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Recovery of localised structure from signals
with non-sparse components
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Abstract

We consider the recovery of localised structure from signals con-
sisting of a piecewise constant structure and sparse components. A
new algorithm is presented which aims to reconstruct signals of this
type from a limited set of observed data. The algorithm is broken
down into two subproblems which both involve minimisation of an
l1-regularised least squares problem. Numerical results are presented
which demonstrate the effectiveness and efficiency of the proposed
method.
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1 Introduction

Digital signal and image reconstruction is important in a wide range of areas.
These include medical imaging (for example magnetic resonance imaging [11]
and computed tomography [14]), astronomical imaging [13], speech and audio
signal reconstruction [9], and photo-acoustic imaging [12]. In many of these
applications data acquisition time is limited so the aim is to reconstruct
these signals or images from a reduced data set. Typically the reconstruction
problem is described by the following linear model. For a given vector of
observations b ∈ Rm, solve

b = Ax+ ε , (1)

where A ∈ Rm×n, ε ∈ Rm is vector of noise (usually assumed to be Gaussian),
and x ∈ Rn is unknown.

Without any prior knowledge about the structure of the signal to be recon-
structed, we must sample at the Nyquist rate (twice the maximum frequency
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present in the signal). Essentially this means that if the signal has length n
then the observation vector b in (1) should have length 2n for accurate
reconstruction. A new mathematical framework known as compressed sensing
explains that if we know that the signal to be reconstructed is sparse (has few
non-zero components) then we can take many fewer samples without affecting
the reconstruction quality. So in compressed sensing we assume that m� n

(that is, equation (1) represents an underdetermined system of equations) and
the signal reconstruction process is posed as

arg min
x
‖Ax− b‖22 + λ‖x‖1 , (2)

where the quadratic loss term enforces data fidelity and the l1-regularisation
term encourages a sparse solution. Here λ is a user defined regularisation
parameter. Early work on compressed sensing [3, 6, 5, 4] shows that we only
need

m > c · k · lnn (3)

observations of the signal to ensure accurate reconstruction, where k is the
number of non-zero components in x, n is the length of x, and c is a problem
dependent constant.

Outline The aim of this work is to investigate whether it is possible, from a
limited set of observations, to reconstruct signals which are a combination of a
piecewise constant signal and sparse components. Such signals have a specific
structure which we aim to exploit. Section 2 considers the reconstruction
problem assuming that the piecewise constant structure of the signal is known.
Then Section 3 considers the problem of signal reconstruction when the
piecewise structure is unknown and must first be recovered. This ‘blind’
reconstruction case is considerably more difficult. Finally, Section 5 gives
numerical examples which show that the reconstruction of signals with the
given structure is possible to a high level of accuracy even from a limited set
of data.
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2 A known subspace

Mathematically we wish to determine a solution to (1) of the form

x = xs + v ,

where v is a piecewise constant vector and xs is sparse. Because v is a piecewise
constant vector it is decomposed as

v =

p∑
i=1

αiui (p� n),

where the vectors u1, . . . ,up represent the various flat box-car areas of the
signal, and the coefficient αi represents the height of the ith flat region.
The vectors u1, . . . ,up span a subspace of Rn which we denote by M =
span{u1, . . . ,up}. Because we have an underdetermined system of equations,
following the procedure recommended for reconstructing sparse solutions [4],
the reconstruction problem is recast as

arg min
xs,v
‖Axs +Av− b‖22 + λ‖xs‖1 . (4)

This is an unconstrained convex optimisation problem in 2n unknowns.
To accurately reconstruct x, we first determine the components v and xs.
Problem (4) is split into two subproblems in the following way:

arg min
xs

[{
arg min

v
‖Axs +Av− b‖22

}
+ λ‖xs‖1

]
. (5)

This means that to solve problems of the form (4), we instead solve each of
the two subproblems described by (5) in turn.

2.1 The projection step

The aim now is to determine a way of removing v from problem (5) so
that we are solving a simpler optimisation problem. Suppose we know the
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subspace M, and therefore the vectors u1, . . . ,up. This does not mean that
we know the vector v because we do not know α1, . . . ,αp and these are not
simple to determine. Define C to be the matrix whose columns are the vectors
{Au1,Au2, . . . ,Aup}, and write C = QR for its economy qr decomposition [8,
p.223]. The vectors Au1, . . . ,Aup must be linearly independent for R to be
invertible. The columns of the matrix Q represent an orthonormal basis
spanning the subspace M, with QTQ = I on M. Define the matrix

P = I−QQT , (6)

which is the projection onto the orthogonal complement M⊥. Premultiplying
expression (1) by P gives

Pb = PAxs + PAv+ Pε = PAxs + ε
′

because PAv = 0 (the zero vector). Using the projection matrix (6) we have
essentially ‘removed’ Av from problem (4) so we now have the optimisation
problem

arg min
xs
‖PAxs − Pb‖22 + λ‖xs‖1 . (7)

Once problem (7) is solved for xs, we recover v as follows. Let α denote the
vector whose components are α1, . . . ,αp . Then

b′ = b−Axs ≈ Av = Cα .

In the noiseless case, the approximation becomes equality. This is now an
over determined system and so is solved using the normal equations or,
because the qr decomposition has already been determined, by performing
back-substitution on

Rα = QTb′.

Once α has been determined, v is recovered through v =
∑p

i=1 αiui and then
the signal x = xs + v is known.
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Remark The matrix-vector product Pb is computed once before the algo-
rithm is initialised. The multiplication PAxs is computed as two matrix-vector
products—this means there is only one extra matrix-vector product per it-
eration compared with a standard compressed sensing problem formulation,
described by (4).

3 Blind signal reconstruction

The problem of signal reconstruction when the subspace M is unknown is
sometimes referred to as ‘blind’ reconstruction and is the topic of much current
research. So far we have assumed that in the decomposition x = xs + v , the
component v was in a known subspace. So, in the previous section, v was a
piecewise constant function where the possible discontinuities were in certain
known positions.

This section considers the more difficult problem of finding v when the
subspace M is unknown, and depends on some parameters which must be
found. Once found, the problem is then solved by the procedure in Section 2.
A typical problem of this nature occurs when v is a piecewise constant vector
with jumps at unknown positions.

Because v is piecewise constant, adjacent signal entries are usually the same.
That is, often vi−vi+1 = 0 . Furthermore, if vi−vi+1 6= 0 , then a discontinuity
has been located. Left-multiplying v by the discrete derivative matrix [10]

D =


1 −1

1 −1
. . . . . .

1 −1
1

 (8)

gives the vector vs with entries vi − vi+1 . So now

vs = Dv ⇒ v = D−1vs ,



4 The general algorithm C573

If there are only a small number of discontinuities, then the vector vs is sparse
and its non-zero entries correspond to the positions of the discontinuities in v.
Note that vs 6= xs . Since xs is sparse, ‖Axs‖ � ‖Av‖ which suggests the
approximation

b ≈ Av = AD−1vs . (9)

Furthermore, because vs is sparse, it is determined using the standard com-
pressed sensing setup

min
vs
‖AD−1vs − b‖22 + λ‖vs‖1 . (10)

Once vs has been found, the subspace M is known. However, as (9) is only
an approximation, we do not accurately know the values α1, . . . ,αp and, in
turn, we do not accurately know v. So we return to the problem described in
Section 2 and project out of the subspace M using the projection matrix (6)
and solve a second optimisation problem (7) to determine xs. Next the values
α1, . . . ,αp are found, and x is reconstructed.

4 The general algorithm

To reconstruct a signal which is a combination of a piecewise constant signal
and a sparse component from a limited set of observed data requires two
stages. The first stage requires a sparse vector to be found where the spikes
in the signal correspond to the locations of the discontinuities in the piecewise
constant signal. The second stage uses this information to construct a
projection matrix which is applied to the original data so that the underlying
sparse signal is found using standard compressed sensing algorithms.

The proposed algorithmic process involves the steps of Algorithm 1.

There are a considerable number of recently proposed algorithms which solve
problems of the form (2). One such algorithm is the bcgp algorithm [2] which
we use in all numerical results presented in the following section as it has
been shown to be efficient and accurate.
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Algorithm 1: Signal reconstruction process.

Solve the optimisation problem arg minvs ‖AD−1vs − b‖22 + λ‖vs‖11

which gives the parameters to determine the subspace M;
Form the matrix C and perform an economy qr decomposition;2

Form the projection matrix P = I−QQT ;3

Solve the transformed problem arg minxs ‖PAxs − Pb‖22 + λ‖xs‖1;4

Determine the values α1, . . . ,αp using Rα = QTb′;5

Recover v =
∑p

i=1 αiui , and consequently x = xs + v;6

5 Results

This section presents numerical examples which demonstrate the practical
performance of the algorithm. The algorithm was implemented in Matlab
and the experiments were performed under Linux on an Intel Xeon 3.2 GHz
processor with 4 GB of memory.

5.1 The unknown subspace problem

This example considers a signal which is the sum of an underlying piecewise
constant signal with unknown discontinuities, and a sparse signal. A sensing
matrix A of size 2000 × 10000 was constructed. The observation vector
b ∈ R2000 was measured in the presence of normally distributed Gaussian
noise. The sparse signal had 100 spikes while the piecewise constant signal had
ten ‘jump’ points and the height of each flat region was randomly generated.

The location and heights of the jumps in the piecewise constant function
have been accurately located, even for very small jumps. This is an excellent
reconstruction. The mean square error (mse)1 for the reconstructed signal is
1.8148× 10−5 which is small and confirms the accuracy of the reconstruction.

1We follow Figueiredo et al. [7] and define the mse to be mse = 1
n
‖x− x̂‖22 where x is

the original signal and x̂ is the reconstructed signal.
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Figure 1: Signal reconstruction when the subspace M is unknown: (a) the
original signal; (b) the sparse signal vs; (c) the sparse signal xs; (d) the overall
reconstruction.

5.2 Image reconstruction

This example considers the reconstruction of the Shepp–Logan phantom,
which is a standard Matlab phantom. The phantom size is 50 × 50 pixels.
The columns of the image are concatenated to represent the image as a column
vector x of length 2500. The vector has 1204 non-zero elements so this is not
a sparse image. However, Dx (where D is the matrix defined in (8)) is sparse
with only 189 non-zero elements.

Recall equation (3) where k = 189 . Then A is the sensing matrix with
m = 1479 orthogonal rows of length 2500 and an observation vector b of
length m was measured in the presence of noise.
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Figure 2: The reconstruction of the Shepp–Logan Phantom: (a) the original
signal; (b) the sparse signal vs; (c) the piecewise constant signal; (d) the
sparse signal xs; (e) the overall reconstruction.
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Figure 2 shows the signal evolution at various stages of the reconstruction
process. Plot 2(b) shows the location of discontinuities in the piecewise
constant signal (the vector vs from equation (10)). The piecewise constant
signal approximation is shown in 2(c). The reconstructed sparse signal is
shown in 2(d) and shows the finer detail of the signal. The final plot, 2(e),
is the overall signal reconstruction. This is an excellent reconstruction with
all fine detail present. The mse for this reconstruction is 1.37× 10−8 which
confirms the accuracy of the final signal.

Remark Solving problem (10) takes up the bulk of total computation time
with four matrix-vector products per iteration required. It is extremely fast
to compute the matrix C and its qr decomposition. Solving the optimisation
problem (7) is faster than the first stage because the algorithm typically
terminates in fewer iterations, although there are still four matrix-vector
products per iteration required. Nonetheless, each of the examples in this
section was solved in under two minutes. Future research will focus on
speeding up the first part of the reconstruction process—for example, using
the csalsa [1] algorithm which has been shown to perform very quickly.

6 Conclusion

The problem of reconstructing signals and images which are a combination
of a piecewise constant plus sparse components is important, particularly in
medical imaging. We showed that it is possible to reconstruct these types
of objects from under sampled data. The reconstruction was posed as a
three step process. The first and third steps involve solving an l1-regularised
least squares optimisation problem, while the second step involves finding
and applying a projection matrix. We introduced an algorithm which allows
signal reconstruction with no prior knowledge about the support of the signal.
The numerical results show that this method gives accurately reconstructed
images in a short period of time.
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