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Analysing instability of combustion waves
using the Evans function
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Abstract

We consider travelling wave solutions of a reaction-diffusion system
corresponding to a single step, homogeneous, premixed combustion
scheme with Newtonian heat loss and general Lewis number. Particu-
lar attention is paid to unstable combustion wave regimes, especially
those associated with oscillatory behaviour. The instability analysis
is conducted with the use of Evans function techniques, which we
use to derive eigenvalues of the linear stability problem via the ar-
gument principle and Nyquist plots. These techniques permit the
study of transitions to different modes of unstable behaviour in great
detail. Threshold values of the parameters corresponding to Hopf and
Bogdanov–Takens bifurcation are established and it is shown that for
certain parameter values the system exhibits a period doubling route
to chaotic behaviour.
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1 Introduction

Understanding combustion is important for a variety of applications including
industrial processes, mining safety, explosives engineering, the synthesis of
advanced materials and even environmental problems such as bushfires. As a
consequence, models that simulate combustion processes have been studied
by researchers over a long period of time [11]. In general, the models used to
simulate combustion processes are systems of partial differential equations
that account for the reaction and diffusion of heat, reactants and products.
As such the study of combustion processes inevitably amounts to the study
of reaction-diffusion systems.

The precise chemical reaction mechanism of a particular combustion process
is typically extremely complex, often involving tens to hundreds of individual
reaction steps. However, to make combustion amenable to mathematical
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analysis it is common to view the overall combustion process as a small
number of lumped reaction steps, which are representative of the actual
chemical kinetics. For example, much of the progress in developing the theory
of combustion has been based on reaction mechanisms involving only one or
two steps [3]. In single step reaction schemes it is assumed that the reaction
proceeds as a single exothermic reaction between the fuel (F) and the oxidant,
herein assumed to be oxygen (O2), which combine to produce combustion
products (P) and heat. The generic kinetic scheme for a single step reaction
mechanism is thus

F+O2 −→ P + heat.

Of interest is the manner in which flames propagate through a particular
mixture. As such, there has been considerable interest in reaction-diffusion
systems that admit travelling wave solutions, which in the context of combus-
tion, are called combustion waves. A combustion wave describes a propagating
flame front, which marks the transition from the initial mixture to the reactant-
product equilibrium phase. Reaction-diffusion systems describing combustion
processes are distinguished by the extremely strong nonlinear dependence
of the reaction rate on temperature, usually described by the Arrhenius law
that the rate

k(T) = A exp

(
−E

RT

)
,

where A is the pre-exponential constant, E is the activation energy, and T is
the temperature of the reaction. The universal gas constant is denoted by R.
The strong nonlinearity that arises through invocation of the Arrhenius law
complicates the analysis of combustion waves. Before the advent of modern
computing power investigations typically relied on asymptotic methods or
advanced numerical techniques.

Of particular interest are the various modes of instability that arise in com-
bustion processes. Combustion instabilities can have undesirable, or even
disastrous effects on the safety and efficiency of industrial and synthetic pro-
cesses [10]; they can seriously compromise the safety of personnel that operate
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in confined or volatile spaces such as compartments or underground mines [15];
and they can produce unexpected and dangerous wildfire behaviour [4]. Re-
cent work on two step reaction schemes revealed that the dynamics of the
associated combustion waves can be quite complex. Indeed, Gubernov et
al. [9] demonstrated that combustion waves arising in the presence of chain
branching kinetics can exhibit oscillatory behaviour and progress through a
series of period doublings en route to chaotic behaviour.

We investigate the stability of combustion waves arising under the assumption
of a nonadiabatic, single step, reaction mechanism. The effects of heat loss
from the system are modelled via the inclusion of a term describing Newtonian
cooling. The transition to instability is investigated in great detail using the
Evans function method, which permits a significant improvement in accuracy
over methods relying on direct integration of the governing reaction-diffusion
equations. Evans function techniques can also be applied more generally to
investigate the stability of travelling waves arising in applications such as
nerve impulse propagation, (non-combustion) reactive waves, transmission and
propagation of beams through wave guides, shock waves arising in conservation
laws relating to fluid, and gas dynamics and localised vibrations in solids [13].
We aim to elucidate the Evans function method as it applies to the single
step non-adiabatic reaction scheme in some detail so as to aid researchers
interested in applying the Evans function technique in their own area of
interest.

2 Mathematical model

Consider flame propagation through a premixed fuel in one spatial dimension
with combustion described by the single step reaction mechanism. Addi-
tionally, suppose that heat is lost to the surrounding environment through
Newtonian cooling. A real world example of such a configuration would be a
long, imperfectly insulated cylinder containing a fuel-oxygen mixture, with
an appropriate a priori averaging over the transverse spatial dimension of



2 Mathematical model C777

the flame front. Assuming that the rate of the exothermic combustion is
adequately described by the Arrhenius law, the equations describing con-
servation of energy and mass lead to the following (non-dimensionalised)
reaction-diffusion pde system [16]:

ut = uxx + ve
−1/u − l(u− ua), (1)

vt = Le−1 vxx − βve
−1/u, (2)

where u(x, t) and v(x, t) are the non-dimensional temperature and mass
fraction of fuel, respectively, Le is the Lewis number (the ratio of the diffusion
rates of mass and heat), β is the ratio of the activation energy to heat release,
l is the volumetric heat-loss coefficient from fuel to surroundings, and ua is the
non-dimensional ambient temperature. For convenience we assume ua = 0 .
This assumption does not affect the qualitative properties of the travelling
waves [7] and circumvents the cold boundary problem [16].

The system (1)–(2) is supplemented by the boundary conditions

u(x, t) = 0 , v(x, t) = σ as x→ −∞ , (3)

u(x, t) = 0 , v(x, t) = 1 as x→ +∞ . (4)

The conditions on the right boundary (x→ +∞) correspond to cold, unburned
fuel, while the left boundary conditions (x→ −∞) correspond to cold, burnt
fuel. We allow for an amount σ of unburnt fuel remaining behind the
combustion front.

As we are interested in travelling wave solutions, which propagate with speed c
we reformulate the system (1)–(4) in terms of the coordinate ξ = x − ct ,
in the frame that moves with the combustion front. We thereby obtain the
system of ordinary differential equations

uξξ + cuξ + ve
−1/u = lu , (5)

Le−1 vξξ + cvξ − βve
−1/u = 0 , (6)

with boundary conditions

u(ξ) = 0 , v(ξ) = σ as ξ→ −∞ , (7)
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u(ξ) = 0 , v(ξ) = 1 as ξ→ +∞ . (8)

Combustion wave solutions to (5)–(8) were derived numerically over a wide
range of parameter values using shooting and relaxation methods as described
by Sharples et al. [14].

3 Combustion wave stability

Stability of a combustion wave refers to the development of solutions of
the governing equations whose initial conditions comprise a perturbation
of the combustion wave under consideration. If there are initial conditions
arbitrarily close to the combustion wave such that the associated solutions
leave a small neighbourhood of the combustion wave, then the wave is unstable.
A natural approach to investigating the stability of travelling waves is to
linearise the governing partial differential equations about the wave and to
study the spectrum of the resulting linear differential operator L. In our case
the linearised equations are

Ut = LU , (9)

where
LU = DUξξ + cUξ +WU , (10)

with U(ξ, t) = (U(ξ, t),V(ξ, t))T, D = diag(1, Le−1) and

W =

(
vu−2e−1/u − l e−1/u

−βvu−2e−1/u −βe−1/u

)
,

where u = u(ξ) and v = v(ξ) are the travelling wave solutions of (5)–(8).

Seeking solutions in the form U(ξ, t) = U(ξ)eλt the system (9) may be
written as the first order system of ordinary differential equations

zξ = A(ξ, λ)z , (11)
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where matrix

A(ξ, λ) =


0 0 1 0

0 0 0 1

λ+ l− vu−2e−1/u −e−1/u −c 0

βLe vu−2e−1/u Le(λ+ βe−1/u) 0 −cLe

 , (12)

and we have set z = (U,Uξ)
T ∈ C4. The spectral parameter λ is sometimes

referred to as the growth rate in the context of mathematical combustion
theory. Following Afendikov and Bridges [1], a combustion wave is deemed
linearly unstable if, for some fixed eigenvalue λ ∈ C with <λ > 0 , there exists
a solution of (11) that decays exponentially as ξ→ ±∞ .

3.1 Evans function

Substituting the boundary conditions (7)–(8) into (12) we obtain the limit
matrices

A±(λ) =


0 0 1 0

0 0 0 1

λ+ l 0 −c 0

0 λLe 0 −cLe

 , (13)

which have eigenvalues

µ±1 (λ) = 1
2

(
−cLe−

√
c2 Le2+4λLe

)
, (14)

µ±2 (λ) = 1
2

(
−cLe+

√
c2 Le2+4λLe

)
, (15)

µ±3 (λ) = 1
2

(
−c−

√
c2 + 4(λ+ l)

)
, (16)

µ±4 (λ) = 1
2

(
−c+

√
c2 + 4(λ+ l)

)
, (17)

and corresponding eigenvectors k±i (λ), i = 1, . . . , 4 .

Assuming that <λ > 0 , it follows that there are two linearly independent
solutions z−2,4(ξ, λ) which span the eigenspace E−(ξ, λ) of solutions that decay



3 Combustion wave stability C780

exponentially as ξ→ −∞ and two linearly independent solutions z+1,3(ξ, λ)
which span the eigenspace E+(ξ, λ) of solutions that decay exponentially as
ξ → +∞ . If E−(ξ, λ) and E+(ξ, λ) have nontrivial intersection for some
value of λ, then λ is an eigenvalue.

Denoting the space of two-forms over C4 as Λ2(C4), we define V± ∈ Λ2(C4)
as the exterior products

V− = z−2 ∧ z−4 and V+ = z+1 ∧ z+3 . (18)

Hence the eigenspaces E−(ξ, λ) and E+(ξ, λ) intersect nontrivially at a certain
value of ξ if and only if V−(ξ, λ) ∧ V+(ξ, λ) = 0 . We take ξ = 0 for
definiteness. The foregoing discussion motivates the definition of the Evans
function [2, 6]:

D̃(λ) = V−(0, λ)∧V+(0, λ). (19)

Moreover, if {e1, e2, e3, e4} is a basis in C4, then the canonical isomorphism
between C4 and Λ4(C4) implies that there exists D(λ) ∈ C such that

D̃(λ) = D(λ) e1 ∧ e2 ∧ e3 ∧ e4 . (20)

In terms of the natural basis for Λ2(C4),

v1 = e1 ∧ e2 , v2 = e1 ∧ e3 , v3 = e1 ∧ e4 ,
v4 = e2 ∧ e3 , v5 = e2 ∧ e4 , v6 = e3 ∧ e4 ,

(21)

it can be shown that [1]:

D(λ) = V+
1 V

−
6 −V+

2 V
−
5 +V+

3 V
−
4 +V+

4 V
−
3 −V+

5 V
−
2 +V+

6 V
−
1 . (22)

As indicated above, the Evans function D has zeroes that coincide with
eigenvalues of the linear stability problem. It can also be shown that D is
analytic over Ω = {w ∈ C : <w > 0}, is asymptotically constant and that
D(R) ⊂ R . These properties mean that the problem of finding eigenvalues of
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the linearised operator L is reduced to one of finding zeroes of an analytic
function. Using the argument principle, applied to an analytic function,∮

C

D′(w)

D(w)
dw = 2πiN , (23)

where N is the number of zeroes of D within the closed circuit C, and the
right-hand side of the equation represents the change in argument of D(w)
as C is traversed. Hence taking C to be the imaginary axis {it : t ∈ R} the
number of zeroes of D in the right complex half-plane is simply the number
of times D(it) winds around the origin.

Our attention now turns to the numerical method for calculating the Evans
function D.

3.2 Compound matrix method

Consider the two-form V = z1 ∧ z2 , where z1 and z2 are solutions of (11). It
can be shown that V satisfies the compound matrix problem [8]:

Vξ = B(ξ, λ)V, (24)

where

[B(ξ, λ)V]1 = V3 −V4 ,

[B(ξ, λ)V]2 = −e−1/uV1 − cV2 ,

[B(ξ, λ)V]3 = Le(λ+ βe−1/u)V1 − cLeV2 +V6 ,

[B(ξ, λ)V]4 = (vu−2e−1/u − λ− l)V1 − cV4 −V6 ,

[B(ξ, λ)V]5 = −Leβvu−2e−1/uV1 − cLeV5,

[B(ξ, λ)V]6 = −Leβvu−2e−1/uV2 + (λ+ l− vu−2e−1/u)V3

− Le(λ+ βe−1/u)V4 − e
−1/uV5 − (c+ cLe)V6 ,

and where u = u(ξ) and v = v(ξ) again denote the travelling wave solution
of (5)–(8).
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It can also be shown that V−(ξ), defined by (18) is the solution of (24) with
the largest rate of exponential growth, µ−

2 + µ−
4 , integrating forward from

ξ = −∞ to ξ = 0 . Similarly, V+(ξ) defined by (18) is the solution of (24) with
the largest rate of exponential growth, µ+

1 + µ+
3 , integrating backward from

ξ = +∞ to ξ = 0 . Thus the Evans function is evaluated via equation (22)
using standard tools for numerical integration, while avoiding the numerical
difficulties usually encountered when dealing with stiff systems [6, 12].

4 Results

4.1 Combustion wave properties

Equations (5)–(8) are solved numerically using shooting and relaxation meth-
ods [6]. Figure 1 illustrates how the combustion wave speed c varies with the
parameter β, for the two cases Le = 5.0 and l = 1× 10−4 (Figure 1(a)) and
l = 2× 10−4 (Figure 1(b)). The curves in Figure 1 are double valued with a
turning point (fold bifurcation), which is sometimes referred to as the extinc-
tion point. Three distinct solution branches are depicted in Figure 1: a stable
branch (black) corresponding to stable, constant speed combustion waves;
an oscillatory unstable branch (red); and uniformly unstable branch (blue).
Other properties of the combustion waves, such as maximum temperature
and the residual fuel remaining behind the combustion front, may be obtained
using the same methods used to derive the wave speeds [6, 7].

4.2 Stability properties

The stability properties of the combustion waves are derived numerically using
the Evans function techniques described above. Figure 2 shows images of the
Evans function {D(it) : t > 0}, corresponding to Le = 5.0 and l = 1× 10−4
for three different values of β. Note that only the images of the positive
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Figure 1: Combustion wave speed plotted against β for (a) Le = 5.0 and
l = 1× 10−4 ; (b) Le = 5.0 and l = 2× 10−4 .
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Figure 2: Evans function image curves {D(it) : t > 0}, corresponding to Le =
5.0 and l = 1× 10−4, for the three cases β = 5.07 (blue), 5.076465 (black),
and 5.08 (red).

imaginary axis is shown for clarity. The images of the negative imaginary
axis are simply the complex conjugates of the curves shown in Figure 2, due
to D(λ) = D(λ), for all λ ∈ C .

The blue curve, corresponding to β = 5.07 , does not encircle the origin and
so by the argument principle, the Evans function does not possess any zeroes
in the right half of the complex plane. Hence β = 5.07 represents a stable
combustion wave. Conversely, the red curve corresponding to β = 5.08 , does
encircle the origin, which means that the Evans function does have a zero
with positive real part, which is an eigenvalue of the linear stability problem.
Hence β = 5.08 represents an unstable combustion wave. Application of
the argument principle with a closed curve (e.g., a rectangle) that omits the
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positive real axis confirms that for β = 5.08 the zero of the Evans function
is of the form λ = η+ iω with ω > 0 and so the corresponding combustion
wave is oscillatory unstable. That is, the combustion wave will only be
physically discernable as a combustion front whose speed varies periodically—
the frequency of the oscillation is ω. The black curve in Figure 2 corresponds
to the Hopf point βh = 5.076465 which marks the transistion between the
stable, constant speed combustion wave regime and the oscillatory unstable
combustion wave regime (Figure 1(a)).

The oscillatory unstable combustion waves are further investigated using a
numerical finite element package [5] to solve the partial differential equa-
tions (1)–(4) with ua = 0 . For the case Le = 5.0 and l = 1×10−4 only period
one, pulsating instabilities are detectable. However, for the case l = 2× 10−4
(Figure 1(b)) a number of different oscillatory regimes are found. Indeed, as β
increases beyond the Hopf point the combustion waves exhibit a sequence
of period doublings. Figures 3–4 show the variation in the speed of the
combustion front over time corresponding to several values of β greater than
the Hopf point βh ' 7.55 . Figure 3(a) illustrates period one oscillations
at β = 7.7 , while Figures 3(b) and 4(a) show period two and period four
oscillations corresponding to β = 7.9 and β = 7.91 , respectively. Assuming a
value of β = 7.912 yields an essentially chaotic combustion wave speed, as
evident in Figure 4(b). Beyond this value of β no sustained combustion front
solutions are obtained.

5 Discussion

We presented an analysis of the stability of travelling waves arising in a single
step combustion scheme. Stability of the combustion waves was investigated
using Evans function techniques, which convert the problem of solving the
linearised eigenvalue problem to the much more tractable problem of find-
ing the zeroes of a holomorphic function. To decide whether a particular
combustion wave is stable or not, it is not necessary to locate the zeroes of
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Figure 3: Oscillatory combustion wave regimes for Le = 5.0 and l = 2× 10−4:
(a) period one oscillations at β = 7.7 ; (b) period two oscillations at β = 7.9 .
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Figure 4: Oscillatory combustion wave regimes for Le = 5.0 and l = 2× 10−4:
(a) period four oscillations at β = 7.91 ; and (b) chaotic oscillations at
β = 7.912 .
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the Evans function explicitly; instead the argument principle simply counts
the number of zeroes of the Evans function in the right half-plane. If there
are no such zeroes the combustion wave is stable, otherwise the combustion
wave is unstable. Simple schemes implementing the argument principle also
determine if an unstable combustion wave is uniformly unstable (for which
the zero of the Evans function is purely real) or if it possesses an oscillatory
instability (for which the zero of the Evans function has non-zero imaginary
part).

Stability analysis of combustion schemes, with their strong nonlinear de-
pendence on temperature that arises through the assumption of Arrhenius
kinetics, encounter numerical difficulties typically associated with stiff differ-
ential equations. However, implementing Evans function techniques via the
compound matrix formulation provides a natural way of circumventing these
difficulties.

The single step combustion scheme used to exemplify the use of the Evans
function has interesting properties that still need to be investigated. This
is despite the relatively simple nature of this reaction-diffusion scheme and
a long history of the theory of mathematical combustion. For example, for
the case Le = 5.0 and l = 2× 10−4 the system exhibited a period doubling
route to chaotic behaviour, but no such behaviour was found for the case
Le = 5.0 and l = 1×10−4. We do not know whether this is due to deficiencies
in the methods used to solve the equations numerically, or if it reflects the
inherent dynamics of the system. Investigating these aspects of the single step
scheme will be the subject of further work. In the meantime we hope that
the methods illustrated above will benefit readers interested in the stability
analysis of stiff reaction-diffusion systems.
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