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Abstract

We treat two related moving boundary problems. The first is the ill-
posed Stefan problem for melting a superheated solid in one Cartesian
coordinate. Mathematically, this is the same problem as that for
freezing a supercooled liquid, with applications to crystal growth. By
applying a front-fixing technique with finite differences, we reproduce
existing numerical results, concentrating on solutions that break down
in finite time. This sort of finite time blow-up is characterised by
the speed of the moving boundary becoming unbounded in the blow-
up limit. The second problem, which is an extension of the first, is
proposed to simulate aspects of a particular two phase Stefan problem
with surface tension. We study this novel moving boundary problem
numerically, and provide results that support the hypothesis that it
exhibits a similar type of finite time blow-up as the more complicated
two phase problem. The results are unusual in the sense that it appears
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the addition of surface tension transforms a well-posed problem into
an ill-posed one.
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1 Introduction

We begin by considering the dimensionless, one phase, Stefan problem for a
superheated solid:

in 0 < x < s(t),
∂v

∂t
=
∂2v

∂x2
; (1)

on x = 0 ,
∂v

∂x
= 0 ; (2)

on x = s(t), v = 0 ; (3)

on x = s(t),
∂v

∂x
= β

ds

dt
; (4)

at t = 0 , v = V(x) > 0 , s = 1 ; (5)

where v(x, t) is the temperature of the solid phase in 0 < x < s(t), and
x = s(t) is the moving boundary that separates the solid and liquid phases.



1 Introduction C432

In this model the melting temperature is constant (it is scaled to be v = 0),
a condition that is forced via the interface condition (3). The outer liquid
phase x > s(t) is ignored as it is assumed the temperature there remains at
the melting temperature for all time (using u(x, t) to denote temperature
in the liquid phase, this corresponds to u ≡ 0). The Stefan condition (4)
arises from balancing the heat flowing in and out of the interface. Here, the
Stefan number β = L/cvv̂ is a measure of the latent heat absorbed by the
molecules during the melting process, where L is the latent heat per unit
mass at the equilibrium temperature, cv is the specific heat of the solid and
v̂ is a representative temperature scale.

As the initial temperature V(x) is greater than the melting temperature
v = 0 , the solid is superheated. During the melting process, the heat energy
initially contained within the solid causes the interface to retreat and the solid
region to shrink [1, 2]. This is unlike the classical case in which V < 0 and
the interface advances rather than retreats as the liquid freezes. Superheating
arises in a variety of physical processes involving pure materials, for example
when melting a block of ice with light, regions can become superheated before
any melting occurs. Other examples arise in industrial applications such
as electrical welding. Importantly, (1)–(5) is mathematically equivalent to
the freezing of a supercooled liquid (simply replace v with −v), which has
applications in crystal growth and has been well studied [3, 4, 5].

The problem (1)–(5) is known to be ill-posed and exhibits finite time blow-up
under certain initial conditions. Solutions are categorised into one of the
following three cases.

1. Incomplete melting of the solid. The solution for v exists for all time
with s → s+a > 0 and v(x, t) → 0+ (for all 0 < x < sa) as t → ∞ .
Thus, in the limit t→ ∞ , there is solid for 0 < x < sa and liquid for
x > sa with both regions at the melting temperature v = u = 0 .

2. Complete melting of the solid. There is a finite time te such that
s(te) = 0 .
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3. Finite time blow-up. The solution exists for 0 < t < tc and has s→ s+c
and ṡ→ −∞ in the blow-up limit t→ t−c .

An important quantity that characterises qualitative behaviour is the initial
superheating parameter

Q =

∫ 1
0

(
V(x) − β

)
dx =

∫ 1
0

V(x)dx− β . (6)

The first term on the right-hand side of (6) is the amount of (dimensionless)
heat that is required to be removed from the solid in order to reduce the
temperature from v = V(x) to v = 0 . The second term represents the latent
heat which must be absorbed by the molecules to melt the solid. Due to the
no-flux boundary condition (2), the only energy available to act as latent heat
energy (and hence melt the solid) is that initially in the solid.

The relationship between Q, V(x) and cases 1–3 is well known [1, 2, 3, 6].
Case 3 will always occur if Q > 0 , as the initial heat energy in the solid is
greater than what is required to melt it. It is the surplus energy that leads
to blow-up.

If V(x) is smooth with V(1) = 0 and V(x) < β for 0 6 x < 1 , then Q < 0

and case 1 always occurs. Physically, there is not enough heat initially in the
solid to convert to the latent heat required to melt the entire solid. As all
the heat energy is converted to latent heat energy, the temperature goes to
zero and the melting process stops.

A subtly different scenario occurs if V(x) is smooth with V(1) = 0 and V(x) is
monotonic; then Q < 0 leads to case 1 and Q = 0 leads to case 2. Here the
(borderline) case Q = 0 corresponds to a situation in which there is precisely
the correct amount of initial heat to melt the entire solid and the region
completes melting in a finite time.

There are other cases. For example [1, 4], even if Q < 0 , case 3 may still
occur if V(x) > β for some x ∈ [0, 1], or if the heat is initially concentrated
near x = s(0). This unusual scenario occurs because heat builds up at the
interface and cannot diffuse away fast enough to prevent blow-up.
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The finite time blow-up exhibited when Q > 0 is what we are most interested
in. The form of the blow-up, derived by both Herrero and Velázquez [5] and
King and Evans [7], is

s(t) − sc ∼ 2 (tc − t)
1/2 ln1/2 [−ln (tc − t)] as t→ t−c . (7)

This article solves (1)–(5) numerically using front-fixing and the method of
lines [8]. Other common computational approaches include a conservative
finite difference scheme [9], a Petrov–Galerkin finite element approach [10] or
the enthalpy method [8, and references], the latter is only applicable when
constant boundary data is prescribed. The results are presented in Section 2,
where we investigate the effects of varying Q on the numerical solution and
confirm that for Q > 0 the numerical solution ceases to exist at a finite time.

The second problem considered in this article relates to the two phase Stefan
problem for a melting sphere with surface tension:

in s(t) < r < 1,
∂u

∂t
=
∂2u

∂r2
+
2

r

∂u

∂r
; (8)

in 0 < r < s(t),
∂v

∂t
=
∂2v

∂r2
+
2

r

∂v

∂r
; (9)

on r = 0 ,
∂v

∂r
= 0 ; (10)

on r = s(t), u = v = σ

(
1−

1

s

)
; (11)

on r = s(t),
∂u

∂r
−
∂v

∂r
= −β

ds

dt
; (12)

on r = 1 , u = 1 ; (13)

at t = 0 , v = V , s = 1 ; (14)

where u and v are the temperature in the liquid and solid regions, respectively,
and β is again a Stefan number. The interface condition (11), which is
often referred to as the Gibbs–Thomson condition, states that the melting
temperature of the solid ball is not constant, but instead decreases with
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particle size. Here the dimensionless surface tension parameter σ acts on the
curvature of the interface, which for a sphere is 1/s. Typically σ is sufficiently
small that the Gibbs–Thomson effect is relevant only for micro and nanosized
particles. For the case σ = 0 , (8)–(14) reduces to the classical two phase
Stefan problem for a melting sphere, and is known to be well-posed [11].

The two phase problem (8)–(14) is treated in [12, 13]. Numerical solutions
show that as melting proceeds, the interface r = s(t) moves towards the
centre of the ball, and the melting temperature decreases according to (11).
For a given set of parameter values, there is a point in time after which the
solid is locally superheated, with the temperature everywhere in the solid
greater than the melting temperature (although less than the bulk melting
temperature for a flat interface). This behaviour is illustrated in Figure 1 [12].
In Figure 1(a), the fifth profile (the one furthest to the left) shows this
apparent self-superheating in the solid phase. For subsequent times, as seen
in Figure 1(b), the flux of heat at the solid-melt interface increases very
quickly, and the solution appears to have a form of finite time blow-up at
t = tc which is accompanied by the interface speed ds/dt→ −∞ as t→ t−c .
We emphasise that the apparent existence of finite time blow-up for (8)–(14) is
unusual because surface tension is often associated with regularising singular
behaviour. In this case the problem without surface tension (σ = 0) is known
to be well-posed, and it is the addition of surface tension that appears to lead
to blow-up.

Figure 1(b) shows the temperature in the outer liquid phase hugging the
melting temperature curve near blow-up. McCue et al. [12] use this observation
to suggest that u ∼ σ(1− 1/r) for r− s(t)� 1 as t→ t−c , which leads to a
novel one phase problem that they leave for further research. In Section 3
of the present study, we consider the one dimensional (‘toy’) version of this
novel moving boundary problem, and note that when the surface tension
parameter vanishes, the problem reduces to the ill-posed superheated Stefan
problem (1)–(5). Indeed, McCue et al. [12] observe that blow-up for (8)–(14)
may be of the same form as that for (1)–(5). Section 3’s brief numerical
study of the toy problem supports this view, and suggests the matter is worth
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Figure 1: Numerical solutions to (8)–(14) with β = 0.1 , V = −1 and
σ = 0.05 , as calculated by McCue et al. [12]. The thick curves represent
temperature profiles: (a) from right to left the profiles are for t = 0.0088 ,
0.0292, 0.0769, 0.0114 and 0.1306; (b) the associated times from right to
left are 0.1306, 0.1312 and 0.1314. The thin red curve denotes the melting
temperature (11). Reproduced [12] by permission of Oxford University Press.
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further consideration.

2 Ill-posed superheated Stefan problem

This section solves the superheated Stefan problem (1)–(5) computationally
by applying the method of lines. The numerical results are used to investigate
the effects of varying Q and to demonstrate the behaviour of cases 1–3.

We first introduce the transformation ξ = x/s(t) due to Landau [14]. This
has the effect of fixing the domain of (1)–(5) to 0 6 ξ 6 1 . A standard
finite difference scheme on a uniformly spaced mesh is used to discretise the
transformed equations in space.

Second order central differences discretise the second derivative corresponding
to the diffusion term in the transformed equation (1). A consequence of
the Landau transformation is the introduction of an advection-like term in
this equation. We also use second order central differences to discretise this
term, recognising that this restricts the scheme to operating on fine spatial
meshes in order to ensure the solution is free of numerical oscillations. The
transformed equations (2) and (3) for the boundary conditions are treated in
standard fashion. The spatial derivative in the transformed equation (4) is
discretised using a second order backward difference, since it is evaluated at
the right boundary ξ = 1 .

The transformed and discretised forms of (1) (subject to (2) and (3)) and (4)
form a semidiscrete system of ordinary differential equations (odes) for the
temperature at each spatial node and the position of the moving boundary.
We solve this system of odes, subject to the initial condition (5), using the
Matlab solver ode15s. This method-of-lines approach frees us from being
directly concerned with stability requirements, as the solver itself adaptively
chooses both the time-step size and the order of the temporal scheme to ensure
that local error tolerances are met for each time-step [15]. The efficiency of
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Figure 2: Temperature profiles for (1)–(5) with V = 1 and β = 1.35 . The
numerical solutions and the small time approximation are indicated by thick
solid and dotted curves, respectively, and are calculated at t = 0.002 , 0.006,
0.020, 0.063 and 0.150 (right to left). The thin horizontal red line is the
temperature in the liquid region, which is everywhere zero for this problem.

the implicit scheme employed by ode15s is improved by passing it the known
sparsity pattern of the Jacobian matrix.

The problem was solved on a sequence of refined meshes, until convergence to
a grid independent solution was obtained. We found that 20, 000 mesh nodes
sufficed, requiring a run time of approximately 15 seconds on a standard
desktop machine.

As a test for accuracy, the numerical solutions are compared with a small
time solution. Problem (1)–(5) does not have an exact solution, but if we
assume the initial temperature V(x) ≡ constant, and replace (2) with the
condition v → V as x → −∞ , then there is an well-known exact solution
called the Neumann solution [16]. This exact solution provides the small time
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behaviour for (1)–(5) when V(x) ≡ constant, and may be used to check our
calculations. Our comparison is shown in Figure 2 which, for small times,
shows the Neumann solution approximates the numerical solution very well,
suggesting that the numerical solutions are accurate in that regime. As
expected, the comparison is not valid for larger times.

We use the initial condition

V(x) =

a, 0 < x < α ,

a− a
(x− α)(x− γ)

(1− α)(1− γ)
, α < x 6 1 ,

(15)

which for α = 0.2 , γ = 0.9 and a = 0.4 , 0.5, 0.6 and 0.7 corresponds to
Q = −0.33 , −0.167, −1.3 × 10−7 and 0.33, respectively. This condition
with these values was used by King and Evans [7], where numerical solutions
to (1)–(5) are also provided.

Figure 3 plots s(t) for the same parameter values as in [7, Figure 5(a)]. The
values Q = −0.33 and −0.167 correspond to case 1 described in Section 1, for
which the interface s→ s+a as t→ ∞ . The next curve for Q = −1.3× 10−7
is extremely close to the borderline case 2, but exhibits the same qualitative
behaviour as the previous two curves. Finally, the solution for Q = 0.33
results in case 3, and has finite time blow up with s → s+c , ṡ → −∞ as
t → t−c . Our scheme predicts the critical time to be roughly tc = 0.0072 ;
however, the problem is ill-posed, so these calculations are understandably
delicate (indeed, the scheme of King and Evans [7] does not appear to capture
the blow-up as well as ours).

Figure 4 shows a temperature profile very close to blow up. Beyond the critical
time numerical errors begin to appear and the solution exhibits unreasonable
behaviour such as spikes and jumps. Figure 4(b) compares the asymptotic
prediction derived by King and Evans [7]. Given the ill-posedness of the
problem, the agreement is very good this close to blow-up.
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Figure 3: The interface position s(t) for β = 1 with the initial condition (15).
From top to bottom, Q = −0.33 , −0.167, −1.3 × 10−7 and 0.33 . The top
two solutions, with Q = −0.33 and −0.167, approach a constant value, as
described in case 1. The fourth solution exhibits finite time blow-up, as
described in case 3, occurring at approximately tc = 0.0072 .

3 One dimensional problem with ‘surface

tension’

In this section we consider the novel one phase Stefan problem:

for 0 < x < s(t),
∂2v

∂x2
=
∂v

∂t
; (16)

on x = 0 ,
∂v

∂x
= 0 ; (17)

on x = s(t),
∂v

∂x
= β

ds

dt
+
σ

s2
; (18)
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Figure 4: (a) The numerically calculated near-blow-up profile (solid) for β =
1 , tc = 0.0072 . The initial condition (dashed) (15) with Q = −0.33 . (b) A
close-up of the near-blow-up profile (solid) compared to the asymptotically
predicted blow-up profile (dotted) derived by King and Evans [7].
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on x = s(t), v = σ

(
1−

1

s

)
; (19)

at t = 0 for 0 6 x 6 1 , s = 1 ; v = V(x) > 0 ; (20)

in s(t) < x < 1 , u(x, t) = σ

(
1−

1

x

)
. (21)

As mentioned in Section 1, this is the one dimensional version of a problem
suggested by McCue et al. [12, Discussion]. The two parameters are σ, a
surface tension parameter, and β, the Stefan number. The case σ = 0

reduces (16)–(21) to (1)–(5).

Of course surface tension does not act on one dimensional interfaces, and the
actual problem suggested by McCue et al. [12] has (16) replaced with the
radially symmetric version of the heat equation, and independent variable x
in (16)–(21) replaced with r. But the toy problem (16)–(21) offers a great deal
of insight into the eventual behaviour of solutions of (8)–(11). Equations (16)–
(20) are solved with the same numerical scheme described in Section 2, with
minor adjustments.

In Figure 5, the evolution of the interface x = s(t) is shown for β = 1 and the
initial condition (15) with Q = −0.33 . The curve for σ = 0 is the same as
the top curve in Figure 3. Here the solution exists for all time with s→ s+a
as t→ ∞ , as described by case 1 in Section 1. However, when we introduce
surface tension σ > 0 , the qualitative behaviour changes, and the solution
exhibits finite time blow-up in a manner that is consistent with case 3, with
the critical time tc decreasing as σ increases. Our conclusion is that (16)–(21)
appears to be ill-posed for all σ > 0 , with the solutions exhibiting finite time
blow-up regardless of the initial conditions.

Finally, Figure 6 shows temperature profiles near blow-up calculated for
β = 1 and σ = 0.05 . These appear qualitatively similar to those in Figure 1,
supporting the idea that the toy problem (16)–(21) can be used to model
behaviour of the more complicated two phase problem (8)–(14). The initial
condition used for this figure is V(x) ≡ 0 , which provides a strong indication
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Figure 5: The interface position calculated for β = 1 and the initial
condition (15) with Q = −0.33 . From top to bottom, the curves are for
σ = 0 (dashed), 0.05, 0.1 and 0.2.

that blow-up is inevitable for (16)–(21), since the larger V(x) is, the more
likely blow-up is to occur.

4 Discussion

We revisited the ill-posed superheated Stefan problem (1)–(5) and produced
numerical solutions that are accurate and consistent with previous results and
observations. Subsequently, we adapted this numerical scheme to solve (16)–
(21), which is a novel moving boundary problem with a surface tension-type
parameter σ and an unusual Stefan condition. For the case σ = 0 , the
problem (16)–(21) reduces to (1)–(5), and has solutions that blow up in
finite time, depending on the Stefan number β and the initial condition
v(x, 0) = V(x). On the other hand, for σ > 0 our preliminary results suggest
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Figure 6: Temperature profiles for β = 1 and σ = 0.05 . From right to left
the times are t = 6.1886 , 6.1990, 6.2004 and 6.2007. The dashed line is the
initial condition V = 0 and the thin red line is the melting temperature (19).

that (16)–(21) is ill-posed with all solutions exhibiting finite time blow-up
regardless of β and V(x).

Our argument is that the toy problem (16)–(21) illustrates near blow-up
behaviour for the two phase Stefan problem (8)–(14) for melting a sphere.
The above results suggest that solutions to the more complicated problem (8)–
(14) also exhibit finite time blow-up regardless of β and V(x), provided the
surface tension parameter σ > 0 . These ideas are worth pursing in the future.

Acknowledgements SWM thanks Prof. John King for fruitful discussions
on the two phase Stefan problem (8)–(14).
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