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Estimating the intermonth covariance between
rainfall and the atmospheric circulation
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Abstract

The seasonal mean of a climate variable consists of a slow and
intraseasonal component. Existing methods for deriving coupled pat-
terns between intraseasonal components assume stationarity and first
order autoregressive processes. This does not hold for a variable such
as rainfall where the daily data consists of dichotomous (on/off) events.
It is possible to formulate a more general method for such two-state
climate variables but it requires an estimate of the intermonth covari-
ance. We use a stochastic two-state first-order Markov chain model
fitted to daily Australian rainfall data to provide an estimate of the
intermonth covariance with daily 500hPa atmospheric geopotential
height anomalies. We show that the estimate of the intermonth co-
variance is much smaller than the within-month covariance between
rainfall and the 500hPa height intraseasonal component.
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1 Introduction

The interannual variability of surface climate fields, such as seasonal mean
temperature and rainfall, are generally related to the interannual variability
of local or hemispheric seasonal mean atmospheric pressure fields. This
relationship is quantifiable by the interannual covariance between the two
fields. Interannual variability in the seasonal means of climate variables arise
from sources which are categorized as: (a) slowly varying (interannual and
longer) external forcing (for example, sea surface temperature forcing) and
internal dynamics; and (b) internal dynamics within the season [1]. Zheng
and Frederiksen [2] conceptualised the seasonal mean of a climate variable
as consisting of two components, referred to as the slow and intraseasonal
components. The former is regarded as potentially predictable because it
is associated with slowly varying external and internal processes, and the
latter is essentially unpredictable. A number of studies showed that skilful
statistical seasonal forecast schemes can be derived from a knowledge of the
behaviour of the slow component [3, 4, 5].

For the seasonal prediction of surface climate fields, a knowledge of the spatial
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patterns relating the slow component of the seasonal mean pressure fields to
the slow component of the surface climate variable should provide a better
understanding of the meteorological phenomena associated with forecast skill.
Conversely, the spatial patterns that relate the intraseasonal components of
the pressure field and the surface climate variable should be related to the
uncertainty in forecast skill [1, 4]. To derive these coupled patterns in the two
components of the two variables requires an estimate of the covariance matrices
for each component. When data is available at sub-seasonal timescales (for
example, daily or monthly) it has been shown that under certain assumptions
an estimate of the covariance of the intraseasonal components is able to be
made [1, 2, 4, 5]. The covariance of the slow components is then estimated as
the difference between the covariance of the original pair of variables, using
moment estimation, and the covariance of the intraseasonal components.

A common assumption when estimating the covariance between intraseasonal
components is that the monthly statistics of the intraseasonal components are
stationary and the underlying daily time series are first order autoregressive
processes (ar1). The intermonth covariance between the pairs of climate
variables is also assumed to be stationary and constant [1, 4, 6]. These
assumptions do not hold, in general, for a variable such as rainfall where
the daily data consists of dichotomous (on/off) events [7]. It is possible to
formulate a more general method for such two state climate variables but
it requires an estimate of the intermonth covariance. To provide such an
estimate for all seasons, we use a stochastic, two state, first order, Markov chain
model fitted to daily Australian rainfall data and daily 500 hPa atmospheric
geopotential height anomalies.
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2 Methodology

2.1 Statistical model for monthly mean fields

In order to estimate the covariance matrix of the intraseasonal components,
data needs to be available at least as monthly averages within the season [1, 2].
It is then useful to think of the monthly means of a climate variable x as a
statistical random variable [1, 2] consisting of two components:

xym = µy + εym . (1)

Here, xym represent monthly anomalies of a climate variable, with the annual
cycle removed, in year y ( = 1, . . . , Y), month m ( = 1, 2, 3, corresponding,
for example, to March, April, May, respectively); µy represents the slow,
or more potentially predictable component, assumed constant over each
month in the season; εym is the intraseasonal, or essentially unpredictable,
component. The vector (εy1, εy2, εy3) is assumed to comprise a stationary and
independent random vector with respect to year. Equation (1) implies that
month-to-month fluctuations, or intraseasonal variability, arise entirely from
this component (for example, xy1 − xy2 = εy1 − εy2). We use the convention
that an average over any index will be represented by a circle. For example,
xy◦ is an average over all months in the season, and x◦◦ is an average over all
months and years. That is,

xy◦ =
1

3

3∑
m=1

xym = µy + εy◦. (2)

Thus, µy is also thought of as the seasonal population mean and εy◦ is a
residual, associated with predominantly intraseasonal weather noise [1, 2],
which is assumed to have zero expectation over all years Y. That is,

E [εy◦] ≡
1

Y

Y∑
y=1

εy◦ = 0 , (3)
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where E represents the expectation value, defined as the average value over all
years. In this article, pairs of climate variables (xym, x ′ym) = (µy + εym,µ ′y +
ε ′ym) are considered.

The covariance V(εy◦, ε
′
y◦) of the seasonal mean of the intraseasonal compo-

nents of two climate variables (xy◦, x
′
y◦) is estimated by

V(εy◦, ε
′
y◦) = E

[
1

9

3∑
m=1

εym

3∑
n=1

ε ′yn

]

=
1

9
(σ11 + σ22 + σ33 + σ12 + σ21 + σ23 + σ32 + σ13 + σ31) , (4)

where σmn = E[εymε
′
yn] is the covariance between the two intraseasonal

components in months m and n. There are nine terms that need to be
estimated (σ11, σ22, σ33, σ12, σ21, σ23, σ32, σ13, σ31). It follows also from (1)
that

E

[(
εy1 − εy2
εy2 − εy3

)(
ε ′y1 − ε

′
y2

ε ′y2 − ε
′
y3

)T]
= E

[(
xy1 − xy2
xy2 − xy3

)(
x ′y1 − x

′
y2

x ′y2 − x
′
y3

)T]

=

(
σ11 + σ22 − σ12 − σ21 σ12 + σ23 − σ22 − σ13
σ21 + σ32 − σ22 − σ31 σ22 + σ33 − σ23 − σ32

)
. (5)

This provides four equations for the nine terms that need to be estimated.
Recognising that weather events are unpredictable beyond a week or two,
another common assumption is that the intraseasonal components are un-
correlated if they are a month or more apart, that is, σ13 = σ31 = 0 [1, 2].
Thus, three additional equations would be needed to estimate all the terms
in equation (4). As discussed in the introduction, this is possible when the
climate variables are assumed to be ar1 [1, 2].
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2.2 Estimating the intermonth covariance with
rainfall

This section aims to elucidate the covarying relationship between the in-
traseasonal component of the atmospheric pressure field and rainfall, both
within each month and between adjacent months. It is assumed that for
each month there exists daily rainfall data Rym,t and pressure data xym,t with
t ∈ (0, Tm) and Tm, the number of days in month m. It is also assumed that
σ13 = σ31 = 0. Then, by definition the intermonth covariance

σmn ≡ E

[(
1

Tm

Tm∑
s=1

εym,s

)(
1

Tn

Tn∑
t=1

(Ryn,t − E [Ryn,t])

)]

= E

[(
1

Tm

Tm∑
s=1

εym,s

)(
1

Tn

Tn∑
t=1

Ryn,t

)]
, (6)

using the assumption that E [εym,s] = 0 (as in equation (3)), and Tn is the
days in month n. The problem then reduces to estimating E [εym,sRyn,t].

Here, we use a stochastic, two state, first order, Markov chain model [9] fitted
to daily precipitation data to estimate the intermonth correlation between
monthly means of the precipitation during a season. Let {Jm,t, t = 1, . . . , Tm}
denote the sequence of daily precipitation occurrences in month m with
Tm days such that Jm,t = 1 indicates a ‘wet day’, defined here as a day with
at least 1mm of rain, and Jm,t = 0 a ‘dry day’. A first order, Markov chain
model is completely characterised by the transition probability

Pm,jk = Pr(Jm,(t+1) = k | Jm,t = j) , (7)

where j,k = 0, 1 . The transition probabilities are estimated for each month
using daily data over all years, and hence we construct a one step transition
matrix Pm for month m,

Pm =

(
Pm,00 Pm,01

Pm,10 Pm,11

)
. (8)
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Then the t-step transition probability is simply P
(t)
m = P

(t−1)
m Pm, and

Feller [10] showed that

P(t)
m =

1

Pm,10 + Pm,01

(
Pm,10 Pm,01

Pm,10 Pm,01

)
+

(1− Pm,10 − Pm,01)
t

Pm,10 + Pm,01

(
Pm,01 −Pm,01

−Pm,10 Pm,10

)
. (9)

Suppose now that Rym,t and the intensity of rainfall on wet days (Rym,t > 0 ,
or Jm,t = 1) are conditionally independent and identically distributed with
respect to time t [7, 8]. Then, for any wet day in month m, the first moment
of the intensity ηm is estimated from daily data as

ηm ≡ E[Rym,t | Jm,t = 1]. (10)

The stationary probability of rainfall πm [9] is estimated by

πm ≡ Pr(Jm,t = 1) =
Pm,01

(1− Pm,11 + Pm,01)
. (11)

Also, for days in months m and n, and k, j ∈ (0, 1), transition probabilities
are calculated as

Pr(Jn,t = k | Jm,s = j) =

{
P

(t−s)
m [j+ 1,k+ 1] , n = m , t > s ,

P
(Tm−s)
m P

(t)
n [j+ 1,k+ 1] , n = m+ 1 .

(12)
To estimateE [εym,sRyn,t], it is assumed that εym,s depends only on the rainfall
occurrence Jm,s, that is, it is conditionally independent of the set {Ryn,t},
given Jm,s. Three cases need to be considered.

1. m < n :

E[εym,sRyn,t]

= E[εym,sRyn,t | Jm,s = 1]Pr(Jm,s = 1)
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+ E[εym,sRyn,t | Jm,s = 0]Pr(Jm,s = 0)

= πm Pr(Jn,t = 1 | Jm,s = 1)E[εym,sRyn,t | Jm,s = 1, Jn,t = 1]

+ (1− πm)Pr(Jn,t = 1 | Jm,s = 0)E[εym,sRyn,t | Jm,s = 0, Jn,t = 1]

= πm Pr(Jn,t = 1 | Jm,s = 1)E[εym,s | Jm,s = 1]E[Ryn,t | Jn,t = 1]

+ (1− πm)Pr(Jn,t = 1 | Jm,s = 0)E[εym,s | Jm,s = 0]E[Ryn,t | Jn,t = 1]

= ηm {πm Pr(Jn,t = 1 | Jm,s = 1)λm,1

+ (1− πm)Pr(Jn,t = 1 | Jm,s = 0)λm,0} , (13)

where λm,1 = E[εym,s | Jm,s = 1] and λm,0 = E[εym,s | Jm,s = 0] are the
only terms that need to be estimated.

2. m > n :

E[εym,sRyn,t]

= E[εym,sRyn,t | Jn,t = 1]Pr(Jn,t = 1)

= πn Pr(Jm,s = 1 | Jn,t = 1)E[εym,sRyn,t | Jm,s = 1, Jn,t = 1]

+ πn Pr(Jm,s = 0 | Jn,t = 1)E[εym,sRyn,t | Jm,s = 0, Jn,t = 1]

= πn Pr(Jm,s = 1 | Jn,t = 1)E[εym,s | Jm,s = 1]E[Ryn,t | Jn,t = 1]

+ πn Pr(Jm,s = 0 | Jn,t = 1)E[εym,s | Jm,s = 0]E[Ryn,t | Jn,t = 1]

= ηnπn {Pr(Jm,s = 1 | Jn,t = 1)λm,1 + Pr(Jm,s = 0 | Jn,t = 1)λm,0} . (14)

3. m = n :

(a) If s < t , then use equation (13) with m = n .

(b) If s > t , then use equation (14) with m = n .

(c) If s = t , then

E[εym,sRym,s] = E[εym,sRym,s | Jm,s = 1]Pr(Jm,s = 1)

= πmE[εym,s | Jm,s = 1]E[Rym,s | Jm,s = 1]

= ηmπmλm,1 . (15)
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The problem now reduces to estimating λm,1 and λm,0. We define

am ≡
1

Y

Y∑
y=1

1

Nm(y)

∑
t,Jm,t−1

(xym,t+1 − xym,t) ≈ E[εym,t+1 − εym,t | Jm,t = 1] ,

(16)
where Nm(y) is the number of days within month m when Jm,t = 1 in year y,
and am is calculated from the daily data. Since Jm,t is a stationary binary
Markov chain within the month,

E[εym,t+1 | Jm,t = 1] = Pr(Jm,t+1 = 0 | Jm,t = 1)E[εym,t+1 | Jm,t+1 = 0]

+ Pr(Jm,t+1 = 1 | Jm,t = 1)E[εym,t+1 | Jm,t+1 = 1]

= Pm,11λm,1 + Pm,10λm,0 . (17)

That is,
am = Pm,11λm,1 + Pm,10λm,0 − λm,1 , (18)

since Pm,11 = 1− Pm,10 . Also, E[εym,t] = 0 implies that

E[εym,t] = Pr(Jm,t = 0)E[εym,τ | Jm,t = 0] + Pr(Jm,t = 1)E[εym,τ | Jm,t = 1]

=
Pm,01

Pm,10 + Pm,01

λm,1 +
Pm,10

Pm,10 + Pm,01

λm,0 = 0 . (19)

Hence, using equations (18) and (19),

λm,1 = −
am

(Pm,10 + Pm,01)
, (20)

λm,0 = am
Pm,01

Pm,10(Pm,10 + Pm,01)
, (21)

and the covariance σmn (equation (6)) can be estimated.

3 Example

To illustrate the methodology, it has been applied to daily Australian rain-
fall (mm/day) and Southern Hemisphere geopotential height (m) data on
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the 500hPa pressure level for March, April, May (mam) from 1958 to 2006.
The rainfall data is from the Australian Bureau of Meteorology National
Climate Centre gridded historical dataset [11]. The height data is from the
National Centers for Environmental Prediction (ncep) and National Center
for Atmospheric Research (ncar) re-analyses [12]. The rainfall is on a 1◦×1◦
latitude/longitude grid, and the geopotential height on a 2.5◦ × 2.5◦ grid.
For each rainfall grid point, the intermonth covariance σmn (m 6= n) and
within-month covariance (m = n) were calculated for all height gridpoints.

Figure 1 shows the covariances for rainfall at (116◦e,33.5◦s) in the far south-
west of Western Australia. In all cases, the pattern of covariances consists
of a hemispheric wavetrain of alternating sign largely confined between 20◦s
and 60◦s with wavenumber between 5 and 6. These patterns are reminiscent
of the typical daily weather patterns in the height field during this season.
The largest magnitude of the covariance occurs in the vicinity of the rainfall
location. Over the region of the rainfall, the within-month covariances (Fig-
ure 1(a)–(c)) are very negative, indicating an association with low pressure
systems, as might be expected. When the height field leads (lags) the rainfall,
the intermonth covariances (Figure 1(d)–(g)), are negative (positive) over this
region, and are associated with low (high) pressure anomalies. However, as
indicated by the different contour scaling, the within-month covariances are
one or two orders of magnitude larger than the intermonth covariances.

Figure 2 shows the corresponding results for rainfall at (152◦e,27.5◦s) on the
central eastern coast of Australia. In this case, the patterns of covariance
consist of a wavetrain over the eastern part of Australia arcing poleward
into the Pacific Ocean and then equatorward over South America and into
the Atlantic and Indian Ocean. This pattern is reminiscent of weather
systems associated with intraseasonal variability. Quite negative covariances
occur either over, or slightly upstream, of the region of rainfall. Again, the
within-month covariances are one or two orders of magnitude larger than the
intermonth covariances.

It is not possible to show the patterns of covariation between the height field
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and rainfall at all locations, but they all share the common property that
they are reminiscent of weather systems, and in all cases, the within-month
covariances are at least one order, or typically two orders, of magnitude larger
than the intermonth covariances.

4 Conclusions

A methodology has been formulated that allows the within-month and inter-
month covariances between the intraseasonal component of an atmospheric
pressure field (geopotential height) and rainfall to be estimated using daily
data. The method produces patterns of covariability for a particular rainfall
location, and these resemble typical weather patterns associated with the
location. The within-month covariances are generally much larger than the
intermonth covariances. This suggests that the intermonth covariances make
relatively little, or negligible, contribution to the interannual covariance of
the seasonal mean of the intrasasonal components of height and rainfall
(equation (4)). That is, a reasonably accurate estimate for this term is

V(εy◦, ε
′
y◦) =

1

9
(σ11 + σ22 + σ33). (22)

In that case, equation (5) would provide sufficient conditions for an estimate
of the within-month covariances using only monthly data.
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Program on Key Basic Research Project of China and 40975062/40875062
nsfc.
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Figure 1: (a)–(c) Within-month covariances σ11, σ22 and σ33, respectively;
(d)–(g) intermonth covariances σ12, σ21, σ23 and σ32, respectively, for rainfall
at (116◦e,33.5◦s). Units are mm/day×m and the covariances have been
scaled by 100.
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Figure 2: As in Figure 1 but for rainfall at (152◦e,27.5◦s).
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