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Abstract

We apply quasi-Monte Carlo methods to the pricing of derivatives
on realised variance of an index under the benchmark approach. The
resulting integration problem is shown to depend on the joint density
of the realised variance of the index and the terminal value of the index.
Employing a transformation mapping for this joint density to the
unit square reduces the difficulty of the resulting integration problem.
The quasi-Monte Carlo methods compare favourably to Monte Carlo
methods when applied to the given problem.
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1 Introduction

Derivatives on the realised variance of an index, such as the vix, and options
on the vix, as traded on the Chicago Board Options Exchange, have become
important risk management tools. The vix is based on the s&p 500, a well
diversified index, which is interpreted as a proxy for the growth optimal
portfolio (gop). The gop plays a crucial role in the context of derivative
pricing [7]. Here we employ it to price derivatives on realised variance. We
find that in order to price derivatives on realised variance, we need the
joint distribution of the realised variance of the gop and its terminal value.
We employ a result from Craddock and Lennox [3] to obtain the Laplace
transform of the joint distribution. Inverting the Laplace transform, we obtain
the joint distribution over R+ × R+. However, ultimately we wish to employ
quasi-Monte Carlo methods to price derivatives on the realised variance of an
index. Therefore we need to employ a transformation which maps the joint
density to the unit square. In many areas, such as finance and physics, the
relevant probability distributions are only known in terms of their Laplace
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transforms. Hence the problem of inverting Laplace transforms and mapping
the resulting distributions to the unit square is relevant to many applications
and motivates us to study this problem.

The contribution of this article is to explore the relative difficulty of numerical
integration problems arising from different transformations. This problem,
in the context of quasi-Monte Carlo methods, was also discussed by Kuo
et al. [5]. We establish that for both quasi-Monte Carlo and Monte Carlo
methods, the difficulty of the integration problem can strongly depend on the
transformation, and that quasi-Monte Carlo methods seem to consistently
outperform Monte Carlo methods.

Section 2 introduces a model for the gop, discusses derivative pricing, and
considers derivatives on realised variance. Section 3 discusses how to map
the joint density to the unit square, and we present results of numerical
experiments in Section 4.

2 The stylised minimal market model and

options on realised variance

We employ the stylised Minimal Market Model (mmm) [7] to model a diver-
sified index, which we interpret as the gop. We fix a filtered probability
space (Ω,A,A,P), where Ω denotes the sample space, A the sigma-algebra,
P the real-world probability measure, and where the filtration A = (At)t∈[0,∞)

is assumed to satisfy the usual conditions [7]. The uncertainty is modeled
using a standard Wiener process W = {Wt, t ∈ [0,∞)}. Furthermore, we
introduce a deterministic savings account

dS0t = rS
0
t dt

for time t ∈ [0,∞) with S00 = 1 , where r denotes the constant short rate. We
model the index Sδ∗t as

Sδ∗t = S0tα
δ∗
t Yt , (1)
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where αδ∗t is a deterministic function of time, which starts at α0 and exhibits
exponential growth at the rate η:

αδ∗t = α0 exp {ηt} .

It can be shown that αδ∗t equals the drift of the discounted gop, and Y =
{Yt, t ∈ [0,∞)} is a square-root process of dimension four, with stochastic
differential equation (sde)

dYt = (1− ηYt)dt+
√
Yt dWt such that Y0 = S

δ∗
0 /α0 .

The mmm does not admit a risk-neutral martingale measure. However, the
gop is the numéraire when using the real world probability measure P as
pricing measure allowing us to price contingent claims under P, using Sδ∗

as the numéraire. This concept is formally known as real world pricing [7].
Consider a nonnegative contingent claim with payoff H at time T , assuming
that H is AT -measurable, and E

(
H/Sδ∗T

)
<∞ . Then we define the value at

time t associated with H by

Vt := S
δ∗
t E
(
H/Sδ∗T | At

)
. (2)

Since VT = H , Vt/S
δ∗
t forms an (A,P)-martingale. Equation (2) is known as

the real world pricing formula and employed to price contingent claims.

We now introduce options on realised variance. Here, the realised variance
is defined to be the quadratic variation of the log-index, and we formally
compute the quadratic variation of the log-index as

[
log
(
Sδ∗
)]
T
=

∫ T
0

dt

Yt
. (3)

In addition, we introduce put options on realised variance. The payoff of such
a derivative is (

K−

∫ T
0

1

Yt
dt

)+

,
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where K is the strike price. We compute prices using the real world pricing
formula, according to which the time t = 0 price is

Sδ∗0 E

[
1

Sδ∗T

(
K−

∫ T
0

1

Yt
dt

)+
]

.

From (1), it suffices to focus on the evaluation of the quantity

E

[
1

YT

(
K−

∫ T
0

1

Yt
dt

)+
]

, (4)

which we discuss in the next section. We focus on options on realised variance,
as they can be priced explicitly [2], and thus we confirm the accuracy of
our results. However, the method discussed in Section 3 is more generally
applicable [2, §5].

3 Transformation to the unit square

This section discusses how to map the joint density of YT and
∫T
0
dt/Yt to the

unit square [5]. We use f(y, z) to denote the joint density of YT and
∫T
0
dt/Yt,

where y corresponds to YT and z to
∫T
0
dt/Yt. Firstly, we recall Lemma 1

of Craddock and Lennox [3], which gives the Laplace transform of f(y, z).
Consequently, we recover the joint density by inverting the Laplace transform.
At first sight this seems to amount to inverting a double Laplace transform.
However, the technique employed by Craddock and Lennox [3] to compute
the double Laplace transform already provides the inversion with respect to
one of the parameters.

Lemma 1. The joint Laplace transform of YT and
∫T
0
dt/Yt is

E

[
exp

(
−λYT − µ

∫ T
0

1

Yt
dt

)]
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=
Γ(3/2+ ν/2)

Γ(ν+ 1)
βx−1 exp

{
η

[
T + x−

x

tanh (ηT/2)

]}
× 1

βα
exp

[
β2/(2α)

]
M−k,ν/2

(
β2

α

)
,

where α = η [1+ coth(ηt/2)] + λ , β =
(
η
√
x
)
/ sinh (ηt/2), ν = 2

√
1
4
+ 2µ ,

and Ms,r(z) denotes the Whittaker function of the first kind. Furthermore,
the inverse with respect to λ is

p(T , x,y) =
η

sinh (ηT/2)

(y
x

)1/2
× exp

{
η

[
T + x− y−

x+ y

tanh(ηT/2)

]}
Iν

[
2η
√
xy

sinh (ηT/2)

]
(5)

where Iν(·) is the modified Bessel function of the first kind.

Consequently, to obtain f(y, z), we only need to invert a one dimensional
Laplace transform, which is accomplished via the Euler method described by
Abate and Whitt [1]. For the choice of parameters Y0 = 1 , T = 1 and η = 4 ,
the resulting joint density is shown in Figure 1. Ultimately, we want to employ
quasi-Monte Carlo methods to compute (4) and consequently need to map
the joint density to the unit square. We follow Kuo et al. [5] in our discussion
and recall that y denotes the integration variable corresponding to YT and

z denotes the integration variable corresponding to
∫T
0
dt/Yt. However, the

joint density considered by Kuo et al. [5] was the multivariate normal, which
is available explicitly, as opposed to the joint density considered here. We
use the substitution

x1 = Ψ1(y) and x2 = Ψ2(z), (6)

where Ψ1 and Ψ2 map the integration variable from R+ to [0, 1]. We consider
two choices for Ψ1 and Ψ2, firstly, the exponential transformation

x1 = Ψ1(y) = 1− exp {−λ1y} and x2 = Ψ2(z) = 1− exp {−λ2z} , (7)
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Figure 1: Joint density of YT and
∫T
0
dt/Yt over R+ × R+.

and secondly the logistic transformation

x1 = Ψ1(y) =
exp (y/λ1)

1+ exp (y/λ1)
and x2 = Ψ2(z) =

exp (z/λ2)

1+ exp (z/λ2)
. (8)

Recall that we use f(y, z) to denote the joint density of YT and
∫T
0
dt/Yt, where

y corresponds to YT and z to
∫T
0
dt/Yt, and hence we have the representation

E

[
1

YT
H

(∫ T
0

dt

Yt

)]
=

∫∞
0

∫∞
0

H(z)

y
f(y, z)dydz

=

∫ 1
0

∫ 1
0

H
[
Ψ−1
2 (x2)

]
Ψ−1
1 (x1)

f
[
Ψ−1
1 (x1),Ψ

−1
2 (x2)

] 2∏
j=1

1

ψj
[
Ψ−1
j (xj)

] dxj ,
where ψ1 and ψ2 denote the densities corresponding to Ψ1 and Ψ2. We
point out two properties of the transformations (7) and (8): firstly, the
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parameters λ1 and λ2 are allowed to differ, which turns out to be crucial;
and secondly, the transformations are easily understood, which is important,
because the joint density is not given explicitly.

Regarding the exponential transformation, we firstly set λ1 = 1.0 and λ2 = 1.0 .
From Figure 2(a), it seems advisable to decrease λ2, which moves the mass
of the density towards the centre of the square, see Figure 2(b). Regarding
the logistic transformation, we firstly set λ1 = 1.0 and λ2 = 1.0 . From
Figure 3(a), it seems advisable to decrease λ1 and increase λ2, and we find
that the choice λ1 = 0.25 and λ2 = 7.0 works well, as illustrated in Figure 3(b).
Moving the mass of the density towards the center of the square is expected
to facilitate the problem. Section 4 confirms that the corresponding standard
errors converge at a faster rate. Of course, there exist many ways to make
the corresponding numerical integrations more tractable. Once one has found
transformations as described above, the difficulties are removed.

4 Numerical results

We apply the quasi-Monte Carlo approach to the problem of pricing options
on realised variance. A given transformation (Ψ1,Ψ2) yields

E

[
1

YT
H

(∫ T
0

dt

Yt

)]
=

∫ 1
0

∫ 1
0

H
[
Ψ−1
2 (x2)

]
Ψ−1
1 (x1)

f
[
Ψ−1
1 (x1) ,Ψ−1

2 (x2)
] 2∏
j=1

1

ψj
[
Ψ−1
j (xj)

] dxj
≈ 1

N

N∑
i=1

H
[
Ψ−1
2 (xi,2)

]
Ψ−1
1 (xi,1)

f
[
Ψ−1
1 (xi,1) ,Ψ−1

2 (xi,2)
] 2∏
j=1

1

ψj
[
Ψ−1
j (xi,j)

]
=
1

N

N∑
i=1

g (xi,1, xi,2) ,
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Figure 2: Joint density of YT and
∫T
0
dt/Yt: (a) Exponential transformation

with λ1 = 1.0 , λ2 = 1.0 ; (b) Exponential transformation with λ1 = 1.0 ,
λ2 = 0.1 .
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Figure 3: Joint density of YT and
∫T
0
dt/Yt: (a) Logistic transformation with

λ1 = 1.0 , λ2 = 1.0 ; (b) Logistic transformation with λ1 = 0.25 , λ2 = 7.0 .
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where {(xi,1, xi,2)}
N

i=1 is a two dimensional quasi-Monte Carlo point set and
g (xi,1, xi,2) is the obvious function appearing in the above sum. In this
article, we base the quasi-Monte Carlo point set on the two dimensional
Sobol sequence. Furthermore, we randomize the point set using Owen’s
scrambling algorithm [6], as implemented by Hong and Hickernell [4]. In this
way, we obtain l independent copies of the quasi-Monte Carlo point set, say{(
yji,1,y

j
i,2

)}N
i=1

, j = 1, . . . , l . Consequently, we estimate (4) via

IRQMC =
1

l

l∑
j=1

Ij =
1

l

l∑
j=1

1

N

N∑
i=1

g
(
yji,1,y

j
i,2

)
, (9)

and estimate standard errors via

σRQMC =

√∑l
j=1 (Ij − IRQMC)

2

l(l− 1)
. (10)

For the purpose of comparison, we also apply the Monte Carlo method; that
is, we choose lN independent points {(ui,1,ui,2)}

lN

i=1 , uniformly distributed
on [0, 1]2, estimate (4) via

IMC =
1

lN

lN∑
i=1

g (ui,1,ui,2) , (11)

and estimate standard errors via

σMC =

√∑lN
i=1 [g (ui,1,ui,2) − IMC]

2

lN (lN− 1)
. (12)

Figures 4 and 5 show log-log plots of standard errors against a number of
function evaluations. For the quasi-Monte Carlo rules, we use N = 2m points
and compare the results to those achieved with lN = l2m Monte Carlo
points. In all numerical experiments we set l = 30 . These figures show that
the transformation does have an impact on the numerical difficulty of the
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Figure 4: Standard errors for the exponential transformation.

integration problem. In the case of the exponential transformation, using
the non-trivial (nt) transformation λ1 = 1.0 and λ2 = 0.1 improves on the
trivial (t) choice λ1 = 1.0 and λ2 = 1.0 . For the logistic transformation,
using λ1 = 0.25 and λ2 = 7.0 (nt) improves on λ1 = 1.0 and λ2 = 1.0
(t). This observation holds for both quasi-Monte Carlo and Monte Carlo
methods, and we also observe that the quasi-Monte Carlo methodology is a
significant improvement over Monte Carlo methods. Finally, the standard
errors produced by the logistic transform improve on the corresponding
standard errors resulting from the exponential transform.

5 Conclusion

The problem of mapping joint densities to the unit square arises in important
quasi-Monte Carlo applications, such as the pricing of derivatives on the
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Figure 5: Standard errors for the logistic transformation.

realised variance of an index. For the presented two dimensional problem, the
resulting joint densities are plotted over the unit square and an appropriate
transformation is chosen for the required integration problem.

The challenge is now to generalise the presented methodology to high dimen-
sional problems. The tailoring of the transformations applied in this article
may no longer be individually possible. It would be interesting to see how
the techniques presented in this article can be applied in a high dimensional
context. Quasi-Monte Carlo rules constructed over Rs may be applicable for
this type of task.
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