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Abstract

Water molecule diffusion in the brain is measured using a magnetic
resonance imaging method. The anisotropy of the diffusion tensor is
of particular interest in brain images, as it relates to white matter
fibre tracts. Depending on the interrelation of eigenvalues, diffusion
can be divided into the three cases of linear diffusion, planar diffusion
and spherical diffusion. We present additional information from the
(brain image) diffusion tensor magnetic resonance imaging of a patient
with Parkinson’s disease. This information includes maps of diffusion
tensor components, fractional anisotropy and an fractional anisotropy
weighted colour coded orientation. We also investigate linear diffu-
sion, time fractional diffusion, and space fractional diffusion, as well
as proposing computational simulations of connectivity in the brain
using numerical methods for the analysis of diffusion tensor magnetic
resonance imaging.
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1 Introduction

Diffusion tensor magnetic resonance imaging (DT-MRI) is a technique used to
measure the diffusion properties of water molecules in tissues [1]. In white
matter, which is one of the two components of the central nervous system
and consists mostly of myelinated axons, the diffusion of free water molecules
is anisotropic and such diffusion is often modelled by the equation

oC

where C(x,y,z,t) is the concentration of water molecules and D(x,y,z) is
the usual symmetric second rank diffusion tensor.
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A property of symmetric second rank tensors is that they can always be
orthogonally diagonalised as D = EAET = Zf:] Aieie! with E = [eq, e, e3]
and A = diag(Ay, A2, A3) [2]. The eigenvalues reflect the shape or configuration
of an ellipsoid with its surface representing the root mean square diffusive
displacement of free water in anisotropic media. The tensor trace equals
the sum of the eigenvalues, A; + A; + A3, and is rotationally invariant, that
is, independent of the orientation of the ellipsoid. The tensor trace reflects
the size of the ellipsoid, whereas the eigenvectors e, e; and ez describe the
relationship between the ellipsoid and the laboratory frame.

In general, the eigenvalues are sorted with the convention that Ay > A; > As.
Consequently, the first eigenvector e; describes the predominant diffusion
direction and is therefore also called the principal diffusion vector or principal
diffusivity.

Depending on the interrelation of the eigenvalues A; of D at each locale,
diffusion is divided into three cases [3]:

1. linear diffusion Ay > A; &~ A; and D = ?\161e]T;

2. planar diffusion A\ & A; > A3 and D ~ A4 Zf:1 e.el

19

3. spherical diffusion A\; & A; &~ A3 and D ~ A4 2;1 eiel

i
The anisotropy captured using diffusion tensor imaging is of particular interest
in relation to the brain, as it is associated with white matter fibre tracts.
Several measures of diffusion anisotropy, including fractional anisotropy (FA),
relative anisotropy, and volume ratio, are calculated from the eigenvalues.
Throughout this article we use [4]

1 VA = A2+ (A —A3)2 + (A — Aq)2
V2 A A+ A '
Figure 5 exhibits the orientation map images showing the direction of the

maximum eigenvector. The colours given in this figure are chosen according
to the scheme recommended by Sarntinoranont et al. [5]. The maps are

FA =

(2)
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coloured according to the eigenvector direction and scaled by multiplying the
eigenvector direction cosine with the fractional anisotropy.

Several recent studies investigated so called anomalous diffusion [6, 7, 8]. We
consider an alternative derivation for the stretched diffusion model using
fractional order space and time derivatives.

We first exhibit information derived from the diffusion tensor, which includes
the maps of diffusion tensor components, the eigenvalues and the FA weighted
color coded orientation. Then models relating to linear diffusion are presented.
Numerical simulations of the linear diffusion, time fractional diffusion and
space fractional diffusion are investigated.

2 Data acquisition

The pre and post surgery data we use here is from a patient diagnosed with
Parkinson’s disease. The brain diffusion tensor MR images are acquired using
a GE Medical System (SIGNA 3T) scanner. All image pixels are 256 x 256.

Pre surgery data is acquired using an echo time of 93.7 ms and repetition time
of 7s. Twenty four interleaved, 5 mm thick slices are acquired in the horizontal
plane perpendicular to the coronal and sagittal planes, using the multislice
mode. Diffusion sensitization is performed along 35 different diffusion gradient
orientations using a diffusion weighting of b = 1000s/mm?. A reference image
without diffusion weighting (b = 0s/mm?) was also recorded.

The patient underwent deep brain stimulation. Post surgery data is acquired
using an echo time of 93.5ms and repetition time of 7s. Twenty six in-
terleaved, 5mm thick slices are acquired in the horizontal plane using the
multislice mode. Furthermore, diffusion sensitization is performed along
40 different diffusion gradient orientations using a diffusion weighting of
b = 1000s/mm?. Similary, a reference image without diffusion weighting
(b = 0s/mm?) was also recorded.
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3 Application

3.1 Diffusion tensor components

The images shown in Figures 1 and 2 depict the diffusion tensor compo-
nents (Dyx, Dyy, Dxz, Dyy, Dy, and D) determined pre and post surgery,
respectively. Note the changes in the tensor components after surgery are no
longer evident, particularly in the diagonal entries where the distinct central
structure.

Figure 3 depicts the changes in the eigenvalues after surgery. The largest,
middle and smallest eigenvalues are shown before surgery in (a), (b) and (c)
and after surgery in (d), (e) and (f) respectively. The intervention had a
significant impact on the eigenvalue distributions, again most notably around
the central structure. Further details on classifying changes in the brain
images via the magnitudes of the eigenvalues was discussed by Leemans [3].

Figure 4(a) and (b) display images of the brain before and after surgery
respectively. Table 1 presents the relevant data. In addition, in Figure 4(a)
and (b) we mark locations A, B and C based on the diffusion cases identified
according to the magnitude of the eigenvalues. Point A, before surgery, could
be classified as linear diffusion, because the largest eigenvalue is approximately
five times that of the other eigenvalues, whereas after surgery all eigenvalues
have approximately the same magnitude indicating a spherical diffusion
classification. Also, point B changes from spherical to planar diffusion after
surgery, whereas point C is unchanged. These findings may be helpful to the
surgeon treating the patient, and further analysis of this data will be carried
out in conjunction with a medical specialist in our future work.
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F1GURE 1: Diffusion tensor components before surgery.
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F1GURE 2: Diffusion tensor components after surgery.
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Fi1GURE 3: Eigenvalues: left column is pre-surgical; and right column is
post-surgical.
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FIGURE 4: Three eigenvalues in white matter, (a) pre surgical and (b) post

surgical.

TABLE 1: Eigenvalues at the same points in white matter (wm) before and

after surgery. All eigenvalues need to be multiplied by 1073.

WM Eigenvalues(pre surgical)

Eigenvalues(post surgical)

A(142,164)  (1.661, 0.308, 0.251)
B(91,143) (0.606, 0.559, 0.422)
C(142,90) (1.169, 0.841, 0.520)

(1.337, 1.030, 0.922)
(1.100, 1.050, 0.550)
(2.392, 1.276, 0.633)
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3.2 Anisotropies

Figure 5 shows color coded orientation map images representing the direction
of the maximum eigenvector with its intensity weighted by FA. The color
coded orientation maps with the largest, middle and smallest eigenvalues
are shown before surgery in (a), (b) and (c¢) and after surgery in (d), (e)
and (f) respectively. In this figure, red represents the eigenvector direction
perpendicular to the image plane, green represents left to right, and blue
represents up and down. The surgical procedure has altered the maximum
eigenvector direction distributions.

Figure 6(c) shows the mean FA values of the patient were lower before surgery.
However, the mean FA values of a normal adult are 0.68 + 0.18. The data
of a normal adult are reproduced from the book by Mori [4]. Figure 6(c)
shows that the surgery produces a mean FA value closer to that observed for
a normal adult, but this conclusion would be subject to analysis by a medical
specialist.

3.3 Fitting white matter FA frequency

Using the results of Zhao et al. [9], we found that a mixture of two distributions,
a normal distribution and the inverse Gaussian distribution, given by the
formula (5), can be used to fit the distribution of the whole brain white
matter fractional anisotropy (FA) frequency. Letting the probability density
functions f;(x) and f;(x) be defined as

(v 2
o [T xetan ®)

. o 2
fz(x):\/zi\x_,) exp{ }‘(’;uzm x], x € le, dl, (4)
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(c) (f)

FIGURE 5: FA weighted color coded orientation maps: left column is pre
surgical; and right column is post surgical.
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then the function f(x) is defined as

f1(x)/2, x € [a,b], x ¢ [c, d],
f(x) =< (fi(x) +f2(x))/2, x€la,blNlc,d], (5)
f2(x)/2, x € [c,d], x ¢ [a,b].

Figures 6(a) ([a,b] =[0,0.7] and [c, d] = [0.05,1]) and (b) ([a, b] = [0,0.35]
and [c,d] = [0.1,1]) show the fitted results for the pre surgical and post
surgical whole brain white matter fractional anisotropy frequency respectively.
We evaluate the accuracy of the fitted results based on the relative standard
error e = ej/e,, where

N N
er = %Z (falxi) — ?(Xi))2> €= %Z (falxe) = fave) . (6)

i=1 i=1

Here f4(x;) is the empirical PDF, with average value faye, and f(x) is the fitted
probability density function. The goodness of fit is indicated by the result
e < 1.0 as pointed out by Zhao et al. [9]. All the values of e in Figures 6(a)
and (b) are smaller than 0.45, indicating that a mixture of two distributions,
defined by formula (5), performs well in fitting the distribution of whole brain
white matter fractional anisotropy frequency.

Figures 6(a) and (b) show the post surgical whole brain white matter fractional
anisotropy distribution (post WM-FAD) to be positively skewed and leptokurtic,
whereas the pre surgical whole brain white matter fractional anisotropy
distribution (pre WM-FAD) is positively skewed and less leptokurtic than the
post WM-FAD. Furthermore, there is an interaction between the measured
histogram parameters, see for example the post WM-FAD, which is highly
leptokurtic having a greater peak height frequency than the pre WM-FAD, while
the post WM-FAD also has a greater positive skew being more asymmetrical
than the pre WM-FAD.
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4 One-dimensional models

When the diffusion is linear, planar and spherical, the corresponding diffusion
equation (1) becomes one dimensional, two dimensional and three dimensional
respectively.

The distribution and dynamics of water in biological tissues is wholly unob-
servable to conventional NMR and DT-MRI systems [10]. This invisibility is
not solely due to signal to noise ratio (SNR) or image resolution issues, but is
fundamentally encoded in the definition of magnetisation as a spatial average
of the magnetic moment per unit volume, and the central limit theorem model
of a Gaussian space/time averaging of the phase of the detected NMR signal
(free induction decay)—typically the phase of the transverse components of
the bulk magnetisation. The main characteristic of a fractional model is that
it contains a non-integer order derivative. Fractional models can effectively
describe memory and transmissibility of many kinds of material, and play an
increasingly important role in engineering, physics, finance, hydrology and
other fields. Fractional calculus may play a similar role in the analysis of
MR images of complex biological tissues. Several authors demonstrated that
a fractional calculus based diffusion model successfully applies to analysing
diffusion images of human brain tissue and provides new insights into further
investigations of tissue structures and the microenvironment [7, 10].

This section aims to illustrate how the diffusion tensor information is used to
model the diffusion behaviour in the white matter of the brain. The models
we investigate are standard diffusion, anomalous subdiffusion (time fractional
diffusion), and space fractional diffusion.

Recall from Section 3.1 that the spectrum of the diffusion tensor located
at point A before surgery could be classified as ‘linear’ diffusion, and this
motivates a one dimensional modelling study, which we consider throughout
the following paragraphs, emanating from point A. We only show numerical
results for the one dimensional model with the initial condition given by
the Dirac delta function §(x) and Neumann boundary conditions obtained
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from finite difference methods [6, 8]. Here, a diffusion equation based on
the measured diffusion tensor is solved with the initial condition taken at a
location of the tractography starting point (for example, point A in Figure 4
before surgery) [1]. The two dimensional and three dimensional models can
be similary simulated and their solutions will be exhibited in future work.

4.1 Model 1: Linear diffusion

When the diffusion is linear, that is, when Ay > A; &~ A3, equation (1) becomes
the well known standard diffusion equation (SDE):

oC 0%C

ot ' 0&2’
where t is the time variable, & is the space variable, D, L and T are constants.
This is an illustrative example that exhibits linear diffusion from say point A
in Figure 4 before surgery where a surgical treatment is injected and the
direction & could be interpreted along the dominant eigenvector. Using the

numerical method proposed by Zhuang et al. [8], the behaviour of the SDE
with L =5 and Dy =1 is shown in Figure 6(d).

L<E<L, 0<t<T, (7)

4.2 Model 2: Anomalous subdiffusion

Fractional kinetic equations proved particularly useful in the context of
anomalous subdiffusion [11]. The mean square displacement of particles
released from the original starting site is no longer linear in time and follows
a generalised Fick’s second law. Subdiffusive motion is characterised by an
asymptotic long time behaviour of the mean square displacement of the form
<E,2(t)> ~ 2K, tY/T(1 +7v) (t — oo), where vy (0 <y < 1) is the anomalous
diffusion exponent and K, is the generalised diffusion coefficient.

For anomalous subdiffusive random walkers, the continuum description via the
ordinary diffusion equation is replaced by the fractional diffusion equation. It
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FIGURE 6: (a) Pre wM-FAD after fitting; (b) post WM-FAD after fitting;
(c) mean FA values; (d) solution profiles of SDE as a function of & for different t.
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has been suggested that the probability density function C(§,t) that describes
anomalous subdiffusion particles follows the anomalous subdiffusion equation
(AS-DE) [11]

dC 22C
a:D;v(KYa_az), “L<ELL, 0<t<T, 0<y<1, (8

where C(&,1t) is the probability density and ley is the Riemann—Liouville
fractional derivative with respect to t, which is defined as [8]

1—y _ 1 3 tc(aﬂl)dﬂ
DLYele ) = oy |, =y

Ify — 0, then D; YC — 9C/dt.

O<y<l. (9)

Applying the numerical method given by Zhuang et al. [8], the evolution
results of AS-DE with L =5, K, =1 are shown in Figure 7(a). Figure 7(a)
shows that the system exhibits subdiffusion behaviour, that is, the particles
diffuse more slowly as y decreases, as to be expected, and the solution depends
continuously on the time fractional derivative.

4.3 Model 3: Space fractional diffusion

Because white matter is highly heterogeneous, the laws of Markov diffusion [12]
may be altered in a fundamental way, and so the classical diffusion equation
may not be adequate. If the complex structure, such as the spatial connectivity,
can facilitate movement of particles within a certain scale, fast motions may
no longer obey the classical Fick’s law and may have a probability density
function that follows a power law. Superdiffusion is one possible form for fast
motions.

Fractional derivatives play a key role in modelling particle transport in
anomalous diffusion. By replacing the second space derivative by a fractional



4  One-dimensional models C34

=5)
u(§,t=2)

u(&,t

FIGURE 7: (a) Numerical results of AS-DE at t =5; (b) numerical results of
SF-DE at t = 2.

derivative of order o (1 < « < 2), the classical diffusion equation SDE becomes
a one dimensional space fractional diffusion equation (SF-DE):

oC 0*C

— =D,—, —-L<&ELKL, 0<t<T, 1T<a<2, 10

ot roEs . * (10)
where Dj is constant, and 0%/0&* is the Riemann—Liouville fractional deriva-
tive with respect to &, which is defined as [6]

0*C(E,t) 1 9? r C(n,t) dn
— 1<a<?2. 11
o G—me1t T SES ()

08 T(2— «)0&?
If o« — 2, then 0*C/0E* — 0%C/0E2.
Using the numerical method in Liu et al. [6], Figure 7(b) shows the solution
profiles of SF-DE with L =5, D, = 1. Figure 7(b) shows that the solution
depends continuously on the order « of the fractional derivative in space.
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5 Conclusions

The diffusion tensor information from water molecules diffusing in the brain,
obtained using DT-MRI, was described and demonstrated. We derived numer-
ical methods to analyse brain images, and developed one dimensional linear
diffusion and fractional models to study standard diffusion and anomalous
diffusion behaviour in the white matter of the brain. In addition, brain
image data was compared for a patient with Parkinson’s disease before and
after surgery. The simulated information can provide the surgeon with a
more fundamental understanding of the impact of surgery on the diffusion
behaviour in the white matter of the brain. Future research will be directed
towards refining and calibrating the models presented here by using expert
opinion and feedback from medical practitioners working in this field.
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