
ANZIAM J. 52 (CTAC2010) pp.C379–C394, 2011 C379

Aspects of a hybrid hp-finite element/spectral
method for the linearised

magnetohydrodynamic equations in spherical
geometries

D. Farmer1 D. J. Ivers2

(Received 30 January 2011; revised 28 June 2011)

Abstract

We consider the incompressible magnetohydrodynamic equations,
linearised about a steady basic state in spherical geometries. The
angular dependence is discretised using a Galerkin method based on
spherical harmonics. This produces a coupled system of ordinary
differential equations in radius, which may contain up to fourth order
derivatives, after separation of the time dependence. In applications
small magnetic, viscous or thermal diffusion may lead to boundary
layers of second or higher order. We investigate key aspects of the
discretisation of the radial equations using one dimensional hp-finite
element methods through two model problems: reduction of order
versus higher order elements for an ordinary differential equation of
fourth order; and fourth order boundary layers. Results indicate that
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higher order elements are to be favoured over a reduction of order, and
that robust exponential convergence may be achieved for the symmetric
two layer problem investigated.
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1 Introduction

We consider the discretisation of the incompressible magnetohydrodynamic
(mhd) equations, linearised about a steady basic state in spherical geometries.
Poloidal-toroidal representations are used for the velocity and magnetic field.
The angular dependence is discretised using a Galerkin method: the basic state
is expanded in vector spherical harmonics and the perturbation toroidal and
poloidal potentials, and the temperature are expanded in spherical harmonics.
This produces a coupled system of ordinary differential equations in radius,
which may contain up to fourth order derivatives, after separation of the time



1 Introduction C381

dependence. Previously the radial dependence has been discretised using
finite differences [2] or Chebychev collocation. However, one dimensional
hp-finite element (fe) methods are of present interest, since they lead to
practical exponential convergence in problems with boundary layers [8, §3.4,
e.g.] (§3). In order to apply hp-fe methods to the coupled systems, it is first
necessary to find out which method of approach to a fourth order equation
should be employed, reduction of order (§2.1), or a higher order expansion
(§2.2). Reduction of order for the h-version fe method has been treated
before [6, 7], and higher order expansions are mentioned [8], but here we
present a side by side comparison for the hp-fe method (§2.3). Numerical
results indicate that a higher order expansion achieves faster convergence rates
(Figure 2). For boundary layers, we investigate a fourth order problem. Now
there is an extra inner layer to resolve, that distinguishes this problem from
that studied by Schwab [8, §3.4]. The numerical results indicate exponential
convergence (Figure 4), which has been observed for a range of values a and
d determining the thicknesses of the layers.

1.1 The magnetohydrodynamic equations

The incompressible mhd equations for an electrically-conducting Boussinesq
fluid are linearised about a steady basic state (v0,B0,Θ0). In a frame rotating
with uniform angular velocity Ω the perturbation velocity v ′, magnetic
induction B ′ and temperature Θ ′ are governed [2, 3] by

ρ(∂t − ν∇2)v ′ = −ρ(ω0 × v ′ +ω ′ × v0 + 2Ω× v ′)

−∇P ′ + J0 ×B ′ + J ′ ×B0 − ραΘΘ
′ge , (1)

(∂t − η∇2)B ′ = ∇× (v0 ×B ′) +∇× (v ′ ×B0) , (2)

(∂t − κ∇2)Θ ′ = −v0 · q ′ − v ′ · q0 +Q ′/ρcp
+ 2ν(∇v0)S : (∇v ′)S/cp + 2J0 · J ′/σρcp , (3)

where P ′ := p ′ + ρv0 · v ′, q0 := ∇Θ0 , q ′ := ∇Θ ′ and ge := −∇Ue with the
effective gravitational potential Ue := U− 1

2
(Ω× r)2. Further, the following
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solenoidal conditions hold,

∇ · v ′ = 0 , ∇ ·B ′ = 0 . (4)

1.2 Solution in spherical geometries

Equations (4) in spherical geometries are satisfied by the solenoidal toroidal-
poloidal representations, B ′ = T{T ′} + S{S ′} and v = T{t ′} + S{s ′} , where
toroidal and poloidal fields are defined by T{T } := ∇ × {Tr} and S{S} :=
∇×∇× {Sr} with potentials T and S and radial vector r.

Equations (1)–(3) are satisfied by a Galerkin method in the spherical polar
angles [3], expanding the perturbation scalar fields in spherical harmonics,
f =
∑

α fαYα for f = S ′, T ′, s ′, t ′,P ′,Θ ′,Ue, and the basic state vector fields
in vector spherical harmonics, F =

∑
α FαYα for F = B0,J0,v0,ω0,q0,ge.

Greek subscripts and superscripts denote multi-indices [3].

The Galerkin method yields the t ′γ, s
′
γ, S

′
γ, T

′
γ, Θ

′
γ equations,

(∂t − νDγ)t
′
γ =
∑
α,β

{
− (ω0

αv
′
βv
′
γ) + (v0αω

′
βv
′
γ) + ρ

−1(J0αB
′
βv
′
γ)

− ρ−1(B0βJ
′
αv
′
γ) − αΘ(g

e
αΘ
′
βv
′
γ) − 2(Ωαv

′
βv
′
γ)
}

, (5)

(∂t − νDγDγ)s
′
γ =

∑
α,β,γ1

{
− (ω0

αv
′
βv
′
γ) + (v0αω

′
βv
′
γ) + ρ

−1(J0αB
′
βv
′
γ)

− ρ−1(B0βJ
′
αv
′
γ) − αΘ(g

e
αΘ
′
βv
′
γ) − 2(Ωαv

′
βv
′
γ)
}

, (6)

(∂t − ηDγ)S
′
γ =
∑
α,β

{
(v0αB

′
βB
′
γ) − (B0αv

′
βB
′
γ)
}

, (7)

(∂t − ηDγ)T
′
γ =

∑
α,β,γ1

{
(v0αB

′
βB
′
γ) − (B0αv

′
βB
′
γ)
}

, (8)

(∂t − κDγ)Θ
′
γ =

Q ′γ

ρcp
−
∑
α,β

{
(v0αq

′
βΘ
′
γ) + (q0αv

′
βΘ
′
γ) − νc

−1
p (v0αv

′
βΘ
′
γ) (9)
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− (µ0σρcp)
−1(J0αJβΘ

′
γ)
}

, (10)

where Dγ := ∂rr + 2r
−1∂r − γ(γ + 1)r−2 and r = |r|. A typical interaction

term is (ω0
αv
′
βv
′
γ) :=

ev(γ)fv(β)(Yα ×Yβ,Yγ)


∂γ(ω0

α∂βs
′
β), γ1 = γ± 1,β1 = β± 1;

∂γ(ω0
αt
′
β), γ1 = γ± 1,β1 = β;

ω0
α∂βs

′
β, γ1 = γ,β1 = β± 1;

ω0
αt
′
β, γ1 = γ,β1 = β;

where the angular dependence is contained in the coupling integral

(Yα ×Yβ,Yγ) :=
1

4π

∮
Yα ×Yβ ·Y∗γ dΩ ,

dΩ := sin θdθdφ , ∂γ := ∂r + γ
∗r−1 , and ∂γ := ∂r + γ∗r

−1 with γ∗ and γ∗
constants dependent on γ. The other interaction terms have similar expres-
sions [3].

In equations (5)–(10) the s ′γ-equation is fourth order in r; the remaining
equations are second order. The diffusion parameters ν, η and κ, which
multiply the highest r-derivatives in each equation, may be very small in
applications and hence produce boundary layers. Lastly, for steady basic
states, steady or eigenvalue solutions may be determined.

2 Systems of mixed order

From the previous section, the equations of interest (5)–(10) are coupled
systems of ordinary differential equations, up to degree four. The fourth
order terms may be handled in essentially two ways, and to compare these
we consider the simple problem: find y ∈ C4[a,b] such that

y(4) = f , (11)
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y(a) = Ya , y(b) = Yb , (12)

y ′(a) = Y ′a , y ′(b) = Y ′b , (13)

where Ya, Yb, Y
′
a and Y ′b are given real numbers. This is equivalent to a

simple static Euler–Bernoulli beam equation [5, 1]. Although a simple model
problem, by suitable choice of f (one that is difficult to approximate by
polynomials, for example an oscillatory function), the convergence of the two
methods are compared in §2.3 to determine the method to use in practice.

2.1 Method 1: coupled second order system

The first method involves rewriting the fourth order equation as a coupled
second order system. Let z = y ′′ and rewrite (11) as

z ′′ = f , y ′′ − z = 0 .

Now multiplying these equations by the test functions φ0 and φ1, respectively,
adding, and integrating over the domain [a,b],

(z ′φ0 + y
′φ1)

∣∣∣b
a
−

∫b
a

(z ′φ ′0 + y
′φ ′1 + zφ1)dx =

∫b
a

fφ0 dx .

The known values of y ′(a) and y ′(b), may be included in the weak form by
choosing φ1 ∈ H1. As the values z ′(a) and z ′(b) are unknown, take φ0 ∈ H10 ,
where H10 = {λ ∈ H1 | λ(a) = λ(b) = 0}. Finally, write y = yh + yb , where
yh ∈ H10 , and yb is a known function (that will be written in terms of the
finite element basis functions) that satisfies (12). Upon rearranging, the
resulting weak form is∫b

a

(z ′φ ′0 + y
′
hφ
′
1 + zφ1)dx = Y

′
bφ1(b) − Y

′
aφ1(a) −

∫b
a

(y ′bφ
′
1 + fφ0)dx .

From this weak form a matrix system is constructed, by expanding the
test and trial functions in terms of basis functions ψij on element i. These
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basis functions are generated from the basis functions ψj on the standard
element [−1, 1]. One such hierarchical basis is

ψ1(ξ) =
1
2
(1− ξ) , ψ2(ξ) =

1
2
(1+ ξ) , ψn(ξ) = (1− ξ2)P1,1n−3(ξ) , n > 2 ,

where ψ1 and ψ2 are boundary modes and ψn, n > 2 , are interior modes.
Here Pα,βn (ξ) refers to the unnormalized Jacobi polynomial of degree n cor-
responding to the weight function (1 − ξ)α(1 + ξ)β where α,β > −1 [4,
Appendix A]. The interior modes can be normalised [8, §3.1.4], so that∫1
−1(ψ

′
n)
2 dξ = 1 . The first four modes are plotted in Figure 1(a).

The stiffness matrix is assembled element-wise in the usual way, after applying
static condensation of the interior modes [8, 4]. Care must be exercised in
the overlapping of blocks (to enforce continuity).

2.2 Method 2: one higher order system

A higher order (C1) expansion is used. Multiplying equation (11) by the test
function φ, and integrating over [a,b],

(y(3)φ)
∣∣∣b
a
−

∫b
a

y(3)φ ′ dx =

∫b
a

fφdx .

Choosing φ ∈ H20 = {λ ∈ H2 | λ(a) = λ(b) = λ ′(a) = λ ′(b) = 0}, and
integrating by parts again results in the following weak form∫b

a

y ′′hφ
′′ dx =

∫b
a

(fφ − y ′′bφ
′′)dx ,

where y = yh + yb , but now yh ∈ H20 and yb satisfies (12) and (13). The
matrix system is formed by again expanding in terms of basis functions ψij
on element i. A hierarchical basis ψj, suitable for a C1 expansion, is defined
on the standard element [−1, 1] by

ψ1(ξ) =
1
4
(1− ξ)2(2+ ξ) , ψ2(ξ) =

1
4
(1− ξ)2(1+ ξ) ,
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Figure 1: (a) C0 and (b) C1 hierarchical basis functions ψn(ξ).

ψ3(ξ) =
1
4
(1+ ξ)2(2− ξ) , ψ4(ξ) = −1

4
(1+ ξ)2(1− ξ) ,

ψn(ξ) = (1− ξ2)2P2,2n−5(ξ) , n > 4 .

In this case there are four boundary modes,ψn, 1 6 n 6 4 . Theψ1 andψ3 are
used to enforce continuity, and ψ2 and ψ4, the continuity of the derivative. The

interior modes ψn, n > 4 , can be normalised [8, §3.1.4] so that
∫1
−1(ψ

′′
n)
2 dξ =

1 . The boundary modes are plotted in Figure 1(b).

For an expansion y =
∑

i,j y
i
jψ

i
j(x), where ψij(x) = ψj(χ

−1
i (x)) and ξ =

χ−1i (x) = (2x − xi − xi+1)/hi with hi = xi+1 − xi , the continuity of y ′

implies y ′(x−i+1) = y ′(x+i+1), or yi4/hi = yi+12 /hi+1 . This condition may be
enforced by taking terms hiψ

i
2(x) and hiψ

i
4(x) in the expansion for y. This

certainly simplifies the assembly of the stiffness matrix (condensed blocks
from adjacent elements are overlapped, in this case 2 × 2 blocks). If the
neighbouring mesh widths, hi, are of similar order, this works well. In the
boundary layer problems considered in the next section, the neighbouring his
vary significantly in order of magnitude. The terms hiψ

i
2(x) and hiψ

i
4(x)
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then produce scaling issues in the assembled stiffness matrix.

By instead taking terms max(hi−1,hi)ψ
i
2(x) and max(hi,hi+1)ψ

i
4(x) in the

expansion for y, and modifying the assembly appropriately, 2× 2 blocks may
still be overlapped without producing scaling issues. This also means that
any symmetry of the problem is preserved (against, say, introducing extra
equations for the continuity of the derivative).

2.3 Method 2 versus method 1

The two methods have been tested for an oscillatory right hand side f =
A sin(αx − β) where A, α and β are constants, by p-refinement on a ten
element uniform mesh of [0, 1], for various values of Y0, Y1, Y

′
0 and Y ′1. The

results indicate much faster convergence for the higher order method, a typical
plot is shown in Figure 2. The relative error in the L2 norm between the
hp-fe solution (or derivatives) calculated from either method 1 or 2, and the
exact solution (or derivatives) is plotted against the degrees of freedom. The
L2 norm is chosen for ease of calculation.

3 Fourth order boundary layers

For the second order boundary layer problem

− d2u ′′ + u = 1 , u(±1) = 0 , (14)

where d� 1 , Schwab [8] shows that the three element mesh-degree combi-
nation {−1,−1 + κñd, 1 − κñd, 1}, (n, 1,n), where ñ = n + 1/2 and κ is a
constant which may be taken as one, gives exponential convergence. Moreover,
the convergence is uniform with respect to d in the energy norm defined by

‖u‖2d =
∫ 1
−1

(
d2(u ′)2 + u2

)
dx .
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Figure 2: Relative errors in solution (or derivatives) of (11) versus number
of degrees of freedom, for f = (6π)−4 sin(6πx− 1

3
), on [0, 1], y(0) = y ′(0) =

y ′(1) = 0 , y(1) = 1 .
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This three element mesh-degree combination is employed for values of n and d
outside the super-exponential convergence range of the one element p-version.
This range occurs when r = e/(2ñd) < 1 . The analysis by Schwab [8] shows
that for these values of r, the error in the energy norm of the p-version is
bounded by Cd1/2rñ(1 − r2)−1/2, where C is independent of n and d. The
interior solution is resolved by the one element of fixed order. If the right-hand
side of the differential equation in (14) was not one (or a polynomial for that
matter), then the overall convergence rate would depend on the approximation
of the smoother components in the solution (the part of the exact solution
separate from the boundary layer components) [8, §3.4.4, Remark 3.56].

As the equations of interest contain terms up to fourth order, it is of interest
to determine whether the results obtained by Schwab [8] for the second order
case can be extended to a fourth order example. In order to do this consider
the following problem

(ad2)2u(4) − (1+ a2)d2u ′′ + u = 1 , u(±1) = 0 , u ′(±1) = 0 , (15)

where 0 < a < 1 determines the relative boundary layer thickness. Thus, for
this problem there is an inner boundary layer of thickness ad, contained in
an outer boundary layer of thickness d, and an interior region. The presence
of the inner boundary layer distinguishes this problem from that studied by
Schwab [8]. For this equation, we have the weak form,

B(u,φ) =

∫ 1
−1

[
(ad2)2u ′′φ ′′ + (1+ a2)d2u ′φ ′ + uφ

]
dx =

∫ 1
−1

fφdx ,

where φ ∈ H20 , (and f = 1 in our case) and the corresponding energy norm,

‖u‖2d = B(u,u) =

∫ 1
−1

[
(ad2)2(u ′′)2 + (1+ a2)d2(u ′)2 + u2

]
dx .

The relative error in the energy norm between the exact solution u and the
calculated solution ũ is

ER(a,d)2 =
B(u− ũ,u− ũ)

B(u,u)
=
B(u,u) + B(ũ, ũ) − 2B(u, ũ)

B(u,u)



3 Fourth order boundary layers C390

0 50 100 150
10

−8

10
−6

10
−4

10
−2

10
0

(a) 1−element

Degrees of Freedom

R
e

la
ti
v
e

 E
rr

o
r

 

 

d=1e−4

d=1e−3

d=1e−2

d=1e−1

0 10 20 30 40 50
10

−8

10
−6

10
−4

10
−2

10
0

(b) 3−elements

Degrees of Freedom

R
e

la
ti
v
e

 E
rr

o
r

 

 

d=1e−8

d=1e−6

d=1e−4

d=1e−2

Figure 3: Relative errors in solution of (15) versus number of degrees of
freedom for (a) the one element p version and (b) the three element hp
version, with a = 0.9 .

= 1−

∫1
−1 ũf dx∫1
−1 uf dx

,

after simplifying, using that u satisfies (15) and that B(u,u) = (u, f),
B(ũ, ũ) = (ũ, f), where (·, ·) is the L2 inner product on [−1, 1].

For our particular case, from the exact form of the solution one obtains that

(u, 1) = 2−
2d(1− a2) tanh[1/(ad)] tanh(1/d)

tanh[1/(ad)] − a tanh(1/d)
.

Firstly, we note that when a is close to one, the boundary layer components
are essentially the same (the inner layer thickness approaches the outer
layer thickness). Therefore, the fourth order problem is approximated by a
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Figure 4: Relative errors in solution of (15) versus number of degrees of
freedom for (a) the three element mesh and (b) the five element mesh, with
a = 0.1 and d = 10−2, 10−4, 10−6, 10−8 .

second order problem. We expect the three element mesh-degree combination
to produce similar convergence results as observed for the second order
problem (14) [8, §3.4.7]. This is indeed the case, as Figures 3(a) and 3(b)
illustrate for a range of d values.

As can be seen in Figure 3(a), for larger values of d the p-version converges
rapidly, but as d decreases, more degrees of freedom are required to reach
the super-exponential convergence range. In contrast, for the three element
mesh, this behaviour is reversed: the smaller the value of d, the faster the
convergence. This rather surprising behaviour is observed for the second order
problem (14), consistent with the analytical bounds on the relative error in
the energy norm, derived by Schwab [8, §3.4].

Our primary interest is in what happens as a decreases, say a = 0.1 . For
this value of a, observe in Figure 4(a) a deterioration in the convergence
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results for the three element mesh, as the inner boundary layer is no longer
resolved. We still observe faster convergence for smaller d values, but the rate
is no longer exponential. Using the three element result for the second order
boundary layer problem as a guide, we propose the following five element
mesh-degree combination

{−1,−1+ ñad,−1+ ñd, 1− ñd, 1− ñad, 1} , (n,n, 3,n,n) ,

that is, we insert an extra element of the same width as the thickness of
the inner layer. With this extra element, we expect to resolve the inner
boundary layer as a becomes small, producing better convergence results than
for the three element version. Figure 4(b) illustrates the five element mesh
for a = 0.1 . For this smaller value of a the five element method achieves
exponential convergence in the relative energy norm, with faster convergence
the smaller the value of d .

4 Conclusions and future research

We observed that for fourth order equations a higher order expansion gives
much faster convergence rates than a coupled system of lower order equations.

For the fourth order boundary layer example, the proposed five element mesh-
degree combination gives exponential convergence when a � 1 (we tested
the result with a as small as 10−6). Numerical experiments indicate that the
three element mesh-degree combination should be used when 0.4 < a < 1 .
We anticipate that the method will work well for higher order problems, by
adding further elements of width proportional to the thickness of the layer.
In applications the solution in the interior may require more than one element
of fixed order for exponential convergence.

Some of the steps towards the solution of the full system, (5)–(10), requiring
further research are: investigation of the convergence of eigensolutions of
the discretised linearised mhd equations (and hence the linear stability of
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non-linear solutions); the influence of the coordinate singularity at r = 0 ;
matching conditions across material boundaries; and the infinite interval
problem for the exterior.
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