximation might be necessary to keep
the rank low while controlling the error made. In two dimensions one uses
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Algorithm 1: Acp(p): Operation of A on p

propensities λi are given in cp-format (exact or approximated initially)1

shift operators Szi are given in cp-format2

Ap = 03

for i ∈ {1, . . . ,k} do4

Aip = (Sziλi)~ (Szip) − λi ~ p5

possible rank reduction of Aip . cp#(Aip) = 2 · cp#(λi) · cp#(p)6

Ap = Ap+Aip7

end8

possible rank reduction of Ap . cp#(Ap) =
∑k

i=1 cp#(Aip)9

return Ap10

the singular value decomposition (svd), and for more dimensions one can
use alternating least squares or other procedures [6]. The employed rank is
chosen adaptively to get a desired accuracy. This is possible as the rank of
the exact solution is finite and small. The value Szip is obtained by shifting
all the components representing p by the value of component zi. This shift
operation is rank invariant.

The algorithmAcp(p) to computeAp in the cp-format is shown in Algorithm 1.
The rank of Ap after the application of the (approximated) tensors (λi(x))x
can be as large as

2

k∑
i=1

cp#(λi) · cp#(p),

where cp# equals r in the representation (4) of a tensor. Therefore a rank
reduction algorithm often needs to be applied.

The full procedure is shown in Algorithm 2. The residual used in the gradient
descent algorithm also needs to be stored as a low rank tensor. Due the
multiplication with A the ranks of the residual might grow as well. Therefore
a rank reduction algorithm needs to be applied which again needs to keep
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Algorithm 2: Implicit Euler in cp-format

initial distribution p0 is given in cp-format1

time interval [0, tK] is divided into time steps t0 = 0 < t1 < · · · < tK2

for k ∈ {1, . . . ,K} do . implicit Euler3

τk = tk − tk−14

pit = pk−15

res = δt ·Acp(pit)6

while not good enough do . grad. desc.: (I− τkA)pk = pk−17

resop = res−τk ·Acp(res)8

α = (resop, res)/(resop, resop)9

pit = pit + α · res10

possible rank reduction of pit . cp#(pit) = cp#(pit) + cp#(res)11

res = res−α · resop12

possible rank reduct. of res . cp#(res) = cp#(res) + cp#(resop)13

end14

pk−1 = p
it; possible rank reduction of pk−115

end16

the error of the approximation under control.

4 Computational experiments

We report on some experiments with a two dimensional problem with propen-
sities

λi = 60e
−t

(
0.5

xi + x1−i
+

0.5

xi + 1000

)
xi , i = 1, 2 . (7)

This model was suggested to us by Kevin Burrage. It models competing
T-cell clonotypes. The basis for this study is the cmepy software [1]. For
our purposes we added low rank approximations to cmepy. The system
converges towards a bistable distribution where one clonotype dominates in
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each of the branches, see Figure 2. It has some diagonal structure which is
often unfortunate for tensor based approaches.

While smaller time steps seem to result in smaller ranks, the rank increases
over the observation interval as seen in Figure 3(a). This tendency is also
seen in Figure 3(b), where in addition one sees that the error is proportional
to the threshold. The cost for a reduction of the error by a factor of ten is a
rank increase by two. This means that by a linear increase in complexity one
can reduce the error by a constant factor. This exponential error dependency
is what is encountered for spectral methods and for radial basis function
approximation and needs to be further investigated. (For grid based methods
the error is usually proportional to a power of the cost.) Figure 3(c) shows
that the largest observed rank of the residual in Algorithm 2 after thresholding
is proportional to the step size, so smaller time steps allow a more compact
representation. The final plot, Figure 3(d), provides an insight into the
complexity of the solver as it displays the number of gradient descent steps
required at every integration step. With smaller step sizes one requires fewer
iterations but interestingly note that the actual number of iterations required
is mostly very small. These last two observations together explain that the
observed total run time decreases with smaller time steps, in contrast with
what one would expect. But this observation has to be taken with a grain of
salt since our current implementation is far from optimal.

Acknowledgements The work on cmepy was supported by the arc Cen-
tre in Bioinformatics. The work by the second author was supported through
the Matheon Project A18. We thank R. Fletcher-Costin for his work on
cmepy and S. Kamprath and M. Asher for their work on the tensor product
approximation codes used in this project.
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Figure 2: Solution p for the T-cell clonotypes model at time t = 7.5 .
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Figure 3: Some results for the T-cell clonotypes model.



References C642

References

[1] CmePy Documentation. http://fcostin.github.com/cmepy/, 2010.
C638

[2] K. Ball, T. G Kurtz, L. Popovic, and G. Rempala. Asymptotic analysis
of multiscale approximations to reaction networks. Ann. Appl. Probab.,
16(4):1925–1961, 2006. doi:10.1214/105051606000000420 C629

[3] Daniel T. Gillespie. A general method for numerically simulating the
stochastic time evolution of coupled chemical reactions. J. Comput.
Phys., 22(4):403–434, 1976. doi:10.1016/0021-9991(76)90041-3 C629

[4] Markus Hegland, Conrad Burden, Lucia Santoso, Shev MacNamara, and
Hilary Booth. A solver for the stochastic master equation applied to gene
regulatory networks. J. Comput. Appl. Math., 205(2):708–724, 2007.
doi:10.1016/j.cam.2006.02.053 C631

[5] Tobias Jahnke and Wilhelm Huisinga. A dynamical low-rank approach to
the chemical master equation. Bull. Math. Biol., 70(8):2283–2302, 2008.
doi:10.1007/s11538-008-9346-x C630

[6] Tamara G. Kolda and Brett W. Bader. Tensor decompositions and
applications. SIAM Rev., 51(3):455–500, 2009. doi:10.1137/07070111X
C630, C637

[7] Brian Munsky and Mustafa Khammash. A multiple time interval finite
state projection algorithm for the solution to the chemical master
equation. J. Comput. Phys., 226(1):818–835, 2007.
doi:10.1016/j.jcp.2007.05.016 C631

[8] T. Tian, S. Xu, J. Gao, and K. Burrage. Simulated maximum likelihood
method for estimating kinetic rates in gene expression. Bioinformatics,
23(1):84–91, 2006. doi:10.1093/bioinformatics/btl552 C629

http://fcostin.github.com/cmepy/
http://dx.doi.org/10.1214/105051606000000420
http://dx.doi.org/10.1016/0021-9991(76)90041-3
http://dx.doi.org/10.1016/j.cam.2006.02.053
http://dx.doi.org/10.1007/s11538-008-9346-x
http://dx.doi.org/10.1137/07070111X
http://dx.doi.org/10.1016/j.jcp.2007.05.016
http://dx.doi.org/10.1093/bioinformatics/btl552


References C643

[9] N. G. van Kampen. Stochastic processes in physics and chemistry,
volume 888 of Lecture Notes in Mathematics. North-Holland Publishing
Co., Amsterdam, 1981. C630

Author addresses

1. Markus Hegland, Mathematical Sciences Institute, The Australian
National University, Australian Capital Territory 0200, Australia.
mailto:markus.hegland@anu.edu.au

2. Jochen Garcke, Institut für Mathematik, Technische Universität
Berlin, 10623 Berlin, Germany
mailto:garcke@math.tu-berlin.de

mailto:markus.hegland@anu.edu.au
mailto:garcke@math.tu-berlin.de

	Introduction
	Low rank approximations of p(t)
	The algorithm
	Computational experiments
	References

