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Abstract

Microfluidic circuit models are useful tools for conceptualising
and designing lab-on-chip devices. We evaluate the ability of two
different microfluidic circuit models to accurately predict electroviscous
(pressure driven) flow behaviour in a particular contraction-expansion
geometry over an experimentally relevant range of inlet concentrations
and surface charge densities. We show that a linear ‘total current
model’ based on a relatively simple ion species constraint at circuit
nodes performs well compared to a non-linear ‘ion current model’ that
conserves species exactly. Specifically, the total current model over-
predicts the total pressure and potential differences by less than 2%
and 7% respectively for silica channels.
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1 Introduction

The complexity of microfluidic devices (or labs-on-chip) has increased sub-
stantially in recent years, driven by an ever-broadening range of applications
in chemistry and biotechnology [1, 6, 13]. With increasing device complexity
comes an increasing demand for numerical tools, such as microfluidic cir-
cuit models, to aid design and optimisation [8]. Microfluidic circuit models
are used to predict flow behaviour within a circuit by relating the driving
forces (pressure and electric potential differences) to their conjugate fluxes
(volume flow and current) in terms of known (or measurable) physicochemical
properties [2].

Most solid surfaces acquire an electrostatic charge when brought into contact
with an electrolyte solution [11]. This surface charge promotes a redistribution
of ions within the liquid, resulting in the formation of a charged electric double
layer (edl) adjacent to the surface. If the ions are assumed to behave as
point charges, then for a symmetric, binary, Newtonian electrolyte under
isothermal conditions, the radial cation (+) and anion (−) concentration
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profiles obey Boltzmann distributions,

n± = n0 exp
(
∓z±e
kT
ψ(r)

)
. (1)

Here, z± are the ion valencies, e is the elementary charge, k is the Boltzmann
constant, T is the (absolute) temperature, and ψ(r) is the edl potential. The
factor n0 =

√
n+n− is the geometric mean ion concentration at any position

within the channel [9, 12].

The equations describing fully developed, laminar, steady state, electrokinetic
flow through a uniform microchannel are

[
Q

I

]
=

[
L11 L12
L21 L22

] [
∆p

∆φ

]
, (2)

where Q is the volumetric flow rate, I is the total current, and ∆p and ∆φ are
the axial pressure and potential differences along the channel, respectively [2].
All of the conductance coefficients Lij (where 1 6 i, j 6 2) depend on the
channel geometry and electrolyte properties (viscosity µ, dielectric constant εf,
and ionic diffusivities D±); all except L11 also depend on the temperature T ,
surface charge density σd, and mean concentration n0. Appendix A gives
expressions for these coefficients.

For multiple channels connected in series (that is, end-to-end), conservation
laws are applied at circuit nodes (channel junctions) to link together the fully
developed flow solutions for each individual channel. Volume and total charge
must be conserved across nodes, and a nodal constraint on the ion species is
also required. We compare two different microfluidic circuit models, which
we refer to as the ‘total current model’ (tcm) [4, 17] and the ‘ion current
model’ (icm) [5, 9], which are based on different nodal species constraints as
outlined below. We presented a more rigorous treatment elsewhere [5].

Conservation of volume Both the tcm and icm require that there be no
accumulation of volume at nodes, that is

M∑
m=1

Q(m) = 0 . (3)



1 Introduction C450

HereM is the number of channels that intersect at the node, and Q(m) is
the flow rate in branch m directed towards the node.

Conservation of total charge Similarly, both models conserve charge by
requiring that the sum of total currents entering a node be zero

M∑
m=1

I(m) = 0 . (4)

Nodal constraint on ion species The two models impose different nodal
species constraints.

• The tcm assumes that n0 is uniform throughout the network and
equal to the inlet concentration n

(in)
0 :

n
(m)
0 = n

(in)
0 . (5)

This assumption is strictly valid only in a stationary system (that is,
no net fluxes), but it is a fair approximation when the edls do not
overlap in any of the channels [5]. The tcm is a linear model and
is therefore comparatively straightforward to solve when the flow
rate and total current are specified (as in the cases to be considered

herein). Once n
(in)
0 is chosen, the conductance coefficients can be

calculated immediately and the pressure and potential changes
along each channel found from Equation (2) using (for example)
Cramer’s rule [4, 17].

• The icm is instead based on the fact that each ionic species con-
tributes a definite fraction of the total charge within the system. In
order to conserve these ion charges, a stronger form of Equation (4)
is adopted:

M∑
m=1

I
(m)
± = 0 , (6)
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where I± are ion currents due solely to the motion of one ionic
species (I++ I− = I) [9]. The validity of Equation (6) is unaffected
by the degree of edl overlap. However, unlike the tcm, the value
of n0 in each channel is unknown a priori (that is, Equation (5) does
not necessarily hold). Since L12, L21, L22 and I± are all functions
of n0, the icm is a non-linear model that cannot be solved via
simple matrix manipulations.

In summary, the tcm (linear) comprises Equations (2)–(5), whilst the icm
(non-linear) comprises Equations (2), (3) and (6) (Equation (4) is implied by
Equation (6)).

Due to the different nodal species constraints used by the tcm and icm, the
set of conductance coefficients Lij for each of the two models may differ, which
may in turn lead to differences between predictions for ∆p and ∆φ (from
Equation (2)). It is desirable to use the tcm whenever possible, because
of its relative simplicity, but the range of concentrations and surface charge
densities over which this model is accurate have not been reported previously.
Therefore our aim is to determine the conditions under which the tcm
performs acceptably for electroviscous (pressure driven) flow.

2 Problem specification

We consider a cylindrical contraction-expansion network (Figure 1) as an
example of a simple series circuit. For electroviscous flow, the total current
I = 0 at steady state. Model performance is evaluated by specifying the flow
rate Q and inlet concentration n

(in)
0 and then comparing predictions for the

total pressure and potential differences, ∆pt = ∆p
(in) +∆p(con) +∆p(out) and

∆φt = ∆φ
(in) + ∆φ(con) + ∆φ(out) respectively, occurring along the domain.

Note that since the tcm and icm are one dimensional models based upon
the assumption of fully developed flow, entrance and exit effects near channel
junctions are not included.
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Figure 1: Schematic diagram of the contraction-expansion flow geometry
(not to scale). Table 1 gives dimensions.

Table 1: Physical parameters and channel dimensions employed in this study.
(Notes: a, data from Haynes [10]; b, based on properties of water.)

Property Value
T (K) 298.15
µ (10−4 kg m−1 s−1) 8.9002a,b

εf (dimensionless) 78.408a,b

D+ (10−9 m2 s−1) 1.957a

D− (10−9 m2 s−1) 2.032a

a(in) = a(out) (µm) 5.0
a(con) (µm) 0.050
l(in) = l(con) = l(out) (µm) 5000.0

The flow rate is fixed at 1 fl s−1 (10−18 m3 s−1) (but our results are independent
of the chosen flow rate, as we show in Section 3). Inlet concentrations
ranging from 10−6m to 1m are considered, based on typical experimental
studies [14, 15, 16]. All channels are assumed to possess a uniform surface
charge density σd, which we vary in magnitude from 10−6 C m−2 to 1C m−2.
Potassium chloride solution is selected as the electrolyte (z+ = −z− = 1).
Table 1 lists values of relevant physical parameters.
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The conductance coefficients for both models are calculated using a finite
volume method [9]. A non-uniform mesh is used with 1, 000 cells spanning
the radius of each channel. We confirmed that our results are insensitive to
further mesh refinement. For the icm, n

(con)
0 is determined using an iterative

bisection scheme.

3 Results and discussion

We use the term ‘error’ to mean the error in tcm predictions relative to icm
predictions, that is,

ηp =

∣∣∣∣
∆pt,tcm − ∆pt,icm

∆pt,icm

∣∣∣∣ , (7)

ηφ =

∣∣∣∣
∆φt,tcm − ∆φt,icm

∆φt,icm

∣∣∣∣ , (8)

ηn0
=

∣∣∣∣∣
n
(con)
0,tcm − n

(con)
0,icm

n
(con)
0,icm

∣∣∣∣∣ , (9)

where n
(con)
0,tcm = n

(in)
0 from Equation (5). For electroviscous flow, these errors

are independent of the flow rate (provided that the flow remains laminar).
For ηn0

this independence occurs because n0 is independent of Q, whilst for
ηp and ηφ this independence occurs because

∆p(m) =
L
(m)
22

λ(m)
Q , (10)

∆φ(m) = −
L
(m)
21

λ(m)
Q , (11)

where λ(m) = L
(m)
11 L

(m)
22 − L

(m)
12 L

(m)
21 , so that Q cancels from both numerator

and denominator in Equations (7) and (8). (Equations (10) and (11) are



3 Results and discussion C454

obtained by setting I = 0 in Equation (2) and rearranging terms.) The errors
are also independent of the sign of the surface charge.

Error contours for tcm predictions of the total pressure and potential dif-
ferences occurring along the contraction-expansion network are presented
in Figures 2 and 3, respectively. Initially we focus on results specific to
silica channels, taking σd = −25mC m−2 as a typical value for silica [14]
(indicated by the dashed lines in Figures 2 and 3). The peak errors for silica
are ηp,max = 0.0131 and ηφ,max = 0.0602 , which in dimensional terms corre-
spond to over-predictions of 19.7 kPa and 60.6mV respectively (assuming all
channels are 5mm long). The peak errors occur at inlet concentrations of
6.5× 10−4m (ηp,max) and 8.3× 10−4m (ηφ,max); both ηp and ηφ decrease as
the concentration is increased or decreased away from these points.

In reality, the surface charge of silica arises principally due to deprotona-
tion of silanol groups, and as such σd for silica depends on the pH of the
electrolyte solution [3, 16]. Values of σd for silica previously quoted range
from −1mC m−2 to −192mC m−2 [3, 14, 15, 16]. Within this range of surface
charge densities, Figures 2 and 3 show that both ηp and ηφ follow the same
trends with concentration as described for the −25mC m−2 case, although
the peak errors vary. At worst, ηp,max reaches 0.0250, which is reasonably
small, but ηφ,max reaches 0.167, which may be unacceptable from a design
perspective. We conclude that the tcm mostly yields acceptable results for
∆pt and ∆φt for electroviscous flow over the range of surface charge densities
reported for silica, with the exception of predictions for ∆φt at intermediate
concentrations and surface charge densities of order −1mC m−2.

Figures 2 and 3 show that for silica channels, the tcm and icm agree closely
(that is, ηp,ηφ ≈ 0) at the extreme ends of the concentration range. The
agreement at high inlet concentrations is to be expected: when the edls
do not overlap (as occurs at high concentrations), Equation (5) is a good
approximation and the two models are essentially indistinguishable from one
another. In other words, Equation (5) correctly conserves ions in this limit, as

illustrated in Figure 4 by the convergence of ηn0
to zero as n

(in)
0 becomes large.
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ηp =

∣∣∣∣
∆pt,tcm −∆pt,icm

∆pt,icm

∣∣∣∣
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Figure 2: Error contours for tcm predictions of the total pressure difference
along the circuit. The dashed line corresponds to σd = −25mC m−2 (silica).

However, it is not immediately obvious why the two sets of predictions should
also agree at low inlet concentrations. Given that the tcm is expected to be
inaccurate when the edls overlap, one might expect the greatest discrepancies
between the models to occur when the edls overlap most strongly, that is,
at the lowest inlet concentrations. Indeed, Figure 4 shows that the values
of n

(con)
0,tcm and n

(con)
0,icm differ most when n

(in)
0 is lowest, and Equations (10)

and (11) show that ∆p(con) and ∆φ(con) both depend on n
(con)
0 (via L

(con)
ij ).

This indicates that ∆p(con) and ∆φ(con) are only weakly dependent on n
(con)
0

(if at all) when n
(in)
0 is low.

Physically, we explain the weak n
(m)
0 -dependences of ∆p(m) and ∆φ(m) in
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ηφ =

∣∣∣∣
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Figure 3: Error contours for tcm predictions of the total potential difference
along the circuit. The dashed line corresponds to σd = −25mC m−2 (silica).

silica channels at low inlet concentrations as follows. Equations (10) and (11)
may be rewritten as

∆p(m) =
L
(m)
22

L
(m)
21

I
(m)
s

G
(m)
e

Q , (12)

∆φ(m) = −
I
(m)
s

G
(m)
e

Q , (13)

where I
(m)
s = L

(m)
21 /L

(m)
11 and G

(m)
e = λ(m)/L

(m)
11 . The terms L21 and Is repre-

sent streaming currents (since L21 = (I/∆p)∆φ=0 and Is = (I/Q)∆φ=0 from
Equation (2)), whilst L22 and Ge represent electrical conductances (since
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ηn0 =

∣∣∣∣∣
n
(con)
0,tcm − n

(con)
0,icm

n
(con)
0,icm

∣∣∣∣∣ ,

n
(con)
0,tcm = n

(in)
0
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Figure 4: Error contours for tcm predictions of n0 in the contraction. The
dashed line corresponds to σd = −25mC m−2 (silica).

L22 = (I/∆φ)∆p=0 and Ge = (I/∆φ)Q=0 from Equation (2)). These streaming
currents and electrical conductances approach constant values in the dilute
(low-n0) limit [7, 14, 15, 16]. The streaming current plateaux occur because
the rate of charge advection (that is, the streaming current, by definition)
is limited by the (constant) total charge present within the edls (of equal
magnitude but opposite sign to the wall charge). The electrical conduc-
tance plateaux occur because a finite minimum number of counterions must
be present in order to neutralise the surface charge. All quantities on the
right-hand sides of Equations (12) and (13) therefore become constant as

n
(m)
0 approaches zero, which implies that ∆p(m) and ∆φ(m) tend towards

constant values (independent of n
(m)
0 ) in the dilute limit.
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At very low surface charge densities (|σd| 6 10−4 C m−2), Figure 3 shows that
ηφ may be appreciable at low concentrations, in contrast to the behaviour
for silica channels discussed above. This indicates that ∆φ(m) must depend
on n

(m)
0 under these circumstances. As the surface charge is reduced, the

streaming current and electrical conductance plateaux still occur, but the
concentration at which the conductance begins to deviate from its plateau
value decreases [14, 15]. Thus, the large difference between n

(con)
0,tcm and n

(con)
0,icm

that occurs at low n
(in)
0 (Figure 4) leads to significant differences between the

predicted values of G
(con)
e , and hence ∆φ(con), when the surface charge density

is low. On the other hand, ηp is essentially immune to this effect since L
(con)
12 =

L
(con)
21 � L

(con)
11 ,L

(con)
22 when σd is small (electrokinetic effects are insignificant

at low surface charge densities), so that (using Equation (10)) ∆p(con) =

L
(con)
22 Q/λ(con) ≈ Q/L(con)11 , which is independent of n

(con)
0 .

Finally, it is not possible to deduce the signs of the differences ∆pt,tcm−∆pt,icm,

∆φt,tcm − ∆φt,icm, or n
(con)
0,tcm − n

(con)
0,icm that appear in Equations (7)–(9) by

inspection of Figures 2–4 alone. However, we observed from our data that
for the particular conditions considered herein, the tcm almost always over-
predicts |∆pt| and |∆φt| and always under-predicts n

(con)
0 , relative to the icm.

4 Conclusions

We evaluated the performance of two different microfluidic circuit models:

1. the tcm, which is based on a relatively simple nodal species constraint
(Equation (5)) and which may be solved using straightforward linear
algebra; and

2. the icm (non-linear), which conserves species exactly (via Equation (6))
but which entails a more complex (iterative) numerical solution proce-
dure.
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Compared to the icm, the tcm over-predicts the total pressure and potential
differences for electroviscous flow in a particular contraction-expansion network
by less than 3% and 17% respectively over the full parameter space considered.
The errors are largest at intermediate surface charge densities and low to
moderate inlet concentrations. For the specific case of σd = −25mC m−2,
which is typical of silica channels, the tcm over-predicts the pressure and
potential differences by less than 2% and 7% respectively, which are probably
acceptable errors for design purposes. The tcm is less well suited to predicting
the ion concentrations in the contraction; errors in n

(con)
0 may be large

(> 90%), especially at high surface charge densities and low concentrations.
This may limit the utility of the tcm for some applications. (The reported
errors apply only for the specific channel sizes indicated in Table 1; altering
the channel radii may alter the errors.)

Many microfluidic devices utilise electro-osmotic flow in conjunction with
(or instead of) pressure driven flow [6]. We intend to examine how well the
tcm performs for electrokinetic flow with non-zero total current in a future
publication.

Acknowledgements This research was partly supported by an Australian
Research Council Discovery Grant.

A Conductance coefficients

The conductance coefficients used in this study are defined as

L11 = −
πa4

8µl
, (14)

L12 = L21 =
πa4zen0

µl
G1 , (15)
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L22 = −
π
(
a2zen0

)2

µl

[
G3,+ + G3,− +

µ

kTn0a2
(D+G4,+ +D−G4,−)

]
, (16)

where the non-dimensional G coefficients represent various integrals involving
the radial ion concentration profiles [9]. The G coefficients are functions of a,
n0, T , z, εf and σd.
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