
ANZIAM J. 52 (CTAC2010) pp.C1126–C1145, 2012 C1126

An implicit finite volume method for arbitrary
transport equations

D. J. E. Harvie1

(Received 30 January 2011; revised 15 February 2012)

Abstract

A finite volume framework is described for solving multiphysics
transport problems. The method operates in a unique way: the
transport equations and associated boundary conditions are input
by the user using pseudo-mathematical expressions. A Perl program
parses these equations and, via the computer algebra system Maxima,
‘metaprograms’ a Fortran code that solves the problem on an unstruc-
tured mesh using the Newton–Raphson method. The strength of the
technique is that a fully implicit numerical formulation is generated
and modified easily, for an arbitrary set of equations. The implemented
algorithm (‘arb’) is available for download and licensed under the gnu
General Public License.

http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/3949

gives this article, c© Austral. Mathematical Soc. 2012. Published March 27, 2012. issn
1446-8735. (Print two pages per sheet of paper.) Copies of this article must not be made
otherwise available on the internet; instead link directly to this url for this article.

http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/3949

Contents C1127

Contents

1 Introduction C1127

2 Finite volume discretisation C1130

3 Pseudo-mathematical expression language C1134

4 Newton–Raphson solution procedure C1136

5 Example nonlinear diffusion equation results C1140

6 Conclusion C1143

1 Introduction

Transport equations are partial differential equations (pdes) that describe
the movement of physical quantities such as mass, momentum and thermal
energy. In the engineering and science fields, the transport equations that
govern a process often have a ‘multiphysics’ nature, meaning that:

• Several quantities are interdependent, obeying coupled transport equa-
tions that must be solved concurrently (for example, exothermic re-
actions occurring in a flowing gas containing a number of chemical
species);

• The transport equations contain varying and/or nonlinear coefficients,
often in the diffusion or source terms (for example, non-Newtonian fluid
flow or systems that involve temperature dependent material properties);
or

• The simulation domain is split between a number of coupled regions,
each of which may have different dimensions or different interdependent
quantities to be found.

1 Introduction C1128

Due to these complexities, and also because most practically relevant geome-
tries tend to be complex, numerical methods are usually required to solve
multiphysics transport problems.

The three most popular numerical techniques used to solve transport equations
are the Finite Difference Method (fdm), Finite Element Method (fem) and
Finite Volume Method (fvm). Under the fdm, each derivative within each
pde is replaced by its differenced equivalent. Numerically stored values
approximate the real solution at particular points. While the fdm is simple
to implement on structured meshes, the procedure is less straightforward on
unstructured meshes, and unstructured meshes most easily represent typical
practical (that is, complex) geometries.

Both finite element and finite volume methods are readily applied to un-
structured meshes. Within the fem unknown variables are approximated
in each element by basis functions that have unknown coefficients. The
coefficients are chosen so that within each element, an integral error between
the approximating function and the pde solution is minimised. The fvm is
specific to the solution of transport equations. Under the fvm each transport
equation is integrated over the volume of each cell (the fvm equivalent of the
fem’s element) and, using the Gauss divergence theorem, is converted into a
relationship between the fluxes occurring over the faces of the cell and integral
quantities associated with the cell. Numerically stored values approximate
solution variables averaged over their corresponding mesh element (either a
face or a cell).

fems and fvms have different strengths. The principal strength of the fem is
that it can be highly accurate for smoothly varying functions, and as a result
it has been extensively employed in areas such as structural analysis where
physical quantities such as stresses and (small) deformations vary continuously.
The principal strength of the fvm is that the total amount of each transported
quantity within the domain is conserved (for example, mass, momentum,
thermal energy). This strength has meant that the fvm has (arguably)
become the most popular method for solving complex transport problems (for

1 Introduction C1129

example, multiphase, varying physical properties, non-Newtonian) as it can
be usefully applied when the physical system involves shocks and/or large
property variations.

While the use of the fvm in the present multiphysics context would appear to
be attractive, a complication is that unlike the fem, each equation discretised
by the fvm depends on variables that are not local to the corresponding
mesh cell. An implication of this is that fvm discretisation methods are
difficult to apply generally (unlike fems), instead tending to be specific to the
particular equation set being solved (for example, the simple type methods
for the solution of the Navier–Stokes equations). This lack of flexibility has
prevented the fvm from being utilised as a true multiphysics simulation
‘workbench’, with most commercial and open source multiphysics software
currently available being fem based (for example, comsol [6] and Elmer [4]).

This article resolves this inflexibility by presenting a mathematical and compu-
tational framework that automates the generation of finite volume algorithms
for solving multiphysics transport equations. The method is based on a
metaprogramming algorithm that takes pseudo-mathematical expressions
entered by the user and discretises these to produce compilable Fortran code.
We illustrate the method via a three dimensional, steady state, nonlinear
diffusion equation solved on an unstructured mesh.

Section 2 discretises the illustrative diffusion problem using the finite volume
method, producing a set of nonlinear equations that can be solved computa-
tionally. This process serves to detail the relationship between the analytical
pde and discretised fvm system, and introduces the different variables (type
and centring) employed in the final code. Section 3 overviews the pseudo-
mathematical finite volume language, demonstrating in particular how the
generic diffusion pde is represented using this syntax. Section 4 shows how
the resulting set of nonlinear equations is solved implicitly via a Newton–
Raphson method, and outlines what constraints this solution method places
on the original system of equations. Finally, Section 5 presents results for the
demonstration diffusion problem.

2 Finite volume discretisation C1130

boundary cells
(Iboundary) and
coincident
boundary faces
(Jboundary)

domain cells
(Idomain)

domain faces
(Jdomain)

Rboundary

Rdomain

computational meshphysical space

Figure 1: A two dimensional schematic showing the relationship between the
physical space and computational mesh.

2 Finite volume discretisation

The example problem used to illustrate the method consists of a pde for the
unknown variable φ(x),

∇ · Γ(φ)∇φ+Λ(φ) = 0 , (1)

applied over the domain region Rdomain. Dirichlet boundary conditions,

φ = φboundary(x), (2)

are applied along the domain’s boundary, Rboundary. Although this problem is
chosen purely to demonstrate various aspects of the computational framework,
it could represent a heat conduction problem (say), with φ representing
temperature, Γ(φ) and Λ(φ) representing a temperature dependent thermal
diffusivity and heat generation rate, respectively, and fixed temperatures
applied around the surface of the object.

2 Finite volume discretisation C1131

The first step is to discretise the solution region. As shown in Figure 1
an unstructured mesh is used that is composed of cells and faces. A face
separates two cells and has a dimension that is one less than the dimension
of Rdomain. The indices of the cells and faces are represented by the sets I and J,
respectively. The set of all cells is composed of domain cells (Idomain) which
have the same dimension as the region Rdomain, and boundary cells (Iboundary),
which have the same dimension as Rboundary. The set of all faces is similarly
composed of faces that separate only domain cells (Jdomain) and faces that
are on the region boundary (Jboundary). Note that each boundary cell has the
same geometry and is coincident with a boundary face. The boundary cells
are defined to aid in equation discretisation.

fvm concepts are now applied to discretise each equation. For the pde,
Equation (1) is integrated over each domain cell yielding

◦
E
(1)
i =

1

|Vi|

∫
Vi

∇ · Γ(φ)∇φdV +
1

|Vi|

∫
Vi

Λ(φ)dV , i ∈ Idomain . (3)

Application of the Gauss divergence theorem then gives, for i ∈ Idomain ,

◦
E
(1)
i =

1

Vi

∑
j∈Jcellfaces,i

Ni,j · nj
|Sj|

∫
Sj

Γ(φ)dS

∫
Sj

nj·∇φdS+
1

|Vi|

∫
Vi

Λ(φ)dV , (4)

where the conventional fvm distributive approximation∫
Sj

Γ(φ)Ni,j ·∇φdS ≈
1

|Sj|

∫
Sj

Γ(φ)dS

∫
Sj

Ni,j ·∇φdS (5)

is used [3]. In these equations Jcellfaces,i is the set of all faces that surround
cell i, |Vi| is the volume of cell Vi, |Sj| is the area of face Sj, Ni,j is a unit
normal vector at face j that is directed outward from cell i, and nj is a unit
normal that defines a unique orientation for face j.

The variable
◦
E
(1)
i , defined by Equation (3), is a ‘code’ variable as it is employed

in the final algorithm. Each code variable has both a type and a centring.

2 Finite volume discretisation C1132

This code variable is an equation variable, meaning that when the discretised
system is solved, its value will be zero. The code variable is also cell centred,
meaning that it has a value for each cell within a certain set of cells (in this
case, those within Idomain). Regarding notation: a cell centred code variable
has an open circle above it, while a face centred code variable has a disc
above it.

Returning to the discretisation we recognise that, under the fvm, calculated
variables represent values averaged over their corresponding mesh element
(either a face or a cell). Hence, a cell centred unknown code variable is used
to numerically represent φ,

◦
U

(1)
i =

1

|Vi|

∫
Vi

φdV , i ∈ I . (6)

Similarly, Λ is represented by the cell centred derived code variable

◦
D

(1)
i = Λ(

◦
U

(1)
i) ≈ 1

|Vi|

∫
Vi

Λ(φ)dV , i ∈ Idomain , (7)

where Λ(φ) is a user supplied function.

Equations (6) and (7) introduce two new code variable types: unknown
variables are those that we are solving for. The system is solved when the
current unknown variable values result in all equation variables equalling zero.
Derived code variables are introduced for convenience. These variables are
functions of unknown variables and/or other derived variables and are entered
as expressions by the user. Each equation and derived variable is ultimately
only a function of the unknown variables, and hence will have a unique value
for a given set of unknown values.

The two surface integrals in Equation (4) represent face centred quantities,
and hence are represented via face centred code variables. The discretised Γ
is represented by the face centred derived variable,

•
D

(2)
j = Γ(

•
L
(1)
j) ≈ 1

|Sj|

∫
Sj

Γ(φ)dS , j ∈ J , (8)

2 Finite volume discretisation C1133

where Γ(φ) is another user supplied function, and
•
L
(1)
j is a local variable

representing the face averaged value for φ, defined as

•
L
(1)
j =

∑
i∈Ifacecells,j

◦
k
(0)
j,i

◦
U

(1)
i ≈

1

|Sj|

∫
Sj

φdS , j ∈ J . (9)

The averaging kernel coefficients
◦
k
(0)
j,i appearing in Equation (9) are calculated

at the start of a simulation using the Moving Least Squares (mls) method [1],
with Ifacecells,j being the set of all cells local to the face j.

Local variables, such as
•
L
(1)
j defined in Equation (9), are similar to derived

variables in that they can be functions of unknown, derived and other local
variables. The differences are that they

1. are generated by the language parsing algorithm rather than being
entered directly by the user,

2. may contain at most one sum of other code variables, and

3. are evaluated individually only when they are needed, rather than being
evaluated as a set and stored in memory.

The second surface integral in (4) represents the gradient of φ in a direction
normal to face j. This term is represented by a second face centred local
variable

•
L
(2)
j =

∑
i∈Ifacecells,j

◦
k
(1)
j,i

◦
U

(1)
i ≈

1

|Sj|

∫
Sj

nj ·∇φdS , j ∈ J , (10)

where the first derivative kernel coefficients
◦
k
(1)
j,i are again pre-calculated using

the mls method. Finally, by defining a cell centred third local variable as
◦
L
(3)
i =

∑
j∈Jcellfaces,i

•
di,j

•
D

(2)
j

•
D

(3)
j , i ∈ Idomain , (11)

where
•
di,j =

(Ni,j · nj)|Sj|
|Vi|

, (12)

3 Pseudo-mathematical expression language C1134

Equations (6–11) can be used to rewrite the original pde (4) as
◦
E
(1)
i =

◦
L
(3)
i +

◦
D

(1)
i , i ∈ Idomain . (13)

Equation (13) is the equation that is used in the final code to define the

equation variable,
◦
E
(1)
i .

The problem’s boundary conditions are treated similarly. Integrating Equa-
tion (2) over each boundary cell yields

◦
E
(2)
i =

◦
U

(1)
i −

◦
D

(3)
i , i ∈ Iboundary , (14)

where Equation (6) is used to represent φ and a third derived variable is
defined via

◦
D

(3)
i = φboundary(xi) ≈

1

|Vi|

∫
Vi

φboundary(x)dV , i ∈ Iboundary . (15)

Here xi is the centroid location of cell i. The function φboundary(x) is supplied
by the user. The boundary condition is satisfied when the cell centred equation

variable
◦
E
(2)
i is zero in each boundary cell within the set Iboundary.

3 Pseudo-mathematical expression language

Using the diffusion example we showed how a pde can be discretised into a
set of nonlinear equations that involves four code variable types; unknown,
derived, local and equation. Equations for the derived and equation variables
are specific to each problem, and so need to be entered by the user. These
equations are specified using a pseudo-mathematical language that employs a
number of finite volume specific operators. Each operator acts on an expression
of one centring, producing a variable of (possibly) another centring.

To illustrate, the following code defines the pde and boundary condition
equation variables for the example diffusion problem:

3 Pseudo-mathematical expression language C1135

CELL_EQUATION <phi domain equation > "celldiv(<Gamma >*

facegrad(<phi >))-<Lambda >" ON <domain >

CELL_EQUATION <phi boundary equation > "<phi >-<phi

boundary >" ON <boundary cells >

The expression for each code variable is contained in the double quotations.
Comparing the mathematical equations with the finite volume expressions
(that is, Equations (1) and (2) with the above) illustrates the key operators.
For example, the relationship between the mathematical, fvm meaning and
fvm discretisation for the operator celldiv is

celldiv : ∇·→ 1

|Vi|

∫
Vi

∇ · dV → ∑
j∈Jcellfaces,i

•
di,j . (16)

Hence this operator acts on face centred quantities and produces a cell centred
result; namely the divergence of a vector field (as represented by face centred
vector components). Similarly, faceave produces a face centred average from
surrounding cell centred data,

faceave : N/A → 1

|Sj|

∫
Sj

dS→ ∑
i∈Ifacecells,j

◦
k
(0)
j,i , (17)

whereas facegrad produces a face centred gradient taken normal to that face,
also from cell centred data,

facegrad : nj ·∇ → 1

|Sj|

∫
Sj

nj ·∇ dS→ ∑
i∈Ifacecells,j

◦
k
(1)
j,i . (18)

Other operators allow cell and face centred gradient evaluation (in various
directions), face-to-cell averaging, conditional statements, region identification,
advection averaging (high and low order upwinding), sums and products [7].

Computationally the pseudo-mathematical expressions are converted into
Fortran source code via a ‘metaprogramming’ algorithm written in Perl.

4 Newton–Raphson solution procedure C1136

Specifically, this algorithm generates the Fortran code by recursively parsing
each expression,

• searching for any operators, and if found, creating new local variables
to represent the appropriate discretised operation;

• checking the centring of all code variables used, and if not consistent with
the context of the expression, averaging the variable to the appropriate
location; and

• using the computer algebra system Maxima [10] to simplify each mathe-
matical expression, calculate any required partial derivatives (discussed
later) and output the equivalent Fortran code.

In effect this metaprogramming algorithm works through the discretisation
methodology described in the previous section, for any equation that can
be expressed using the mathematical capabilities of Maxima and the finite
volume operators described above.

4 Newton–Raphson solution procedure

This section details the method for solving the discretised equations. To
aid our description, the code variables defined for the example diffusion
problem are combined sequentially into four vectors, one for each variable
type. Specifically,

U =
(◦
U

(1)
i | i ∈ I

)
, (19)

D =
(◦
D

(1)
i | i ∈ Idomain ,

•
D

(2)
j | j ∈ J ,

◦
D

(3)
i | i ∈ Iboundary

)
, (20)

L =
(•
L
(1)
j | j ∈ J ,

•
L
(2)
j | j ∈ J ,

◦
L
(3)
i | i ∈ Idomain

)
, (21)

E =
(◦
E
(1)
i | i ∈ Idomain ,

◦
E
(2)
i | i ∈ Iboundary

)
. (22)

4 Newton–Raphson solution procedure C1137

The problem to solve is then written as

E (L,D,U) = 0 , or E (U) = 0 , (23)

noting that L and D can be expressed as functions of only U.

A backstepped Newton–Raphson method [9] is employed to solve Equa-
tion (23). That is, if Un is an estimate of the solution, then a better estimate
is

Un+1 = Un − λ

[
dE

dU

∣∣∣∣
Un

]−1
· E(Un) (24)

where λ 6 1 is a backstepping parameter, generally chosen to be a maximum
such that

∥∥E ′(Un+1)
∥∥
2
< (1 − 2αλ)

∥∥E ′(Un)
∥∥
2
. Here α is a small positive

number [9, 8] and the prime indicates that each equation is individually
normalised using an order of magnitude estimate (discussed below). Equa-
tion (24) is applied sequentially until

∥∥E ′(Un+1)
∥∥
2
< Etol, where Etol is a

requested tolerance parameter (typically 10−12).

The matrix dE/dU|Un used in equation (24) is the Jacobian of E, evaluated
at Un. Certain properties of this Jacobian must be satisfied for it to be
invertible, and hence allow a solution to the overall Equation (23). We
now draw a link between these properties and the discretised system, in the
process specifying several conditions on the underlying equations that must
be satisfied for a solution to be possible.

1. For a matrix to be invertible, it must be square. Hence, the structure
of the Jacobian shows that the total number of equation variables
defined by the user must equal the number of unknown variables. In
the example diffusion problem of Section 2 for example, there was one
unknown variable and one equation variable associated with each cell,
thus an equal number (|I|) of each. While the total number of each of
these code variables must be equal, they need not have a one-to-one
correspondence with each of the cells contained within the mesh. Indeed,
equation and unknown variables may be associated with faces rather
than cells, or conversely have no centring at all.

4 Newton–Raphson solution procedure C1138

2. For the Jacobian to be invertible, it must have a rank equal to its
order (that is, rank (dE/dU) = |I|). Equivalently, each row within the
Jacobian must be linearly independent.

The first implication of this linear independence is that each row of
the Jacobian must have at least one nonzero element. In terms of
the underlying mathematical problem this means that each equation
variable must have at least one nonzero partial derivative with respect
to an unknown variable throughout the entire solution process.

The second implication is as follows. If the rows of the Jacobian were not
linearly independent, then for a particular j there would be a solution
to

dEj

dU

∣∣∣∣
Un

=
∑
i∈I, i 6=j

ai
dEi

dU

∣∣∣∣
Un

(25)

such that at least one ai is nonzero. Now, consider an example system
where one of the equations can be expressed as a (nonlinear) function
of only the other equations, that is

Ej = f(Ei : i ∈ I | i 6= j). (26)

Differentiating using the chain rule gives

dEj

dU
=

∑
i∈I, i6=j

∂f

∂Ei

dEi

dU
. (27)

Identifying the ∂f/∂Ei scalars from this equation with the ai constants
from Equation (25) shows that if Equation (26) is true for any j ∈ I then
the rows of the Jacobian will not be linearly independent (for any Un),
and the Jacobian will not be invertible.

In terms of the fvm discretisation, this means that each equation
variable defined by the user, when expressed solely in terms of the
unknown variables, must be nonlinearly independent (that is, not able
to be expressed solely as a function of the other equation variables). For

4 Newton–Raphson solution procedure C1139

example, it would not be possible to specify via equations that all of the
components of a vector as well as the magnitude of that vector be zero
at a given location, as this set of equations is nonlinearly dependent.

3. If the unknown variable Ui has a typical order of magnitude of O (Ui),
then the representation of this variable using floating point arithmetic
will be limited to an accuracy of ε (Ui) = EmachO (Ui), where Emach is
the ‘machine precision’ being employed. Equivalently, defining the two
vectors ε (U) and O (U),

ε (U) = EmachO (U) . (28)

The precision to which U can be represented has implications for the
minimum possible

∥∥E(Un+1)
∥∥
2

that can be achieved. Specifically, an
order of magnitude analysis on Equation (24) shows that the accuracy
of the next, ‘improved’ estimate for E will be at best

ε
(
E(Un+1)

)
=
dE

dU

∣∣∣∣
Un

· ε (U) = Emach
dE

dU

∣∣∣∣
Un

· O (U) , (29)

where we used O (λ) = 1 . Thus, in general, successive Newton–Raphson
iterations will not be able to decrease E(Un+1) below this value.

In practice we use this result to calculate an order of magnitude estimate
for each equation variable,

O (E) = max

[
E(U0),

dE

dU

∣∣∣∣
U0

· O (U)

]
, (30)

and use these estimates to normalise E prior to calculating the resid-
ual norms

∥∥E ′∥∥
2
. As indicated, each equation magnitude estimate is

based on initial values for both E and dE/dU, and user supplied order
estimates for U.

To apply Equation (24) numerically, both E and dE/dU need to be calculated
using the current best unknown estimates (Un). To calculate E, each derived

5 Example nonlinear diffusion equation results C1140

variable is first evaluated in the order of its definition. This ensures that each
evaluation depends on only unknown and other derived variables that have
already been evaluated, and is hence explicit. The equation variables are then
evaluated. Note that local variables are not stored but rather calculated as
they are needed using a recursively called subroutine. Hence, local variables
do not need to be defined or calculated in any particular order.

The Jacobian matrix is evaluated using the chain rule from current values
of U, D and L, and calculated concurrently with E. Analytical expres-
sions for the partial derivatives required for the Jacobian are found during
the metaprogramming step (discussed previously) and hence are explicitly
included within the Fortran executable.

Code variables are stored in the Fortran executable using a declared type that
contains not only the current value for the variable, but also an allocatable
float and integer array within which are stored any nonzero partial derivatives
the variable currently has, and with which unknown variable that derivative
corresponds to. Packaged sparse linear solvers are used to numerically solve
Equation (24) [11, 2].

5 Example nonlinear diffusion equation

results

As an example, the following system of equations was solved

Equation: ∇ · Γ(φ)∇φ−Λ(φ) = 0

Derived functions: Γ(φ) = φ2

Λ(φ) = 2φ3
(

1

(1+ x)2
+

1

(1+ y)2
+

1

(1+ z)2

)
Boundary Conditions: φ = (1+ x)(1+ y)(1+ z)

Solution: φ = (1+ x)(1+ y)(1+ z) (31)

5 Example nonlinear diffusion equation results C1141

(a) (b)

Figure 2: Frames (a) and (b) show φ for the example problem specified by
Equations (31), computed using mesh sizes of |I| = 380 and 612968 cells,
respectively.

over a three dimension region (0 6 x,y, z 6 1), and the results compared
against the analytical solution.1 The unstructured tetrahedron meshes were
created with the program Gmsh [5]. Figures 2a and 2b show example φ fields
computed using representative coarse and fine meshes. Figure 3 shows various
norms for the relative difference between the numerically generated and
analytical φ solutions, plotted against average cell size, which for this three
dimensional problem is approximately |I|−1/3. The error approaches zero as

1http://www.chemeng.unimelb.edu.au/people/staff/daltonh/downloads/arb/

code/latest/examples/manual/cube_laplacian_dhctac10_2012 provide the input files
for this problem.

http://www.chemeng.unimelb.edu.au/people/staff/daltonh/downloads/arb/code/latest/examples/manual/cube_laplacian_dhctac10_2012
http://www.chemeng.unimelb.edu.au/people/staff/daltonh/downloads/arb/code/latest/examples/manual/cube_laplacian_dhctac10_2012

5 Example nonlinear diffusion equation results C1142

10−5

10−4

10−3

10−2

10−1

10−2 10−1
10−1

100

101

102

103

104

E
rr

or
n
or

m
s,
L

C
om

p
u
ta

ti
on

al
so

lv
e

ti
m

e
(s

ec
on

d
s)

|I|−1/3 ≈ average cell dimension

L1
L2
L∞

cpu time

Figure 3: Various error norms for the numerical solution, and total compu-
tational time taken, both as a function of average cell dimension, for the
computations of Figure 2.

6 Conclusion C1143

the cell size is decreased, indicating that the discretisation method for this
set of equations is consistent. Also shown in Figure 3 is the computational
time required for each simulation. Once the mesh is sufficiently fine, the error
norms shown decrease by a factor of approximately 2.0 with increasing mesh
refinement, with computational time increasing by a corresponding factor of
approximately 5.5.

6 Conclusion

A mathematical and computational framework has been described that gener-
ates finite volume code for solving multiphysics transport problems. Within
the framework, equations are specified using pseudo-mathematical expressions
that combine the mathematical capabilities of the symbolic algebra package
Maxima with a number of defined finite volume operators. Hence, while only
a single nonlinear diffusion equation has been discussed in this work, quite
arbitrary systems of equations can be solved within this framework. In future
work we will apply the method to a greater range of physical systems.

References

[1] Luis Cueto-Felgueroso, Ignasi Colominas, Xesus Nogueira, Fermin Navar-
rina, and Manuel Casteleiro. Finite volume solvers and moving least-
squares approximations for the compressible Navier–Stokes equations
on unstructured grids. Computer Methods in Applied Mechanics and
Engineering, 196(45–48):4712–4736, 2007. doi:10.1016/j.cma.2007.06.003.
C1133

[2] Timothy A. Davis. Algorithm 832: UMFPACK V4.3—an unsymmetric-
pattern multifrontal method. ACM Trans. Math. Softw., 30(2):196–
199, June 2004. ISSN 0098-3500. doi:10.1145/992200.992206. http:

//www.cise.ufl.edu/research/sparse/umfpack/. C1140

http://dx.doi.org/10.1016/j.cma.2007.06.003
http://dx.doi.org/10.1145/992200.992206
http://www.cise.ufl.edu/research/sparse/umfpack/
http://www.cise.ufl.edu/research/sparse/umfpack/

References C1144

[3] J. H. Ferziger and M. Perić. Computational Methods for Fluid Dynamics.
Springer-Verlag, 3rd edition, 2002. C1131

[4] CSC IT Center for Science. Elmer: Open source finite element software for
multiphysical problems. http://www.csc.fi/english/pages/elmer/.
Accessed 31/1/11. C1129

[5] Christophe Geuzaine and Jean-Francois Remacle. Gmsh: A 3-d finite
element mesh generator with built-in pre- and post-processing facilities.
International Journal for Numerical Methods in Engineering, 79(11):1309–
1331, 2009. ISSN 1097-0207. doi:10.1002/nme.2579. C1141

[6] The COMSOL Group. Comsol multiphysics. http://www.comsol.com/
products/multiphysics/. Accessed 31/1/11. C1129

[7] Dalton Harvie. arb manual: version 0.25, 2011. http://www.chemeng.

unimelb.edu.au/people/staff/daltonh/downloads/arb/code/

manual.pdf. C1135

[8] J. E. Dennis Jr. and Robert B. Schnabel. Numerical Methods for Un-
constrained Optimization and Nonlinear Equations. Prentice-Hall, 1983.
ISBN 0-13-627216-9. C1137

[9] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P.
Flannery. Numerical Recipes in FORTRAN: The art of scientific com-
puting. Cambridge University Press, Second edition, 1992. C1137

[10] William Schelter, Maxima Users, and Developers Group. Maxima: A
computer algebra system, 2011. http://maxima.sourceforge.net/.
C1136

[11] Olaf Schenk and Klaus Gartner. Solving unsymmetric sparse systems
of linear equations with pardiso. Future Generation Computer Systems,
20(3):475–487, 2004. ISSN 0167-739X. doi:10.1016/j.future.2003.07.011.
http://www.pardiso-project.org/. Selected numerical algorithms.
C1140

http://www.csc.fi/english/pages/elmer/
http://dx.doi.org/10.1002/nme.2579
http://www.comsol.com/products/multiphysics/
http://www.comsol.com/products/multiphysics/
http://www.chemeng.unimelb.edu.au/people/staff/daltonh/downloads/arb/code/manual.pdf
http://www.chemeng.unimelb.edu.au/people/staff/daltonh/downloads/arb/code/manual.pdf
http://www.chemeng.unimelb.edu.au/people/staff/daltonh/downloads/arb/code/manual.pdf
http://maxima.sourceforge.net/
http://dx.doi.org/10.1016/j.future.2003.07.011
http://www.pardiso-project.org/

References C1145

Author address

1. D. J. E. Harvie, Department of Chemical and Biomolecular
Engineering, University of Melbourne, Parkville, Victoria 3010,
Australia.
mailto:daltonh@unimelb.edu.au

mailto:daltonh@unimelb.edu.au

	Introduction
	Finite volume discretisation
	Pseudo-mathematical expression language
	Newton–Raphson solution procedure
	Example nonlinear diffusion equation results
	Conclusion

