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Abstract

Thin-plate splines are a well established technique for the inter-
polation and smoothing of scattered data. However, the traditional
formulation of the method leads to large, dense and often ill-conditioned
matrices, which reduces its applicability in practice. We present a new
mixed finite element formulation based on the ideas behind the mortar
finite element methods. The resulting system of equations is sparse
and positive definite, and its size depends only on the number of finite
elements not the number of data points.
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1 Introduction

Let Ω ⊂ Rd with d ∈ {2, 3} be a closed and bounded region and take
H2(Ω) = {u ∈ L2(Ω), ∇u ∈ [L2(Ω)]d, ∇∇u ∈ [L2(Ω)]d×d}. Given a set
G = {xi}

N
i=0 of scattered points in Ω and a set {zi}

N
i=0 of values, the traditional

formulation of a thin-plate spline is a smooth function u : Ω → R that
minimises the functional

1

N

N∑
i=0

[u(xi) − zi]
2
+ α

∫
Ω

∑
|ν|=2

(
2

ν

)
(Dνu)

2
dx (1)

over the function spaceH2(Ω), where ν = (ν1, . . . ,νd) ∈ Nd0 is a d-dimensional

vector used for multi-index notation. Note that |ν| =
∑d

i=1 νi and(
2

ν

)
=

2

ν1!ν2! · · ·νd!
.

Further, Dνu denotes the usual partial derivative(
∂

∂x1

)ν1
· · ·
(
∂

∂xd

)νd
u ,
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and α is a positive constant. Two influential articles on the topic are by
Duchon [6] and Wahba [16].

Small values of α result in an interpolation that closely follows the data, but
may be sensitive to errors in the data; large values of α result in a smooth fit
that may not adequately represent the data. Techniques such as generalised
cross validation find an appropriate choice of α. See, for example, articles by
Hutchinson [8] and the book by Wahba [16].

Thin-plate splines exhibit many favourable mathematical properties, but
the traditional formulation is computationally expensive. So, our main
goal is to find an efficient discretisation technique for the minimisation of
the functional (1). The obvious approach is to use a H2-conforming finite
element space, but the resulting linear system is difficult to solve as it is
ill-conditioned and based on large stencils. Therefore, we aim at replacing
the second order derivative in the thin-plate spline formulation with a first
order derivative by using a H1-conforming finite element method. This idea
has been exploited to solve the biharmonic equation and to discretise the
thin-plate spline [3, 4, 5, 7, 9, 11, 12, 13, 15].

Our new formulation is obtained by introducing an auxiliary variable σ = ∇u
such that the minimisation problem (1) is rewritten as [3, 9]

min
(u,σ)∈V
σ=∇u

{
1

N

N∑
i=0

[u(xi) − zi]
2 + α‖∇σ‖2L2(Ω)

}
, (2)

where V = H1(Ω) × [H1(Ω)]d. The σ variable acts like the gradient of
the data u. Since we cannot satisfy the constraint σ = ∇u exactly in the
discrete setting, we introduce a variational equation for this constraint using
a Lagrange multiplier space. This leads us to a saddle point problem that
has three unknowns: the smoother u, the gradient of the smoother σ, and
the Lagrange multiplier φ. It is advantageous if our formulation is such that
the auxiliary variables (the gradient of the smoother σ and the Lagrange
multiplier φ) can easily be eliminated from the system. This is accomplished
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by using a pair of bases for the gradient of the smoother and the Lagrange
multiplier space that satisfy a quasi-biorthogonality property in the discrete
setting. We will give detailed analysis elsewhere [10], here we give an overview
of the main ideas and write briefly about the solver.

2 Discrete setting

Let Th be a globally quasi-uniform and shape regular triangulation of the
polygonal domain Ω having the mesh-size h consisting of triangles or tetra-
hedra. Let

Sh = {uh ∈ C0(Ω) | uh|T ∈ P(T), T ∈ Th} (3)

be the standard linear finite element space, and

Bh =

{
bh | bh|T = (d+ 1)d+1

d+1∏
i=1

λTi , T ∈ Th

}
,

be the space of bubble functions, where P(T) is the space of linear functions
on T , and {λTi }

d+1
i=1 is the set of barycentric co-ordinates on T . Let Lh = Sh⊕Bh .

Lh is explicitly defined on a reference element in Section 4. In a more detailed
article [10] we will explain why it is not possible to obtain stability if we
discretise the space V by using Sh × [Sh]

d instead of Sh × [Lh]
d.

Denoting the discrete counterpart of the continuous space V by Vh = Sh×[Lh]d,
our discrete problem is to find

min
(uh,σh)∈Vh

{
1

N

N∑
i=0

[uh(xi) − zi]
2 + α‖∇σh‖2L2(Ω)

}
, (4)

subject to

〈σh,ψh〉L2(Ω) = 〈∇uh,ψh〉L2(Ω), ψh ∈ [Mh]
d.
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The space [Mh]
d plays the role of a Lagrange multiplier space. The specific

formulation of Mh, as given in Section 4, is influenced by the properties of
the resulting systems of equations.

Denoting function values of u at the measurement points {xi}
N
i=0 by

Pu = (u(x0),u(x1), . . . ,u(xN))
T ,

the minimisation problem (4) is equivalent to

min
(uh,σh)∈Vh

(
1

N
‖Puh‖2 + α‖∇σh‖2L2(Ω) −

2

N
(Puh)

Tz

)
, (5)

with the side condition∫
Ω

σh ·ψh dx =
∫
Ω

∇uh ·ψh dx , ψh ∈ [Mh]
d. (6)

Here z is a column vector with ith entry zi for i = 0, . . . ,N , and ‖ · ‖ is
the standard Euclidean norm. Hence we have a constrained minimisation
problem which gives rise to a saddle point structure.

3 Positive definite formulation

To obtain the positive definite formulation, we introduce a quasi-projection
operator, Qh : L

2(Ω)→ Lh , which is defined as∫
Ω

(Qhv)µh dx =

∫
Ω

vµh dx , v ∈ L2(Ω), µh ∈Mh .

This type of operator was introduced by Scott and Zhang [14] to obtain
the finite element interpolation of non-smooth functions satisfying boundary
conditions, and was used by Bernardi et al. [2] in the context of mortar finite
elements. The definition of Qh allows us to write the weak gradient as

σh = Qh(∇uh),
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where the operator Qh is applied to a vector component-wise.

Using the definition of the operator Qh, we eliminate the degrees of freedom
corresponding to σh so that our problem is to minimise the functional

J(uh) =
1

N
‖Puh‖2 + α‖∇(Qh∇uh)‖2L2(Ω) −

2

N
(Puh)

Tz (7)

over the space Sh. We note the replacement of ‖∇σ‖2
L2(Ω)

in the continuous

problem (1) by ‖∇(Qh∇uh)‖2L2(Ω)
in the discrete problem (7).

We are currently undertaking a convergence analysis of the above formulation
with results to be reported elsewhere [10].

4 Algebraic formulation and construction

of Mh

In the following, we use the same notation for the vector representation of
the solution and the solution as elements in Sh, [Lh]

d and [Mh]
d. Let R, A, B

and D be the matrices associated with the bilinear forms

1

N
(Puh)

TPvh ,

∫
Ω

∇σh : ∇τh dx ,

∫
Ω

∇uh ·ψh dx and

∫
Ω

σh ·ψh dx ,

respectively, where uh, vh ∈ Sh , σh,τh ∈ [Lh]
d, and ψh ∈ [Mh]

d. The
matrix D associated with the bilinear form

∫
Ω
σh · ψh dx is often called a

Gram matrix. We recall that ∇σh : ∇τh denotes the dot product of two
matrices ∇σh and ∇τh.

By using Lagrange multipliers, the minimum of (7) is found by finding uh,
σh and φh satisfying

1

N
(Puh)

TPvh −

∫
Ω

∇vh ·φh dx = f(vh), vh ∈ Sh ,
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α

∫
Ω

∇σh : ∇τh dx+
∫
Ω

φh · τh dx = 0 , τh ∈ [Lh]
d,

where f(vh) =
1
N
(Pvh)

Tz . The algebraic formulation of the equivalent saddle
point problem is  R 0 −BT

0 αA DT

−B D 0

 uh
σh
φh

 =

 fh0
0

 , (8)

where fh is the vector form of discretisation of the linear form f(·). The last
line in Equation (8) comes from the side condition given in Equation (6).

Each submatrix in (8) is sparse and has size independent of the number of
data points, although the sizes of B, A and D grow with the dimension. The
time taken to construct the R matrix depends linearly on the number of data
points; the other matrices only depend on the size of the finite element grid.

We recall that a Gram matrix of two sets of basis functions {µi}16i6n and
{ϕi}16i6n is a matrix G whose ijth entry is∫

Ω

µiϕj dx .

Definition 1 The basis functions {µi}16i6n of Mh and the basis functions
{ϕi}16i6n of Lh are called quasi-biorthogonal and the resulting Gram ma-
trix G is called quasi-diagonal if G is of the form

G =

[
D1 0

R D2

]
or G =

[
D1 R

0 D2

]
,

where D1 and D2 are diagonal matrices and R is a sparse rectangular matrix.

If the Gram matrix of two bases {µi}16i6n of Mh and {ϕi}16i6n of Lh is
diagonal or quasi-diagonal, the matrix D in (8) is diagonal or quasi-diagonal.
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Using a quasi-biorthogonal system, the inverse of the Gram matrix G is

G−1 =

[
D−1
1 0

−D−1
2 RD

−1
1 D−1

2

]
or G−1 =

[
D−1
1 −D−1

1 RD
−1
2

0 D−1
2

]
,

and the inverse G−1 is sparse.

In the following we show how to construct the local basis functions of
Lh and Mh so that they form a quasi-biorthogonal system. The construction
is shown on the reference triangle T̂ = {(x,y) : 0 6 x , 0 6 y , x+ y 6 1} in
the two dimensional case. Construction of the basis functions in the three
dimensional case is to be described later [10].

Let

ϕ̂1 = 1− x− y , ϕ̂2 = x , ϕ̂3 = y , and ϕ̂4 = 27xy (1− x− y)

be the local basis functions of Lh on the reference triangle associated with
three vertices (0, 0), (1, 0), (0, 1) and one barycentre ( 1

3
, 1
3
). We define the

local basis functions of Mh as

µ̂1 =
34

9
− 4 x− 4 y−

140

3
xy (1− x− y) ,

µ̂2 = −
2

9
+ 4 x−

140

3
xy (1− x− y) ,

µ̂3 = −
2

9
+ 4 y−

140

3
xy (1− x− y) ,

and

µ̂4 = 27 xy (1− x− y) ,

so the two sets of basis functions {ϕ̂1, . . . , ϕ̂4} and {µ̂1, . . . , µ̂4} form a quasi-
biorthogonal system on the reference triangle.

As these local basis functions for Mh are defined on the reference element,
they are mapped by an affine mapping to construct basis functions for an
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actual element. The global basis functions of Mh are then constructed by
glueing these basis functions together. This process is exactly the same as
constructing global basis functions for the space Sh.

Given the above formulation for Lh and Mh, the local Gram matrix on the
reference triangle T̂ is

DT̂ =


1/6 0 0 0

0 1/6 0 0

0 0 1/6 0

3
40

3
40

3
40

81
560

 .

As the local matrix DT̂ is quasi-diagonal, the global matrix D will be quasi-
diagonal.

5 Numerical examples

To better understand the theoretical results presented in the previous sections,
the mixed finite element method described in Section 4 was implemented in a
C++ code developed by Stals. In all of the examples the domain is the unit
square and the finite element grid is uniform.

To find the interpolant uh we eliminate σh and φh from (8) to obtain(
R+ αBTD−TAD−1B

)
uh = fh. (9)

The gradient is then σh = D
−1Buh .

The matrix in (9) is symmetric and positive definite so the preconditioned
conjugate gradient (pcg) method was used as a solver. The preconditioner
we use is a multiplicative Schwarz preconditioner. Define two subdomains Ω1

and Ω2 where Ω1 is the same as the original domain Ω except the value of uh
at a corner point, such as (0, 0), is set to zero and similarly Ω2 is the same
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Figure 1: The left plot shows the thin-plate spline approximation uh
of sin(4πx) sin(4πy) with missing data on a finite element grid containing
129× 129 nodes and α = 10−8, while the right plot shows û(x,y) − uh

as Ω except the value of uh at another corner point, such as (1, 1), is set
to zero. Let L be the standard Laplace matrix associated with the bilinear
form

∫
Ω
∇uh · ∇vh dx where uh, vh ∈ Sh , and D1 be the submatrix of D that

is specified in Definition 1. Then the matrix R+ αLD−1
1 L is symmetric and

positive definite on Ω1 and Ω2. As part of the Schwarz preconditioner (9)

must be solved on each subdomain; we use pcg with
(
R+ αLD−1

1 L
)−1

as the
preconditioner for that subdomain.

The stopping criterion used in the pcg solver is to exit when the residual is
less than some tolerance. For the example discussed here the tolerance was
set to 10−12.
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Table 1: Number of pcg iterations on a finite element grid containing
n nodes and with the given values of α. The results are recorded in the
form a,b (c) where a is the number of times the Schwarz preconditioner was
called, b is the total number of pcg iterations required to solve Equation (9)
on each subdomain and c the number of pcg iterations required to solve
Equation (9) if no preconditioner is used. A value of ‘*’ means that the solver
needs more than 1000 iterations

n (h) α

10−4 10−6 10−8 10−10 10−12

9 (1/2) 5, 37 (6) 4, 14 (6) 3, 6 (6) 2, 4 (6) 2, 4 (6)
25 (1/4) 4, 53 (17) 3, 16 (14) 3, 8 (14) 2, 4 (14) 2, 4 (14)
81 (1/8) 4, 76 (64) 4, 35 (25) 3, 9 (25) 3, 4 (27) 2, 4 (27)
289 (1/16) 4, 104 (243) 4, 59 (74) 3, 19 (35) 3, 8 (46) 2, 4 (47)
1089 (1/32) 4, 176 (975) 4, 91 (263) 4, 44 (52) 3, 18 (76) 3, 13 (118)
4225 (1/64) 4, 257 (*) 4, 137 (*) 4, 60 (173) 3, 29 (57) 3, 19 (211)
16641 (1/128) 4, 398 (*) 4, 192 (*) 4, 93 (580) 3, 36 (133) 3, 24 (165)
66049 (1/256) 4, 577 (*) 4, 282 (*) 4, 138 (*) 3, 48 (448) 3, 28 (194)

5.1 Sine function

A data set was created by evaluating the function û(x,y) = sin(4πx) sin(4πy)
at 998002 points uniformly spaced over the unit square. Next we took the
data set and remove all of the data points with values greater than 0.75.
The right plot in Figure 1 shows û(x,y) − uh . Specifically it shows how the
method filled in the missing data. Notice that |û(x,y) − uh| < 0.1 .

Table 1 records the number of pcg iterations required to solve (9) on the
finite element grid with n nodes using the current data set. The cost of
each conjugate gradient iteration on Ω1 and Ω2 is the same as the cost per
iteration on Ω.

The results in the table indicate that the condition of the system deteriorates
with larger values of α. For large values of α we expect the condition
number to grow like O(h−4). The preconditioner proved to be very effective,
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except for small values of n. The number of iterations required to solve
the preconditioned system does not show the strong growth with n that is
evident when no preconditioner is used. The number of iterations for the
preconditioned system does increase with α; however, for practical applications
we would not often need to evaluate the system with larger values of α as the
solution does not display any of the characteristics of the data.

To apply the preconditioner it is necessary to solve systems of the form(
R+ αLD−1

1 L
)
x = f , (10)

for some given f . The condition number of this system will also grow
like O(h−4) for large values of α, therefore we use the sparse direct solver
umfpack to solve the equation. It may be argued that we could use umfpack
to solve (9) directly, but we have not done that for two reasons. The first
reason is that to use umfpack the matrix BTD−TAD−1B must be explic-
itly constructed. The cost of constructing the matrix is O(d6n5), which is
extremely high. Also, the size of the resulting stencil would be large, thus
increasing the potential for fill-in. The second reason is that using a direct
solver on (9) would limit the size the finite element grids.

5.2 Bathymetry test set

As an example of an application we find the thin-plate spline approximation
to bathymetry data of Medicine Lake, California [1]. A contour plot of the
original bathymetry data set is given in Figure 2. The thin-plate spline
approximations on a finite element grid containing 4225 nodes with α = 10−3

and α = 10−4 are shown in Figure 3 and Figure 4 respectively.
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Figure 2: Contour plot of original bathymetry data set.
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