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Abstract

The linear system arising from the interpolation problem of surface
divergence-free vector fields using radial basis functions tends to be
ill-conditioned when the separation radius of the scattered data is small.
When the surface under consideration is the unit sphere, we introduce
a preconditioner based on the additive Schwarz method to accelerate
the solution process. Theoretical estimates for the condition number
of the preconditioned matrix are given. Numerical experiments using
scattered data from the magsat satellite show the effectiveness of our
preconditioner.

http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/view/3943

gives this article, c© Austral. Mathematical Soc. 2011. Published August 29, 2011. issn
1446-8735. (Print two pages per sheet of paper.) Copies of this article must not be made
otherwise available on the internet; instead link directly to this url for this article.

http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/view/3943


Contents C743

Contents

1 Introduction C743

2 Divergence free RBFs on spheres C744

3 Additive Schwarz method C747

4 Estimates of the condition number C750

5 Numerical experiments C753

References C755

1 Introduction

Fitting divergence-free tangent vector fields to scattered data has applications
in some important partial differential equations used in weather forecasting
models. In the barotropic vorticity equation on the surface of the sphere,
which provides a good model for 500mb short term weather forecasts in mid-
latitudes [2, pp. 108–110], the velocity is required to be surface divergence
free. The nonlinear flow of an incompressible fluid in a single hydrostatic
atmospheric layer is described by the shallow water wave equations on the
surface of a rotating sphere. The incompressibility assumption gives rises to
the constraint that the velocity field is surface divergence free.

Interpolation of divergence-free vector fields using radial basis functions (rbfs)
was introduced recently by Narcowich et al. [5]. The interpolant is constructed
from surface divergence-free rbfs, which handle scattered data effectively. To
construct the interpolant, one needs to solve a linear system, which is often
ill-conditioned when the separation radius of the scattered data set is small.

We introduce a preconditioner based on the additive Schwarz method to
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accelerate the solution process. We developed preconditioners of a similar
type for interpolation of scalar functions and pseudo-differential equations on
the unit sphere [3, 4].

2 Divergence free RBFs on spheres

Suppose ψ : S× S→ R is a strictly positive definite kernel on the unit sphere
S ⊂ R3. That is, ψ is continuous, ψ(x,y) = ψ(y, x) for all x,y ∈ S , and for
any set of distinct points {x1, . . . , xM} the M×M matrix [ψ(xi, xj)] is positive
definite. A convenient way to define ψ is via a radial basis function Φ as

ψ(x,y) = Φ(x− y) = φ(‖x− y‖), x,y ∈ S , (1)

where φ : [0,∞)→ R is a positive definite function [6]. Hence the kernel ψ
is of the form

ψ(x,y) = ρ(x · y) for x,y ∈ S , (2)

where ρ : [−1, 1]→ R is defined by ρ(t) = φ(
√
2− 2t).

Using the kernel ψ, we define the divergence free rbf as follows. First, we
define

Ψ(x,y) = Curlx[Curlyψ(x,y)]T , (3)

in which Curlx and Curly indicate the Curl operator with respect to variables x
and y, respectively. Here, Curl = n × ∇∗, where ∇∗ denotes the surface
gradient and n is the outward unit normal to S.

For fixed points x,y ∈ S , the matrix Ψ(x,y) represents a linear transfor-
mation which maps tangent vectors based at the point y to tangent vectors
based at the point x. In other words, if ty is a tangent vector belonging to
the tangent space TSy, then Ψ(x,y)ty is a tangent vector belonging to TSx.
The kernel Ψ is surface divergence free [5]; that is, for a tangent vector ty
based at a point y ∈ S , there holds

Div(Ψ(x,y)ty) = 0 .
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For a fixed y ∈ S , the vector function Ψ(·,y)ty is called a divergence-free
rbf.

The kernel Ψ(x,y) is used to interpolate surface divergence free vector fields
on the unit sphere. Suppose X = {x1, . . . , xN} is a set of scattered points on
the unit sphere and F : S→ R3 is a continuous surface divergence-free vector
field whose values at the xj are known. Then the interpolation problem is to
find IXF in

VX :=

{
N∑
k=1

Ψ(x, xk)sk : sk ∈ TSxk and xk ∈ X

}
(4)

so that
IXF(xj) = F(xj) for j = 1, . . . ,N . (5)

By choosing an orthonormal basis {ek, ẽk} for the tangent space TSxk we
write IXF as

IXF(x) =

N∑
k=1

Ψ(x, xk)(ckek + c̃kẽk), ck, c̃k ∈ R , (6)

and F(xj) as

F(xj) = djej + d̃jẽj , dk, d̃k ∈ R . (7)

In particular, in the implementation we choose ek = e|x=xk and ẽk = ẽ|x=xk

where

e =
∂p

∂θ
, ẽ =

1

sin θ

∂p

∂φ
and p = (sin θ cosφ, sin θ sinφ, cos θ)T .

From (5), (6) and (7), we obtain

N∑
k=1

(
eTj
ẽ
T
j

)
Ψ(xj, xk)(ek ẽk)︸ ︷︷ ︸

Ajk

(
ck
c̃k

)
=

(
dj
d̃j

)
, j = 1, . . . ,N . (8)
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Let A be the 2N × 2N matrix composed of the blocks Ajk in (8), let c =

(c1, c̃1, . . . , cN, c̃N)
T , and let d = (d1, d̃1, . . . ,dN, d̃N)

T . Then the system (8)
becomes

Ac = d . (9)

A convenient way to compute Ψ(xj, xk) in the entries of A is via the matrix Qx

satisfying Qxy = x×y . Then Curlx = Qx∇ , and from (1) and (3) we obtain

Ψ(x,y) = Qx(−∇∇TΦ(x− y))QT
y , x,y ∈ S . (10)

By (1), the jk-component of the Hessian matrix ∇∇TΦ(x) is

∂2Φ

∂xj∂xk
= δj,k

1

r
φ ′(r) + xjxk

1

r

(
1

r
φ ′(r)

) ′
=: δj,kF(r) + xjxkG(r), r = ‖x‖.

From this we have

∇∇TΦ(x− y) = F(r)I+G(r)(x− y)(x− y)T , r = ‖x− y‖,

where I is the identity matrix. Thus

Ψ(x,y) = F(r)(yxT − yTxI) −G(r)(x× y)(x× y)T . (11)

Setting s̃ = x× s , from (11) we obtain

Ψ(x,y)s = x×
[
F(r)s̃+G(r)(x− y)(x− y)T s̃

]
. (12)

With rjk = ‖xj − xk‖, the 2× 2 matrix Ajk from (8) is explicitly

Ajk = F(rjk)

(
−ẽj · ẽk ẽj · ek
ej · ẽk −ej · ek

)
+G(rjk)

(
ẽj · xk
−ej · xk

)
(xj · ẽk −xj ·ek).

(13)
Formula (12) can be used to compute IXF after c is found.
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3 Additive Schwarz method

In order to apply the additive Schwarz method, we need to write the interpo-
lation problem (5) in a variational form. To this end, we introduce a norm
and an inner product.

Given a divergence free vector field F there is a scalar stream function f such
that F = Curl f (recall Curl = n×∇∗). We define the norm

‖F‖Ψ := ‖f‖ψ =

( ∞∑
`=1

2`+1∑
m=1

|f̂`,m|
2

ψ̂(`)

)1/2
, f̂`,m =

∫
S

fY`,m dS , (14)

where Y`,m is the spherical harmonic and ψ̂(`) is the Fourier–Legendre coeffi-
cient of ρ [4, formula (3.2)]. We then define

NΨ := {F = Curl f : f ∈ C1(S) and ‖F‖Ψ <∞}

which is a Hilbert space with respect to the inner product

〈F,G〉Ψ := 〈f,g〉ψ =

∞∑
`=1

2`+1∑
m=1

f̂`,mĝ`,m

ψ̂(`)
, F = Curl f , G = Curlg .

For our analysis, we assume further that for some τ > 1 ,

ψ̂(`) ∼ [1+ `(`+ 1)]
−(τ+1) , ` = 0, 1, . . . . (15)

Then NΨ defined above is a reproducing kernel Hilbert space associated with
the kernel Ψ which is contained in the space of continuous vector fields on S.
More precisely [1, Theorem 2.2], Ψ is the reproducing kernel for NΨ in the
sense that, for all F ∈ NΨ ,

〈F,Ψ(·, x)tx〉Ψ = tTxF(x), for all x ∈ S , (16)

where tx is any tangent vector based at x.
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Using the reproducing property (16) of the kernel Ψ, we write the interpolation
equation (5) as

〈IXF,Ψ(·, xj)txj〉Ψ = 〈F,Ψ(·, xj)txj〉Ψ , j = 1, . . . ,N . (17)

Since VX is spanned by Ψ(·, xj)ej and Ψ(·, xj)ẽj for j = 1, . . . ,N , (17) is
equivalent to the variational form

〈IXF,G〉Ψ = 〈F,G〉Ψ , for all G ∈ VX . (18)

Additive Schwarz methods provide fast solutions to equation (18) by solving,
in parallel, problems of smaller size. Let the space VX be decomposed as

VX = V0 + · · ·+ VJ , (19)

where Vj, for j = 0, . . . , J , are subspaces of VX. Let Pj : VX → Vj , for
j = 0, . . . , J , be projections defined by

〈Pjv,w〉Ψ = 〈v,w〉Ψ , for all v ∈ VX , w ∈ Vj . (20)

Defining
P := P0 + · · ·+ PJ , (21)

then the additive Schwarz method for equation (18) consists in solving, by
an iterative method, the equation

PIXF = g , (22)

where the right-hand side is g =
∑J

j=0 gj , with gj ∈ Vj being solutions of

〈gj,w〉Ψ = 〈F,w〉Ψ , for all w ∈ Vj . (23)

The equivalence of (18) and (22) is well known [4]. A practical method to
solve (22) is the conjugate gradient method; the additive Schwarz method
(Algorithm 1) can be viewed as a preconditioned conjugate gradient method.
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In the following, we present a decomposition of VX into a sum of subspaces
as in (19).

Let a spherical cap of radius α centred at p ∈ S be defined as

C(p,α) := {x ∈ S : θ(p, x) < α}. (24)

where θ(p, x) = cos−1(p · x) is the geodesic distance between two points
x,p ∈ S . Let α now be a fixed number satisfying 0 < α < π/3 and let
X0 := {pj : j = 1, . . . , J} be a subset of X such that

X =

J⋃
j=1

[
C(pj,α) ∩ X

]
. (25)

For j = 1, . . . , J , the subset Xj is defined as

Xj := {xk ∈ X : θ(xk,pj) 6 α} = C(pj,α) ∩ X . (26)

The sets Xj may have different numbers of elements and may overlap each
other. Because of (25), X is decomposed into J overlapping subsets Xj,
j = 1, . . . , J .

We define Vj = VXj
, j = 0, . . . , J ; that is,

Vj = span {Ψ(x, xk)ek,Ψ(x, xk)ẽk : xk ∈ Xj},

so that VX = V0 + · · ·+ VJ . The Schwarz operator P is then defined by (20)
and (21). We gave an algorithm to construct the sets Xj, j = 1, . . . , J ,
satisfying (26) [4, Section 6].

In the following, we describe the preconditioned conjugate gradient method
based on the Schwarz operator P. For i = 0, . . . , J , let Ai be the restriction
of the matrix A onto each subspace Vi, that is, Ai is a submatrix of size
2 card(Xi) × 2 card(Xi) given by Ai = [Ajk], where Ajk is the 2 × 2 block
matrix defined for xj, xk ∈ Xi as given in (13).
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For k = 0, . . . , J , let Ik be an ordered subset of {1, . . . ,N} such that xm ∈ Xk
if and only if m ∈ Ik . The cardinality of the set Ik is denoted by sk
and the rth element of the set Ik is denoted by Ik(r). For a given vector
v = (v1, ṽ1, . . . , vN, ṽN)

T , the restriction map Rk : R2N → R2sk is defined as

Rkv = (vIk(1), ṽIk(1), . . . , vIk(sk), ṽIk(sk))
T .

Conversely, for a vector u = (u1, ũ1, . . . ,usk , ũsk)
T , the extension map RTk :

R2sk → R2N is defined by RTku = (v1, ṽ1, . . . , vN, ṽN)
T , where

(vj, ṽj) =

{
(ur, ũr), if j = Ik(r) for some r ∈ {1, . . . , sk},

0, if j /∈ Ik .

Algorithm 1 shows a pseudocode for the preconditioned conjugate gradient
method.

4 Estimates of the condition number

Let ϕk and ϕ̃k be defined so that Curlϕk = Ψ(·, xk)ek and Curl ϕ̃k =
Ψ(·, xk)ẽk . These stream functions also have compact supports. Let

WX = span{ϕk, ϕ̃k : xk ∈ X} and Wj = span{ϕk, ϕ̃k : xk ∈ Xj}.

Assume the functions in Wj have supports in Γj, where Γj is a spherical cap
centred at pj. We make the following assumption:

Assumption 1. We can partition the index set 1, . . . , J into M (for 1 6
M 6 J) sets Jm, for 1 6 m 6 M , such that if i, j ∈ Jm and i 6= j then
Γi ∩ Γj = ∅ .

Under Assumption 1, the following results hold.
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Algorithm 1: Preconditioned conjugate gradient method.

input : The scattered set X on the sphere, the values of the vector
field F at X, and the desired accuracy ε.

output: The divergence free rbf approximation of F

Partition the scattered set X into X0 ∪ · · · ∪ XJ1

Compute the coordinates dj and d̃j of the vector field F2

r = [dj d̃j]
N
j=13

p = 04

c = 05

iter = 06

while ‖r‖ > ε do7

for j = 1 to J do8

p = p+ RTjA
−1
j Rjr9

end10

p = p+ RT0A
−1
0 R0r11

if iter > 0 then12

ζ0 = ζ113

end14

ζ1 = p · r15

iter = iter +116

if iter = 1 then17

p1 = p18

end19

else20

p1 = p+ (ζ1/ζ0)p121

end22

γ = (r · p)/(p1 ·Ap1)23

r = r− γAp124

c = c+ γp125

end26

Construct the approximate solution using (6) and (12).27
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Lemma 2. There exists a positive constant c independent of the set X such
that for any u ∈ VX satisfying u =

∑J
j=0 uj with uj ∈ Vj for j = 0, . . . , J ,

〈u,u〉Ψ 6 cM
J∑
j=0

〈uj,uj〉Ψ .

Proof: Since u ∈ VX is divergence free, there is a stream function u ∈WX

such that u = Curlu . Similarly, for every uj ∈ Vj there is a stream function
uj ∈Wj such that uj = Curluj . Le Gia and Tran [4, Lemma 5.2] gave, under
the assumption (15),

〈u,u〉ψ 6 cM
J∑
j=0

〈uj,uj〉ψ .

This estimate and definition (14) give the desired result. ♠

Lemma 3. For any u ∈ VX there exist uj ∈ Vj , j = 0, . . . , J , satisfying

u =
∑J

j=0 uj and

J∑
j=0

〈uj,uj〉Ψ 6

(
1+

J

(1− ‖Q̃‖Ψ)2

)
〈u,u〉Ψ ,

where Q̃ = QJ · · ·Q1 and

‖Q‖Ψ = sup{‖Q̃v‖Ψ : v ∈ VX and ‖v‖Ψ 6 1}.

Here Qj is the orthogonal projection from VX to V⊥j with respect to 〈·, ·〉Ψ ,

where V⊥j := {u ∈ NΨ : 〈u,w〉Ψ = 0 for all w ∈ Vj}.
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Proof: The proof follows in the same manner as Lemma 2, using an external
lemma by Le Gia and Tran [4, Lemma 5.3]. ♠

Lemmas 2 and 3 allow us to estimate the condition number of P, namely
κ(P) = λmax(P)/λmin(P) where λmax(P) and λmin(P) are the maximum eigen-
value and the minimum eigenvalue of P, respectively.

Theorem 4. Under Assumption 1, the condition number κ(P) of the additive
Schwarz operator P is bounded by

κ(P) 6 cM

(
1+

J

(1− ‖Q̃‖Ψ)2

)
,

where c is a constant independent of M, J and the set X. Here, the operator Q̃
is defined in Lemma 3.

Proof: From Lemmas 2 and 3, and the standard analysis for domain de-
composition methods [4], we obtain λmax(P) 6 cM and

λ−1min(P) 6

(
1+

J

(1− ‖Q̃‖Ψ)2

)
.

Therefore the result of the theorem is obtained. ♠

5 Numerical experiments

We present numerical experiments based on globally scattered data extracted
from a very large data set collected by the nasa satellite magsat. Given
a positive real number q, different sets X of scattered points are extracted
from the original data set so that the separation radius qX is not less than q.
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Table 1: Radial basis functions used in the numerical experiments.

φ(r) τ

(1− r)6+(35r
2 + 18r+ 3) 5/2

(1− r)8+(32r
3 + 25r2 + 8r+ 1) 7/2

The separation radius of a set X = {x1, . . . , xN} ⊂ S is defined by qX =
0.5mini6=j cos−1(xi · xj). The number of points and the separation radius qX
of each data set are listed in Table 2. The exact vector field is

F =
1

sin θ

∂F

∂φ
e−

∂F

∂θ
ẽ ,

where F is the following stream function

F = 4 cos(α) cos(θ) − 4 sin(α) sin(θ) cos(φ), α = π/4 ,

and the tangent vectors are

e = (cos θ cosφ, cos θ sinφ,− sin θ)T and ẽ = (− sinφ, cosφ, 0)T .

We use the compactly supported radial basis functions [6] listed in Table 1 to
define the kernel Ψ. Tables 2 and 3–4 give numerical results for the conjugate
gradient (cg) method and preconditioned cg.

As shown in Table 2, when N increases and qX decreases, the condition
number κ(A) of the matrix A increases, and hence the cpu time (in seconds)
increases significantly. When the preconditioner introduced in Algorithm 1
is applied, as can be seen in Tables 3–4, the condition numbers of the
preconditioned systems κ(P) are much smaller than the condition numbers
of the original interpolation matrix κ(A). As a consequence, the number of
iterations and cpu times in solving the linear systems are reduced dramatically.
This shows the effectiveness of the preconditioner.
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Table 2: Conjugate gradient method (without preconditioners).

τ N qX λmin λmax κ(A) cpu iter
5/2 7663 π/200 7.4e−3 8.8e+3 1.2e+6 4507.6 2526

10443 π/240 4.6e−3 1.2e+4 2.7e+6 7300.2 3413

7/2 7763 π/200 7.0e−5 3.0e+3 4.3e+7 8706.9 8948

10443 π/240 8.6e−5 4.1e+3 4.8e+7 14647.8 8805
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Table 3: Preconditioned conjugate gradient method for τ = 5/2 .

N cosα cosβ J λmin λmax κ(P) cpu iter
7663 0.95 0.46 84 9.6e−4 11.02 1.1e+4 785.6 296

7663 0.94 −0.54 76 1.9e−3 10.99 5.8e+3 519.8 177

7663 0.93 −0.60 65 4.6e−3 10.58 2.3e+3 459.2 145

7663 0.92 −0.35 56 7.1e−4 10.21 1.4e+4 631.8 177

7663 0.91 −0.70 50 2.9e−3 9.35 3.2e+3 514.8 130

7663 0.90 −0.15 45 8.9e−4 9.20 1.0e+4 753.2 175

7663 0.89 −0.62 42 5.1e−2 9.32 1.8e+2 231.4 50

7663 0.88 −0.61 37 5.5e−3 8.52 1.6e+3 370.9 74

7663 0.87 −0.56 37 3.5e−3 9.26 2.6e+3 571.2 101

7663 0.86 −0.73 30 1.1e−2 8.14 7.1e+2 369.4 67

7663 0.85 −0.62 33 3.4e−2 8.67 2.6e+2 345.6 52

10443 0.95 −0.07 86 4.6e−4 11.53 2.5e+4 767.8 250

10443 0.94 −0.35 75 4.8e−4 11.47 2.4e+4 648.9 195

10443 0.93 −0.60 65 1.6e−3 10.50 6.6e+3 644.6 186

10443 0.92 −0.35 55 7.5e−4 10.25 1.4e+4 623.2 165

10443 0.91 −0.66 48 4.9e−3 9.71 2.0e+3 378.8 101

10443 0.90 −0.63 45 2.8e−2 9.21 3.3e+2 277.5 57

10443 0.89 −0.66 39 1.4e−3 8.46 6.0e+3 886.9 170

10443 0.88 −0.69 37 1.8e−3 8.52 4.7e+3 840.0 123

10443 0.87 −0.69 37 6.2e−3 8.88 1.4e+3 386.8 63

10443 0.86 −0.58 33 2.3e−3 8.44 3.7e+3 720.8 94

10443 0.85 −0.79 30 4.8e−3 8.26 1.7e+3 637.6 82
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Table 4: Preconditioned conjugate gradient method for τ = 7/2 .

N cosα cosβ J λmin λmax κ(P) cpu iter
7663 0.95 0.46 84 1.2e−4 11.23 9.3e+4 620.3 482

7663 0.94 −0.54 76 4.3e−4 11.15 2.6e+4 408.7 278

7663 0.93 −0.60 65 1.5e−4 10.79 7.2e+4 652.2 396

7663 0.92 −0.35 56 2.2e−3 10.45 4.8e+3 351.6 189

7663 0.91 −0.70 50 6.2e−4 9.62 1.5e+4 457.9 218

7663 0.90 −0.15 45 3.1e−4 9.41 3.1e+4 650.5 277

7663 0.89 −0.62 42 7.6e−3 9.54 1.3e+3 252.0 95

7663 0.88 −0.61 37 2.6e−3 8.74 3.3e+3 306.8 107

7663 0.87 −0.56 37 6.8e−4 9.50 1.4e+4 501.7 150

7663 0.86 −0.73 30 2.4e−3 8.27 3.5e+3 451.3 138

7663 0.85 −0.62 33 1.2e−2 8.92 7.6e+2 312.2 78

10443 0.95 −0.07 86 1.5e−3 11.75 7.6e+3 453.4 212

10443 0.94 −0.35 75 7.2e−4 11.76 1.6e+4 606.4 246

10443 0.93 −0.60 65 2.8e−4 10.69 3.8e+4 773.2 236

10443 0.92 −0.35 55 9.8e−4 10.61 1.1e+4 763.6 207

10443 0.91 −0.66 48 1.9e−3 9.94 5.4e+3 639.8 156

10443 0.90 −0.63 45 6.8e−3 9.40 1.4e+3 409.2 87

10443 0.89 −0.66 39 2.2e−4 8.58 3.9e+4 1549.9 305

10443 0.88 −0.69 37 2.3e−4 8.74 3.9e+4 1336.5 210

10443 0.87 −0.69 37 3.4e−3 9.10 2.7e+3 538.4 86

10443 0.86 −0.58 33 4.0e−3 8.59 2.1e+3 763.9 101

10443 0.85 −0.79 30 4.4e−3 8.51 2.0e+3 856.5 115
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