
ANZIAM J. 52 (CTAC2010) pp.C89–C102, 2011 C89

Numerical solution of a parabolic equation on
the sphere using Laplace transforms and radial

basis functions
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Abstract

We propose a method to construct numerical solutions of a parabolic
equation on the unit sphere. The time discretisation uses Laplace
transformation and quadrature. The spatial approximation employs
radial basis functions restricted to the sphere. The method provides a
parallel algorithm to construct high accuracy numerical solutions.
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1 Introduction

Let Sn := {x ∈ Rn+1 : |x| = 1} denote the n-dimensional unit sphere, with
n > 2 . We consider a parabolic equation on Sn,

∂tu+Au = f(t), for t > 0 , with u(0) = u0 , (1)

where ∂t = ∂/∂t and A is a linear, self-adjoint, second order, strongly elliptic,
partial differential operator on Sn. The coefficients of A must be independent
of t, and later we restrict our attention to the case when −A is the Laplace–
Beltrami operator. In that case, equation (1) describes the diffusion of heat
on the surface of the sphere with a given density f of sources [2, 4].

Denoting the Laplace transform of u with respect to t by

û(z) = L{u(t)} :=

∫∞
0

e−ztu(t)dt , (2)

we find that the solution of (1) formally satisfies

(zI+A)û(z) = g(z) := u0 + f̂(z), (3)

where I denotes the identity operator. Assuming that the operator (zI+A)
is invertible, we write

û(z) = (zI+A)−1g(z), (4)
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and seek to recover u(t) via the inversion formula for the Laplace transform,

u(t) =
1

2πi

∫
Γ0

eztû(z)dz , for t > 0 , (5)

where Γ0 is the line <z = ω , with any ω > 0 , and =z increasing.

Instead of using time stepping [2], our approach here is based on an ap-
proximation by quadrature of the representation (5), with an appropriately
deformed contour of integration. This idea was introduced by Sheen, Sloan
and Thomée [7] for a parabolic problem on a bounded domain Ω in Rn, and
used in conjunction with a spatial discretisation by finite elements. McLean
and Thomée have refined the original error analysis in subsequent articles [3].
The novel feature in this article is the use of spherical radial basis functions
instead of finite elements. Our aim here is to demonstrate the practical
effectiveness of the numerical method; we defer a complete error analysis to a
subsequent article.

2 Preliminaries

2.1 Resolvent estimates

Our assumptions on the operator A ensure the existence of a complete
orthonormal system of eigenfunctions ψ1,ψ2,ψ3, . . . , with corresponding real
eigenvalues λ1, λ2, λ3, . . . . Thus, Aψj = λjψj for all j, and each u ∈ L2(Sn)
has an eigenfunction expansion of the form

u =

∞∑
j=1

〈u,ψj〉ψj . (6)

We make the additional assumption that all the eigenvalues are non-negative,
so that the initial value problem (1) is well-posed, and the resolvent (zI−A)−1
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exists for z outside any sector

Σϕ = { z ∈ C : z 6= 0 and | arg z| 6 ϕ } ∪ {0}, with 0 < ϕ < π/2 .

Hence, (zI+A)−1 exists for z inside Σπ−ϕ. The following estimates hold for a
much wider class of sectorial opertors, but in our case we give an elementary
and self-contained proof.

Lemma 1 Given ϕ satisfying 0 < ϕ < π/2 , there exists a constant M > 0

such that

‖(zI+A)−1‖ 6 M

|z|
, for z ∈ Σπ−ϕ . (7)

If, in addition to the assumptions above, 0 is not an eigenvalue of A, then
there exists a constant M ′ such that

‖(zI+A)−1‖ 6 M ′

1+ |z|
, for z ∈ Σπ−ϕ . (8)

Proof: Let z = ρeiθ with |θ| < π − ϕ and ρ > 0 . If 0 < |θ| 6 π/2 , then
0 6 <z 6 <(z+λj) and =(z) = =(z+λj), so |z| 6 |z+λj|. If π/2 < |θ| < π−ϕ ,
then |z| sinϕ 6 ρ sin |θ| = |=z| = |=(z+ λj)| 6 |z+ λj|, and thus

1

|z+ λj|
6

1

|z| sinϕ
, for z ∈ Σπ−ϕ .

The eigenfunction expansion (6) shows that

‖(zI+A)−1u‖2 =
∞∑
j=1

|〈u,ψj〉|2

|z+ λj|2
6

1(
|z| sinϕ

)2 ∞∑
j=1

|〈u,ψj〉|2 =
(
‖u‖

|z| sinϕ

)2
(9)

for any u ∈ L2(Sn), so the estimate (7) holds with M = 1/ sinϕ .

We relabel the eigenvalues, if necessary, so that λ1 6 λ2 6 λ3 6 · · · with λj →∞ as j→ ∞ , and assume λ1 > 0 . If |z| < λ1/2 then |z+λ1| > λ1− |z| > λ1/2
and hence

1+ |z|

|z+ λ1|
6
1+ λ1/2

λ1/2
= 1+

2

λ1
.
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If |z| > λ1/2 with | arg z| < π−ϕ , then 1+ |z| 6 (2/λ1)|z|+ |z| and hence

1+ |z|

|z+ λj|
6
1+ |z|

|z| sinϕ
6

1

sinϕ

(
1+

2

λ1

)
.

By reasoning as in (9), we establish (8) with M ′ = (1+ 2/λ1)/ sinϕ . ♠

We now fix an angle β̄ in the range π/2 < β̄ < π , and make the assumption
that f̂(z) admits a bounded analytic continuation to a sector ω+ Σβ ⊆ Σβ̄
with ω > 0 and π/2 < β 6 β̄ . It then follows that (4) defines û(z) as an
analytic function in ω+ Σβ .

2.2 Spherical radial basis functions

We assume that Φ : Sn × Sn → R is a strictly positive-definite kernel on Sn,
that is [6, 9],

1. Φ is continuous;

2. Φ(x,y) = Φ(y, x) for all x,y ∈ Sn;

3. For any set of distinct points X = {x1, x2, . . . , xK} ⊂ Sn, the K × K
matrix [Φ(xp, xq)] is positive definite.

The uniformity of the point set X is measured by its mesh norm h = hX and
its separation radius r = rX , defined by

hX := sup
y∈Sn

min
x∈X

cos−1(y · x) and rX :=
1

2
min
x,y∈X
x 6=y

cos−1(y · x).

In words, h is the maximum geodesic distance from a point on Sn to the
nearest point of X. Together, Φ and X determine a space of spherical radial
basis functions (rbfs) on Sn,

Vh := span{Φp : 1 6 p 6 K }, where Φp(x) := Φ(xp, x).
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Table 1: Compactly-supported radial basis functions.

m ρm(r) Smoothness τ

2 (1− r)6+(3+ 18r+ 35r
2) C4(R3) 7/2

3 (1− r)8+(1+ 8r+ 25r
2 + 32r3) C6(R3) 9/2

We consider a kernel Φ of the form

Φ(x,y) = φ(x · y), for x,y ∈ Sn, (10)

and expand the univariate function φ : [−1, 1] → R in a Fourier–Legendre
series,

φ(t) =

∞∑
`=0

φ̂`P`(t), with φ̂` =

∫ 1
−1

P`(t)φ(t)(1− t
2)(n−2)/2 dt , (11)

where the Legendre polynomials P0,P1,P2, . . . are scaled to make them or-
thonormal with respect to the weight (1− t2)(n−2)/2 over the interval (−1, 1).
Chen et al. [1] established a complete characterisation of strictly positive
definite kernels on Sn: the kernel Φ is strictly positive definite if and only
if φ̂` > 0 for all ` > 0 and φ̂` > 0 for infinitely many even values of ` and
infinitely many odd values of `.

We assume simply that φ̂` > 0 for all ` > 0 . In addition, we require that

φ̂` = O(`−2τ) as `→ ∞ , for some τ > n/2 , (12)

thereby ensuring that Φ is continuous on Sn × Sn, and that each radial basis
function Φp belongs to the Sobolev space Hτ(Sn). For example, the compactly
supported radial basis functions introduced by Wendland [8] satisfy these
assumption with a strictly positive-definite kernel of the form Φ(x,y) =
ρm

(√
2− 2x · y

)
. Table 1 lists ρ2 and ρ3 explicitly, along with the values of

the exponent τ in (12).
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3 The numerical method

3.1 Time discretisation

We define Γ to be the parametric curve in the complex plane,

z(ξ) = ω+ λ(1− sin(δ− iξ)), for ξ ∈ R , (13)

where the constants λ and δ satisfy

λ > 0 and 0 < δ < β−
π

2
. (14)

Writing z = x+ iy , we find that Γ is the left branch of the hyperbola(
x−ω− λ

λ sin δ

)2
−
( y

λ cos δ

)2
= 1 ,

which cuts the real axis at the point z(0) = ω+λ(1−sin δ) and has asymptotes
y = ±(x−ω− λ) cot δ . Thus, the conditions (14) ensure that Γ lies in the
sectorω+Σβ and crosses into the left half-plane. It follows that Γ is homotopic
with the contour Γ0 in (5), and so

u(t) =
1

2πi

∫
Γ

eztû(z)dz, for t > 0 . (15)

Using (13) in (15), we may represent u(t) as an integral with respect to ξ,

u(t) =

∫∞
−∞ v(ξ, t)dξ , where v(ξ, t) :=

1

2πi
ez(ξ)tû

(
z(ξ)

)
z ′(ξ). (16)

Since |ez(ξ)t| = e<z(ξ)t = eωteλt(1−sin δ cosh ξ), the integrand exhibits a double
exponential decay as |ξ| → ∞ , for any fixed t > 0 . We therefore achieve
spectral accuracy using a simple, equal-weight quadrature rule of the form

QN(v) := k

N∑
j=−N

v(ξj) ≈
∫∞
−∞ v(ξ)dξ , with ξj := jk , (17)
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for an appropriate choice of the quadrature step k > 0 . Setting zj := z(ξj)
and z ′j := z

′(ξj), we obtain an approximate solution to our problem (1) of the
form

u(t) ≈ UN(t) := QN(v(·, t)) =
k

2πi

N∑
j=−N

ezjtû(zj)z
′
j . (18)

To compute UN(t) we must solve the 2N+ 1 elliptic equations

(zjI+A)û(zj) = g(zj), for |j| 6 N . (19)

These equations are independent and hence may be solved in parallel.

Although the û(zj) determine UN(t) for all t > 0 , in practice the approx-
imation (18) is good only for t in a bounded interval depending on k and
the parameters defining the contour Γ . By Lemma 1, the error analysis by
McLean and Thomée [3, Theorem 3.1] applies, so given N and a time scale T ,
we can choose λ ∝ N/T and k ∝ 1/N such that

‖UN(t) − u(t)‖ = O(e−µN), for 1
2
T 6 t 6 2T , (20)

with µ > 0 independent of N and T .

3.2 Galerkin approximation by radial basis functions

From now on, we assume that A = −∆∗ in (1), where ∆∗ is the Laplace–
Beltrami operator on the unit sphere Sn. Thus,

〈−∆∗v,w〉 = 〈grad v, gradw〉, for v,w ∈ H1(Sn),

where grad v denotes the surface gradient of v on Sn. In the weak formulation
of the elliptic problem (3), we seek û(z) ∈ H1(Sn) satisfying

z〈û(z), v〉+ 〈grad û(z), grad v〉 = 〈g(z), v〉, for all v ∈ H1(Sn). (21)
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Our assumption (12) ensures that Vh ⊆ H1(Sn), since τ > n/2 > 1 . Applying
the Galerkin method to (21), we seek ûh(z) ∈ Vh satisfying

z〈ûh(z), v〉+ 〈grad ûh(z), grad v〉 = 〈g(z), v〉, for all v ∈ Vh .

Concretely, to compute ûh(z) =
∑K

p=1Up(z)Φp we introduce the K×K mass
matrix B and stiffness matrix S, with entries

Bpq = 〈Φq,Φp〉 and Spq = 〈gradΦq, gradΦp〉, (22)

form the load vector G(z) ∈ CK with components Gp(z) = 〈g(z),Φp〉, and
then solve the K× K complex linear system

(zB+ S)U(z) = G(z), (23)

to obtain the solution vector U(z) ∈ CK with components Up(z).

3.3 Fully-discrete solution

Combining the time and space discretisations, we arrive at a fully discrete
solution

UN,h(t) =
k

2πi

N∑
j=−N

ezjtûh(zj)z
′
j ,

whose evaluation requires that we solve the linear system (23) at each of
the 2N+ 1 quadrature points zj. Moreover, in practice, we use quadratures
for the integrations over Sn that are needed to compute Bpq, Spq and Gp(z).

4 Numerical experiments

We describe two example problems.
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Figure 1: Integration contour.

4.1 A scalar problem

For our first example, we take A = 1 , which reduces (1) to an ordinary
differential equation, and choose the initial data and source term so that the
exact solution is

u(t) = 1+
4t3/2

3
√
π

.

In this way, û(z) = z−1 + z−5/2 and f̂(z) = z−3/2 + z−1 + z−5/2, so we may
choose an integration contour as in Figure 1, avoiding the branch cut along the
negative real axis, with ω = 1 , λ = 3/2 and δ = π/2− 0.3 . The numerical
solution is given by (18), because no space discretisation is required. In other
words, the error arises solely from the quadrature rule. Table 2 shows the error
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Table 2: Quadrature errors.
N 10 20 40 80 90

|UN(2) − u(2)| 0.05 5.0e−04 1.1e−09 6.2e−15 2.2e−15
exp(−0.3793N) 0.02 5.1e−04 2.6e−07 6.7e−14 1.5e−15

Table 3: Approximation errors using ρ2(r).
K 101 200 400 500 1001

N hX 0.256 0.180 0.128 0.113 0.079
20 eh 0.057 0.003 1.8e−04 8.3e−05 2.4e−05

eoc 8.51 8.05 6.35 3.53
eN(2) 0.023 0.001 5.6e−04 5.3e−04 5.1e−04
eoc 8.30 2.25 0.45 0.12

40 eh 0.057 0.003 1.8e−04 8.3e−05 2.4e−05
eoc 8.51 8.05 6.35 3.49
eN(2) 0.023 0.001 7.5e−05 3.1e−05 7.0e−06
eoc 8.35 8.20 6.89 4.26

at time t = 2 for different values of N, using the quadrature step k = 3/N .
The rapid convergence of the method is apparent. The rate of convergence
is O(e−µN) for some µ in the range of [0.1, 0.65], which is consistent with
theoretical estimates in (20).

4.2 A problem on the unit sphere

We now take A = −∆∗ on the two-sphere S2, and choose u0 and f so that the
exact solution of (1) is

u(x, t) = sin x−
4

3
√
π
t3/2 sin(2x).

For the spatial discretisation, we use the compactly supported radial basis
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Table 4: Approximation errors using ρ3(r).
K 101 200 400 500 1001

N hX 0.256 0.180 0.128 0.113 0.079
20 eh 0.102 0.003 1.2e−04 4.0e−05 9.2e−07

eoc 9.61 9.91 8.68 10.70
eN(2) 0.041 0.002 5.2e−04 5.1e−04 5.0e−04
eoc 9.16 3.32 0.17 0.04

40 eh 0.102 0.003 1.2e−04 4.0e−05 9.2e−07
eoc 9.61 9.91 8.68 10.70
eN(2) 0.041 0.001 5.0e−05 1.7e−05 3.5e−07
eoc 9.57 9.87 8.68 10.97

functions from Table 1, and to generate the set of points X we use an
equal area partitioning algorithm of Saff and Kuijlaars [5]. We compute
the inner products arising in the matrix entries (22) and the load vector
components Gp(z) using a quadrature approximation of the form

∫
S2
v ≈ 2π

R

R∑
q=1

R/2∑
p=1

wpv
(
sin θp cosφq, sin θp sinφq, cos θp

)
, (24)

for an even number R > 2 , where
∫1
−1 f(z)dz ≈

∑R/2
p=1wpf(cos θp) is a Gauss–

Legendre rule and φq = 2πq/R . The error in the approximation (24) is zero
if the integrand v is a polynomial of total degree R− 1 or less.

Tables 3 and 4 show values of

eh = max
|j|6N

|ûh(zj) − û(zj)| and eN(2) = |UN(2) − u(2)|,

for different choices of K and N, along with the estimated order of convergence
(eoc). The quantity eh is a measure of the error arising from the spatial
discretisation, whereas e(2) includes also the contribution from the time
discretisation.
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Tables 3 and 4 show that the smoother the rbf the higher the convergence
rate of the method. The accuracy of the method also depends on the accuracy
of the quadrature used for time discretisation. Compared with a spectral
method, our implementation is much simpler since we do not have to evaluate
surface spherical harmonics. Compared with a finite element method, a
triangular mesh for the sphere is not needed. The method allows a parallel
implementation, and can be generalised easily to other classes of operators
that satisfy the resolvent estimates.
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