
ANZIAM J. 52 (CTAC2010) pp.C333–C348, 2011 C333

Information recovery from near infrared data
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Abstract

In many practical situations, classical modelling protocols are ei-
ther inappropriate or infeasible for the recovery of an estimate of some
specific property of an object, such as the protein content of wheat,
from available indirect (spectroscopic) measurements. In such situa-
tions, some form of calibration-and-prediction (machine learning) is
a popular alternative. For a representative set of samples, inexpen-
sive and rapidly available indirect (spectroscopic) encapsulations of
the property are recorded for each sample along with an independent
laboratory measurement of the value of the specified property. Be-
cause many more indirect measurement values are recorded for each
sample than the number of samples tested, the resulting system is
highly under-determined in the sense of performing the calibration step:
the identification of a predictor which can be applied to the indirect
measurements of a new sample to predict its value of the property.
Various dimension reduction methodologies have been proposed for
performing the calibration step, including principal component regres-
sion, partial least squares, independent component analysis and neural
network analysis. Independently, because of the high accuracy with
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which near infrared spectra are recorded using computer controlled
instrumentation, derivative spectroscopy techniques can be utilised
to explore differences in the molecular structure of cereal grains. For
the optimisation of the recovery of estimates of the property from the
indirect measurements of new samples, two questions are explored in
this article; one practical, the other theoretical: (i) To what extent
should preprocessing (such as fourth differentiation) be applied to the
indirect measurements before the calibration step is performed? (ii) Is
there an algorithmic advantage in viewing partial least squares as an
implementation of simultaneous minimisation?
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1 Introduction

When the complexity of a situation is such that it is not possible and/or
appropriate to formulate a mathematical model that relates the inputs to the
outputs, a popular alternative is to perform the modelling using some form
of calibration-and-prediction (cap), introduced in section 2. The overall goal
is the determination of a predictor for some specified property P of an object,
such as the protein content of wheat, where the predictor is defined in terms
of some indirect (spectroscopic) measurements that encapsulate the essence
of P. Calibration is used to estimate the structure of the predictor.

For a set of m representative samples, two independent classes of measure-
ments are performed:

1. For each sample, a large comprehensive set of inexpensive and rapidly
recorded indirect measurements are collected. A popular choice is a near-
infrared (nir) spectrum over a comprehensive range of wavelengths
(section 2). Depending on the circumstances, other forms, such as
Raman spectra [2] and grain hardness measurements [4], are utilised
either independently of or jointly with the nir spectra. The overall
rationale motivating the choice of the indirect measurements is that
(localised) features in them are strongly linked to the information
required about P.

2. For each sample, a (possibly expensive, time consuming and/or haz-
ardous) laboratory measurement is performed to determined the value
of P (e.g., protein content).

This set of dual measurements defines the ‘calibration data’. In the calibration
step, a (linear) relationship, that defines the property as a function of the
indirect measurements, is fitted to the calibration data. For nir measurements,
where a linear relationship is justified (Beer’s Law) [14], the resulting algebraic
equations take the form

Sβ = p , (1)
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where the (m × n)-matrix S, with n � m , has the m measured spectral
responses for n evenly spaced wavelengths stored as its rows, p is the vector
of the measured values of the property P, and β is the unknown (regression)
coefficient vector to be determined. It is this linear nir situation which will
be the focus of this article.

Since only a subset of the spectral responses are related to the property P [14],
the estimation of β as β̂k will involve a dimension reduction calibration step
resulting in the replacement of equation (1) by

Skβ̂k = p , Sk ∈ Rm×n, (2)

with rank(Sk) = k < m . It is the β̂k estimate, generated at the calibrations
step, that defines the predictor p∗ of P for a new sample with nir spectrum s∗;
namely,

p∗ = (s∗)T β̂k . (3)

The clear advantage of this process, when successful, is that it removes the
need to perform laboratory measurements. The price to be paid is the need
to solve the (highly) underdetermined system of equations (1) with n� m .

A variety of methods, including principal component analysis [7], partial least
squares (pls) [13] and independent component analysis [12], have been utilised
to perform the dimension reduction that is the essence of the calibration.
Independently, because of the high accuracy with which nir spectra are
recovered using computer controlled instrumentation, it has been established
that derivative spectroscopy techniques (section 2) can be utilised to explore
differences in molecular structure of barley mutants [16]. This leads naturally
to

1. whether, for the calibration step, there might be a more appropriate
choice than the measured nir spectra, such as the fourth derivative of
the nir spectra, and, hence,

2. the discussion in section 3 of the appropriateness of preprocessing the
measured spectral data before performing the calibration step.
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Whatever the form of the underdetermined system to be solved, some ap-
propriate dimension reduction methodology is usually applied. A popular
strategy is pls [13]. It exploits, using an iterative covariance maximisation
strategy, the fact that any matrix can be rewritten as the sum of rank-one
matrices. The essence of the pls strategy reduces to finding iteratively the
matrix of ‘factors’ F ∈ Rm×k, with k < n , which generates the following
rank-one representation for S and the corresponding decomposition of the
property vector p:

S = FQT + E , p = Fc + r , (4)

with the residuals E and r appropriately small.

As noted by Anderssen et al. [6], the pls strategy represents an implementation
for the following ‘simultaneous minimisation’ procedure: choose the factors F
to minimise, for some appropriate choice of norm,

λ‖FQT − S‖2 + (1− λ)‖Fc − p‖2, (5)

with λ controlling the trade-off between the fits to S and p. The germ of this
idea was proposed and analysed by Frank as biased regression [8] and interme-
diate least squares regression [9]. The consequences of this interpretation are
pursued in section 4, where it is shown that this simultaneous minimisation is
equivalent to solving the total least squares problem, in the Frobenius norm,
for a matrix augmentation of Sβ = p .

2 Introductory background

In order to motivate the matters highlighted in the Introduction and the
deliberations to follow in sections 3 and 4, it is necessary to give some
appropriate background.
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2.1 NIR spectroscopy

The measurement of the spectroscopic response of a material to an electro-
magnetic stimulus, such as the vibrational response of a biomaterial to a
near-infrared (nir) stimulus, records indirectly the proportional presence
of the molecular components in the material that respond to the stimulus.
For biomaterials such as cereals, the nir spectrum records the intensity of
vibration of the size chains on the protein molecules in the cereals. Because
the wavelengths at which the various side chains vibrate are known, the wave-
lengths, and hence the sidechains, become the molecular identifiers for the
proteins present and their proportional presences. This information recovery
protocol has been used to examine successfully the proportional presence of
various proteins such as gliadin and glutenin in wheat [15] and the molecular
difference in barley mutants [16]. An introduction to the background science
of nir spectroscopy and its application can be found in the book of Osborne
et al. [14].

2.2 Calibration and prediction methodologies

pls is one of a large number of procedures available for solving underdeter-
mined systems of equations. Elden [7] gave an insightful discussion about the
relationship between pls and singular value decomposition (for which pcr
corresponds to an implementation).

As explained by Gosselin et al. [11], the calibration should be “a simple
wavelength selection method, yet having the ability to identify relevant spectral
intervals.” In relation to our svd analysis of wheat nir spectra, it is with
this interval aspect of calibration that preprocessing-with-differentiation has
a potential role to play.
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2.3 Derivative spectroscopy

It is well known that the (numerical) differentiation of observational data
enhances the presence of the measurement noise [1, 3]. Equally important,
known historically since before the 1920s and exploited in analytic chemistry,
differentiation also has the potential to enhance the fine scale structure in
observational data [5, 16]. The accuracy and detail with which the data have
been measured are the factors determining whether the enhancement of the
measurement errors or the fine scale will dominate when the differentiation is
performed.

It is only with the advent of modern computer controlled instrumentation,
such as nir instruments, that the full potential of derivative spectroscopy
has materialised, since it allows, through a multiple sweeping and averaging
process, highly accurate data on very fine wavelength grids to be generated.
Anderssen and Hegland [5] analysed in detail the trade-offs involved.

3 Preprocessing of the spectra

As explained above, the goal of the calibration step is the estimation of β
as β̂k, corresponding to a dimension reduction. Those components of β̂k will
be essentially zero which multiply the spectral responses at wavelengths that
are not excited by the molecular vibrations associated with the property P.

However, the choice of β in the calibration equation (1) to define how the
prediction process (of equation (3)) should be performed is not unique. This
is directly reflected in that the calibration equation (1) can be rewritten to
take the alternative form

SGG−1β = p , S̄β̄ = p , S̄ = SG , β̄ = G−1β , (6)

where the matrix G represents the chosen preprocessing to be performed on
each of the spectra forming S. In nir spectroscopy, in order to remove the
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linear scattering sample effect, second order differentiation preprocessing is
often applied [14]. If one-sided derivatives are included in the differentation
of S, then G would correspond to the second derivative matrix D2. An
alternative choice for G is the fourth differentiation matrix D4 [16]. It is also
justified because the vibrational spectroscopic response to an nir stimulus is
strongly localised and not global polynomial in nature.

In this preprocessing situation, the modified calibration equations (6) have the
same basic structure as the original calibration equations (1). Consequently,
in the calibration step, the estimation of β as β̂k is replaced by the estimation

of β̄ as ^̂βk. In this way, the prediction of the value of P as p∗ using the
predictor (3) is replaced by the predictor

p̄∗ = (s∗G)T ^̄βk . (7)

3.1 The fourth differentiation possibility

In order to motivate the use of the fourth derivative, the following matters
will be examined:

1. a theoretical analysis;

2. an svd analysis of wheat nir data.

3.1.1 Theoretical considerations

An svd analysis of the matrices S and S̄ yields

S = UΣVT =

m∑
j=1

ujσjv
T
j , S̄ = ŪΣ̄V̄T =

m∑
j=1

ūjσ̄jv̄
T
j , (8)

and β =

m∑
j=1

uTj p

σj
vj , β̂ =

m∑
j=1

ūTj p

σ̄j
v̄j , (9)
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where the (m×m)-matrices U and Ū are orthogonal, the (m× n)-matrices
VT and V̄T are the orthogonal columns of V and V̄ and the (m×m)-matrices
Σ and Σ̄ are diagonal matrices of the (positive) singular values with their
entries arranged in decreasing order. Formally, as shown in equation (8), the
svd decomposition consists of a sum of rank-one components. As indicated
in equation (4), pls is also constructed as a sum of rank-one matrices. They
are generated iteratively in pls taking the structure in p into account as an
essential part of the iteration.

In an svd analysis, a comparison of the rate of decay of the singular values is
known to be a useful characterisation of the degree of linear independence
between the rows of an underdetermined matrix [10]. It therefore represents a
basis for the comparison of S and S̄. Equally important information is obtained
by comparing the structure of the first, second, etc., rank-one components.

3.1.2 SVD analysis of wheat NIR data

Figure 1 plots the wheat nir spectra for 59 representative wheat samples [2]
and their fourth derivatives.

Their first rank-one components are not plotted as they are quite similar to
those shown in Figure 1. Their second and third rank-one components are
plotted in Figures 2 and 3, respectively.

The advantage of using the fourth derivative has become clear. The second
and third rank-one corrections for both the nir spectra and their fourth
derivatives contain localised features which identify where the nir spectra
see differences in the response of the samples to the nir stimulus. The
identification is much stronger and clearer in the fourth derivatives than
the original spectra. It yields an indicative proof that, under appropriate
conditions, the differentiation yields information about the fine scale structure
which often has a strong linkage to the property being calibrated.

As observed by others, and explained succinctly by Elden [7], the success of
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Figure 1: The nir spectra of the 59 wheat samples (left) and their fourth
derivatives (right).

1200 1600 2000 2400

−
0
.0

4
0
.0

0
0
.0

2
0
.0

4

Wavelength (nm)

S
e
c
o
n
d
 R

a
n
k
 O

n
e
 T

ru
n
c
a
ti
o
n
 o

f 
S

p
e
c
tr

a

1200 1600 2000 2400−
1
e
−

0
6

0
e
+

0
0

5
e
−

0
7

1
e
−

0
6

Wavelength(nm)

S
e
c
o
n
d
 R

a
n
k
 O

n
e
 T

ru
n
c
a
ti
o
n
 o

f 
F

o
u
rt

h
 D

e
ri

v
a
ti
v
e

Figure 2: The second rank-one svd component of the nir spectra of the
59 wheat samples (left) and their fourth derivatives (right).
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Figure 3: The third rank-one svd component of the nir spectra of the
59 wheat samples (left) and their fourth derivatives (right).

pls compared with pcr is the iterative process of the former which takes
account of the structure in the right hand side p of the calibration equation (1)
with respect to the successive choices of the components used to form the
dimension reduction. This process is implicitly encapsulated in the structure
of the simultaneous minimisation representation of equation (5). It thereby
represents an alternative theoretical framework in which to explore rank-one
dimension reduction.

Elden [7] suggests that, instead of simply choosing the rank-one corrections
on the basis of the sizes of their singular values, pcr should be modified to
choosing the rank-one corrections on the basis of the sizes of uTj p, the svd
projections onto p. For the nir data, Table 1 gives the first seven projections
for the original, second derivative and fourth derivative data.

As is clear from the values of the entries in Table 1, the first two svd rank-one
components for the original data and the first three for the fourth derivative
data account for about 99% of the variability. This difference in the number
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Table 1: svd projection protein functionals
nir spectra Second derivative spectra Fourth derivative spectra

1 −95.3267072 −94.6710192 −94.03540423
2 33.60960857 34.54571042 30.57111018
3 −3.838051909 −8.878968064 −21.37190323
4 3.172797189 −2.435736995 0.325186499
5 −1.076245832 −1.398356549 −1.621886793
6 3.125263444 −0.263572285 −1.760102019
7 2.211280123 −0.695537032 2.212543474

of rank-one components required to explain the bulk of the structure in the
original and fourth derivative data represents algebraic confirmation of the
structure seen in Figures 2 and 3. In addition, it illustrates, in terms of the
required third rank-one component, how the differentiation has identified
fine scale structure in the original data which its svd analysis has failed to
highlight.

This shows that there is key localised structure in the nir wheat spectra
which the fourth derivative identifies more strongly than either the original
data or the second derivative. This thereby gives a good illustration of the
utility of performing the calibration with the fourth derivative.

Independent suggestive confirmation of the localisation performed by the dif-
ferentiation is shown in Figure 4 where slightly smoothed values of βk and β̄k
of equation (9) are plotted for m = 3 .

4 Simultaneous minimisation

As mentioned above, the importance of the simultaneous minimisation of
equation (5) is that it represents an alternative framework for exploring
rank-one dimension reduction. As already mentioned, the germ of this idea
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Figure 4: Slightly smoothed approximations for β (blue) and β̂ (red) for
the nir wheat data, using the sum of the first three rank-one components.

goes back to Frank [8, 9].

Here, we prove the following proposition.

Proposition 1 The simultaneous minimisation of equation (5) is equivalent
to solving the total least squares problem minF ‖Ŝ− FQ̂T‖2F , where Ŝ and Q̂
denote respectively the augmented matrices [S, θp] and [Q, θc].

Proof: Using the trace property of the Frobenius norm, one obtains, using
the linearity of the trace operator,

‖Ŝ− FQ̂T‖2F = trace((Ŝ− FQ̂T)T(Ŝ− FQ̂T))

= trace(ŜT Ŝ) − trace((Ŝ)T(FQ̂T))
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− trace((FQ̂T)(Ŝ)) + trace((FQ̂T)T(FQ̂T)).

On using the following identities

trace((Ŝ)T(Ŝ)) = trace(STS) + θ2pTp ,

trace((Ŝ)T(FQ̂T)) = trace(ST(FQT)) + θ2pT(Fc),

trace((FQ̂T)(Ŝ)) = trace((FQT)TS) + θ2(Fc)Tp ,

and trace((FQ̂T)T(FQ̂T)) = trace((FQT)T(FQT)) + θ2(Fc)T(Fc),

it follows that

‖Ŝ− FQ̂T‖2F = ‖S− FQT‖2F + θ2(pTp − pT(Fc) − (Fc)Tp + (Fc)T(Fc))

= ‖S− FQT‖2F + θ2‖p − Fc‖22 .

♠

With θ2 = (1 − λ)/λ , the right hand side of the last equation in the proof
has a structure indicative of the simultaneous minimisation formulation of
equation (5).
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