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A large scale genome simulation model
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Abstract

Evaluation of multiple hypotheses is a common problem, especially
in genome wide association studies. False Discovery Rate control is
often used to correct for multiple comparisons. However, this approach
is influenced by linkage disequilibrium and needs to be evaluated. For
such evaluation, first a model needs to be developed with a simulated
linkage disequilibrium pattern that matches as closely as possible the
observed linkage disequilibrium structure. This paper outlines the steps
involved in the development of such a model, using mouse genome
data as an example.
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1 Introduction

Due to the rapid improvement in high-throughput genotyping technology,
there is now a proliferation of genome wide association studies (gwas), where
a dense set of single nucleotide polymorphisms (snps) across the whole genome
is genotyped to survey the associations between the common genetic variation
and disease or quantitative traits. This method relies on either genotyping
the causative polymorphism directly, or on genotyping markers that are in
strong linkage disequilibrium (ld) with the causative site. Commonly, in
such studies large numbers of hypotheses are evaluated simultaneously, and
this multiple testing problem is frequently addressed by controlling the False
Discovery Rate (fdr) [4]. Linkage disequilibrium (ld) is the non-random
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association of alleles at different loci in a population and is one factor that
influences fdr control in gwas. To evaluate the performance of fdr control,
first a model with relevant ld structure needs to be developed. So the aim
here is to outline the computational steps used in a model with ld structure
that matches real data as closely as possible, and to compare this model to
the data. Here, we focus on the mouse genome because in gwas the inbred
strains of laboratory mice provide a powerful way to identify the variants that
affect a variety of complex traits, including many related to human diseases
such as atherosclerosis, diabetes, and obesity.

Ardlie et al. [2] reported factors that influence ld pattern, including mutation
rate, variation in recombination rate and population structure. ld structure is
population specific. The level of ld in humans is low due to the large effective
population size [6]. Conversely, the degree of ld is substantial in laboratory
mice because of inbreeding problems from multigenerational crosses [7].

In this study, a simulation model is developed to evaluate the impact and
importance of parameters affecting ld in a population, with the aim of
matching the simulated population as closely as possible to the ld structure
of the inbred mouse population. Both D′ and r2 are used to measure ld
for the simulated data, and then the ld patterns associated with these two
measures are investigated. Here, D is the deviation of the observed frequency
of a haplotype (a combination of alleles at different loci on the chromosome
that are transmitted together) from the expected, and D′ is determined
by dividing D by its maximum possible value, given the allele frequencies.
Sometimes r2 is denoted by ∆2 and is the square of a correlation measure
between pairs of loci [2].

2 Method

The simulation model is described first, then the ld measures, D′ and r2,
are obtained for the simulated data. In order to build the model best
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fitting the real data, many simulation scenarios are evaluated using different
parameter combinations. Finally, the mean square error (mse) is used as the
criterion to find the best simulation scenario for the real mouse genome data.
Data on 2202 mice genotyped for 13, 459 snps were downloaded from the
Wellcome Trust Centre for Human Genetics web page [1] and analysed for all
19 autosomes. Pedigree structure is ignored and the ld measures (D′ and r2)
are pooled over all autosomes. This data set is not from natural populations:
it is the result of intercrossing eight inbred lines to create a population which
is maintained for 50 generations by pseudo-random mating and is referred
to as heterogeneous stock mice. It is of interest because of its central use in
Quantitative Trait Loci (qtl) mapping [8].

2.1 Model and its parameters

The population structure is one of the factors that affects the ld pattern, and
this is described first. The model outlined here uses forward simulation of a
population, where the entire population is simulated from past to present. This
model allows for mutation, varied recombination rate along the chromosome,
variation in the distribution of the minor allele frequency (maf) of the snps,
varying the size of the base gamete population and genetic drift. Here,
mutation is a change in a genomic sequence, and genetic recombination is a
process by which the combinations of alleles observed at different loci in the
two parents become shuffled in their offspring.

As a starting point, the following parameters and assumptions are made:
the mutation rate is set at 10−5 per bp (base pair) per generation in the
model; we assume the first generation of the simulated population is from
the base gamete population of size 100, and the distributions of the mafs
of the snps follow the uniform distribution. Step 1 is designed to find the
simulation scenarios which best fit the initial parameters of the mouse data.
Next, the initial parameters are changed sequentially in Steps 2, 3, 4 and 5 to
determine better simulation scenarios from the previous step, and then the
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final simulation model is built. The details of each step are described in the
following subsections. Figure 1 outlines the building process of this model.
The procedure described here will not necessarily find the local minimum in
the parameter space, but it should find at least a good approximation.

For convenience, one chromosome, length approximately 100 Megabases (Mb),
is used for this study. The number of snps is set to 2, 000 and the snps are
uniformly allocated along the chromosome.

2.2 Simulated population structure

Initially 100 generations were simulated, and then the number of generations
was altered (details given later). In each generation of pedigree, the number of
individuals was kept at 20, which includes ten males and ten females. Parents
were randomly mated and each of the ten mating pairs produces six offspring,
but only two (one male and one female) were kept in the pedigree due to the
high mortality rate. Although the genotypes of snps for all the individuals in
the population were simulated, only those of the last 600 individuals were
used for further analyses.

2.3 Recombination

Recombination plays an important role in generating ld in populations
that are typically of limited size. This simulation model allows a variable
recombination rate across the simulated chromosome in the physical scale
which shows the physical locations of genes and other DNA sequences of
interest. We assumed there are four types of segments along the chromosome,
namely: (A) block (without recombination), (B) partial block (with a small
recombination rate, < 1 cross-over per 100 Mb), (C) normal segment (with a
moderate recombination rate, one cross-over per 100 Mb, and (D) hot spot
(with a high recombination rate, > 1 cross-over per 100 Mb). A genetic



2 Method C937
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Step 1: Define the simulation scenarios with different combinations of parameters 
(block, partial block, normal segments and hot spots), and then find better fitting 

scenarios closer to mouse data (Section: Recombination)  

Step 2: Change mutation rate to test if the selected scenarios from Step 
1 improve LD profile and reduce MSE (Section: Mutation) 

Step 3: Change the base population size to test if the selected scenarios 
from Step 2 improve LD profile and reduce MSE  

(Section: Base Gamete Population)

Step 4: Change the MAF distribution in base population to test if the 
selected scenarios from Step 3 improve LD profile and reduce MSE 

(Section: Base Gamete Population) 

Step 5: Change the number of generations to test if the selected scenarios 
from Step 4 improve LD profile and reduce MSE 

 (Section: The Number of Generations)

Figure 1: Outline of the procedure to build the simulation model.
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map is built to correspond to this simulated chromosome. For the genetic
map, there is by definition a constant average recombination rate of one
cross-over per Morgan (one Morgan ≈ 100Mb), so the concept of blocks,
partial block and hot-spots is not relevant on this scale, but is on the physical
scale. Here, Morgan is a genetic map unit; 1 Morgan = 100 centimorgans
(cM). A centimorgan is defined as the distance between loci in which one
product of meiosis (a process by which one cell divides into four different
cells) in 100 is recombinant. To simulate the gene flow across each pedigree,
the number of recombination events on the genetic scale is assumed to follow
the Poisson distribution with parameter λ equal to the length of the genetic
map, and with the location of recombination on the genetic scale following
a uniform distribution. Each recombination location on the genetic scale
corresponds to its own location on the physical scale. There are four types of
segments (A, B, C and D) on the physical map. By multiplying the segment
length with the different weights, a, b, c and d, each corresponding to A,
B, C, and D type segments respectively, the genetic map is built. Figure 2
gives an example of building the genetic map. In Figure 2, the weights are
a = 0, b = 0.5, c = 1.0 and d = 2.0, so there is no block (A) appearing on
the genetic map, and hence in the simulation there was no recombination in
this block.

The four segments types on the chromosome were simulated from a multino-
mial distribution with four associated probabilities (namely the percent-
age of the total simulated chromosome comprising that segment type),
p = (p(A),p(B),p(C),p(D)) ′ with p(A) + p(B) + p(C) + p(D) = 1 , that
were specified initially. The length of each piece of segment on the chro-
mosome was simulated from an exponential distribution. The mean length
for each segment type (µ = (µA,µB,µC,µD)

′) was set in advance. For each
segment type, there are three ranges of probabilities that were evaluated,
small, medium and large, and similarly three different ranges of mean of
segment length were simulated. Therefore, there are nine simulation scenarios
for each segment type, and there are 36 simulation scenarios for the four
segment types.
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Figure 2: The physical map versus genetic map.

Each simulation scenario was replicated five times for the same ld pattern.
To find better fitting scenarios among all 36 scenarios produced at Step 1,
each was compared with simulation Scenario 1: constant recombination along
the chromosome. These 36 scenarios are labelled Scenario 2, Scenario 3, . . . ,
Scenario 37.

2.4 Mutation

Mutations were randomly placed on the chromosome according to the usual
assumption that the number of mutations is Poisson distributed with mean
given by the product of the mutation rate and chromosome length (L) and the
mutation locations are drawn from a uniform U(0,L) distribution. Initially the
mutation rate was set at 10−5 per bp per generation for the above simulation
scenarios. However, to find the scenarios which best match the observed
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mouse data, two other mutation rates, 4× 10−5 and 10−4, were used for the
better fitting scenarios of Step 1. The change of mutation rate happens at
Step 2.

2.5 Base gamete population

We assume that there is an initial pool of (base) gametes and we call this
a base gamete population. In the pool, small segments from different base
gametes were randomly chosen to form one pair of homologous chromosomes
for each (base) individual in the first generation that has ten females and
ten males. Initially, we set the number of base gametes in the pool to be 100
(that is, the base population size was set at 100), and then the size was
changed to 50 and to 1, 000 to find the simulation output that best matches
the observed mouse data using the better simulation scenarios from Step 2;
this is Step 3.

Two different distributions were evaluated for the maf of the snps in the
base gamete population. Initially, the distribution of the maf was set to
follow a uniform distribution. In order to simulate more snps having higher
mafs, a beta distribution with both parameters set to ten was used. That
is, maf = min(X, 1 − X) where X ∼ Beta(10, 10). The change in the maf
distribution is in Step 4 using the best simulation scenarios from Step 3.

2.6 The number of generations

The final parameter evaluated was the number of generations in the simulated
population. The number of generations was changed to 50 and 200 in Step 5
for the best simulations in Step 4, to evaluate whether the mse decreases.
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2.7 Linkage disequilibrium measures

Two of most commonly used ld measures, D′ and r2, were obtained via
Haploview software [3] for each pair-wise combination of snps on this chro-
mosome based on the genotype information of the last three generations
(600 individuals). The mean D′ and r2 were calculated for each of 15 inter-
vals: 0–1 kb, 1–10 kb, 10–20 kb, 20–40 kb, 40–60 kb, 60–100 kb,100–200 kb,
200–500 kb, 0.5–1Mb, 1–2Mb, 2–5Mb, 5–10Mb, 10–20Mb, 20–50Mb and
> 50Mb. The choice of intervals is from a study reported by Khatkar et
al. [5].

snps showing significant deviations from Hardy–Weinberg equilibrium (hwe)
(P < 0.0001) were excluded from analysis, as were snps with minor allelic
frequency (maf) < 0.05. The number of snps is 2, 000 at the beginning of
the simulation, but there were usually less than half this number in the final
ld analysis because some snps become fixed during the simulation procedure.

2.8 Mean square error

The mse is used here as the criterion for determining which simulation scenario
best fits the mouse data. The best simulation scenario is the one with the
smallest mse, and this was estimated for both D′ and r2. The simulation
was repeated five times for each scenario to obtain the mean and standard
deviation of the estimated D′ and r2 for each interval (i = 1, 2, . . . , I = 15),
say µi and σi. The mean D′ and r2 were obtained for each inter-snp interval
from the observed mouse data, denoted µ̂i. Therefore, the mse for each
interval is msei = [µi− µ̂i]

2+[σi]
2. Because the value of D′ (or r2) is different

for each interval, and also different for the simulation versus the observed
mouse data, ‘average’ weights are needed for each interval to calculate an
overall mse. The ‘average’ weight

pi = (n
(sim)
i /N(sim) + n

(mouse)
i /N(mouse))/2 = (p

(sim)
i + p

(mouse)
i )/2

where
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• n(sim)
i = average number of simulated values in the ith interval;

• n(mouse)
i = the number of mouse-derived values in the ith interval;

• N(sim) = n
(sim)
i + · · · + n

(sim)
I = the sum of the average number of

simulated observations in each interval;

• N(mouse) = n
(mouse)
i + · · ·+ n(mouse)

I = the total number of mouse-based
observations.

The ‘average’ in n
(sim)
i is over the series of five simulations. Next the weighted

average mse

mse =

I∑
i=1

pimsei .

Because the mse is different for r2 and D′, there are three types of mse:
r-squared.mse, D′.mse, and mean.mse which is the mean of r-squared.mse
and D′.mse.

3 Results

In Step 1 of this simulation study, the three mse values for the simplest
scenario, namely Scenario 1, ware compared with the corresponding values
for the other 36 scenarios. A subset of the data (namely Scenario 1, . . . ,
Scenario 10) is given in Figure 3(a). Considering all scenarios (the remain-
ing 27 are not shown here), Scenario 3 is found to be the best as it has overall
smaller mse values than Scenario 1, and so is selected. For Scenario 3, the
empirical mean length (kb) and associated probability (%) of block, partial
block, normal segment and hot spot are 55.9 kb and 3.3%, 190.3 kb and 22.5%,
203.5 kb and 72.4% and 81.9 kb and 1.8%, respectively.

For the selected scenario identified above (Scenario 3), the mutation rate was
changed to 4 × 10−5 (Scenario 3A) or 10−4 (Scenario 3B) to assess if this
improves the fit to the observed mouse data. We found that Scenario 3 with
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the initial mutation rate (10−5) gives a better fit than the scenarios with
increased rates because the three types of mse of Scenario 3 with mutation
rate 10−5 are smaller than the other corresponding mses.

In Step 3, the same candidate Scenario 3 was further examined by changing
the base population size to 50 (Scenario 3C) or 1, 000 (Scenario 3D) from 100.
We found that the mses for the model with base population size 50 or 1, 000
generally become larger, so the base gamete population size is kept at 100.

In Step 4, the distribution of the maf in the base population was changed to
the beta distribution with both parameters equal to ten (Scenario 3E) for the
scenario identified above (Scenario 3). It appears that the beta distribution
is the preferred choice because the three types of mse decrease when the
distribution of the maf was changed to a beta distribution.

Until now, the best scenario is Scenario 3E. In Step 5 we changed the number
of generations in the simulated population to 50 (Scenario 3F) and 200

(Scenario 3G) rather than 100. We found that the three types of mse of
Scenario 3E are the smallest ones among these three scenarios, so the number
of generations was kept at 100.

Now, the model building is complete. Scenario 3E gives the closest fit to
the mouse data with the associated model having mutation rate 10−5, base
population size 100, beta distribution for the maf of the snps in the base
population and the number of generations is 100. Figure 3(b) shows the mses
for Scenarios 3 and 3E.

For all the scenarios evaluated, Scenario 3E best matches the ld pattern of
the observed mouse data. Next the ld patterns for Scenarios 3E and the
mouse data are compared. Figure 4 shows the mean ld estimates (D′ and r2)
at different intervals for Scenario 3E and the mouse data. From this figure, it
can be seen that the fit is good, especially for D′.



3 Results C944

(a) Sc
en
er
io
1

Sc
en
ar
io
2

Sc
en
ar
io
3

Sc
en
ar
io
4

Sc
en
ar
io
5

Sc
en
ar
io
6

Sc
en
ar
io
7

Sc
en
ar
io
8

Sc
en
ar
io
9

Sc
en
ar
io
10

M
SE

0.
00
00

0.
00
10

0.
00
20

0.
00
30

r−squared.mse
D'.mse
mean.mse

(b)

Sc
en
ar
io
3

Sc
en
ar
io
3E

M
SE

0e
+0
0

2e
−0
4

4e
−0
4

6e
−0
4

8e
−0
4

1e
−0
3

r−squared.mse
D'.mse
mean.mse

Figure 3: mse results for different scenarios where Figure 3(a) is for Scenarios 1–
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Figure 4: Mean ld measures at different physical distances for mouse and
Scenario 3E data where the top figure is for D′ and the bottom figure is for r2.
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4 Discussion

This is a comprehensive simulation study with the aim of developing a model
to match the ld pattern found in mouse data. With the establishment of this
tool, it will be possible to investigate the effects of ld on the evaluation of
false positives and the estimation of the False Discovery Rate for the multiple
testing problems that commonly arise in snp-trait association studies. The
construction of haplotype blocks and identification of tag snps have been
found to be informative in detecting the variation in ld across the genome,
and using this information could improve the efficiency of gene mapping.

Comparing the simulated ld pattern with the ld structure of the observed
mouse data, shown in Figure 4, the fit is very good, so this tool can be applied
to other species, as long as an appropriate ld structure is built into the
model for the specific population by changing the parameters appropriately.
However, we need to be aware of the practical limitation of this tool for the
simulation of large populations that do not have a high degree of inbreeding.
Then the computational demand will be very high or it may not even be
possible to simulate an analogous population because the size of the first
generation will need to be very large; ten females and ten males are not
enough, and a few thousand may be needed.
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