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The lattice Boltzmann method for turbulent
channel flows using graphics processing units
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Abstract

We performed a direct numerical simulation of turbulent channel
flow at Reynolds number 180 using the Lattice Boltzmann method.
We used the single relaxation time collision operator. The code was
executed using graphics processing units as a highly parallel high
performance computing platform. Results are compared to published
direct numerical simulation results. We avoid common drawbacks of
the method, such as compressibility error and instability at higher
Reynolds numbers, by using a sufficiently small Mach number and
lattice spacing. We validate the Lattice Boltzmann method using
the single relaxation time collision operator as an effective tool for
continued research into fundamental turbulent flows. The method
is less suitable for wall bounded turbulence since these flows benefit
from an increased resolution near the wall while the standard Lattice
Boltzmann method requires an isotropic, homogeneous lattice. This

http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/3951

gives this article, c© Austral. Mathematical Soc. 2011. Published November 10, 2011. issn
1446-8735. (Print two pages per sheet of paper.) Copies of this article must not be made
otherwise available on the internet; instead link directly to this url for this article.

http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/3951


Contents C915

work validates the method as well as being a guide to suitable parameter
ranges and target flows.
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1 Introduction

The lattice Boltzmann (lb) method has enjoyed a rise in popularity over recent
years. When using the simple single relaxation time (srt) collision operator,
the method becomes an artificially compressible Navier–Stokes solver. The
method is fully explicit, making it attractive for parallel computing, and there
is no pressure velocity coupling, greatly reducing the computational effort
compared to finite volume methods. The lb method is able to deal with
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complex boundaries and is extensible to include multiple phases, species and
thermal effects. A recent review was presented by Aiden and Clausen [1].

Graphics processing units (gpus) have become increasingly powerful, offering
theoretical performance well in excess of normal consumer grade processors.
Their massively parallel architecture means that this power can only be used
effectively on a subset of suitable problems. The explicit and local nature of
the lb method means it responds very well to gpu computing. Bernaschi et
al. [4] used the lb method for flow through complex geometries and report a
three fold increase in speed using eight Nvidia GT200 series gpus compared
to 512 nodes of an ibm BlueGene cluster. Bailey et al. [2] and Toelke and
Krafczyk [14] also reported high performance gpu implementations of the
method.

Peng and colleagues [13] validate the lb method for decaying turbulence
by comparing results to the spectral method. Kareem et al. [9] also verify
the lb method for homogeneous, isotropic turbulence. Bespalko, Pollard
and Udin [5] recently simulated turbulent channel flow using the lb method,
finding general agreement but noting that the uniform grid spacing was a
drawback.

2 The lattice Boltzmann method

The lb method tracks fictitious particle populations that move along a fixed
isotropic lattice. Each time step consists of a collision between the particles,
followed by the populations streaming to the next lattice site in their path.
During the collision step, populations at a particular site are redistributed in
accordance with some collision rule. Using the srt collision model, this step is
a relaxation toward local equilibrium. The time advancement is summarised
as

fi (x+ ci · ∆t, t+ ∆t) = (1−ω) fi (x, t) +ωfeqi (x, t) . (1)
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Although ∆t is always one, it is included so that equations maintain the
correct dimensions. Each lattice is associated with a lattice tensor ci that
represents the velocity of the ith particle direction. Each direction is also
assigned a weight Wi. The hydrodynamic fields are calculated as

ρ (x, t) =
∑

fi (x, t) and u (x, t) =
1

ρ (x, t)

∑
fi (x, t) ci . (2)

With the equilibrium distribution defined as

feqi (x, t) = ρWi

[
1+

ci · u
c2s

+
(ci · u)2

2c4s
−

u · u
2c2s

]
, (3)

the scheme asymptotically approaches the incompressible Navier–Stokes (ns)
equations in the low Mach number limit, is second order accurate in space
and has first order accuracy in Mach number, equivalent to it being first order
in time.

The kinematic viscosity ν and pressure P are defined in terms of the relaxation
factor ω and the speed of sound cs:

ν = c2s · ∆t
(
1

ω
−
1

2

)
and P = c2sρ . (4)

In general, cs depends on the lattice used; however, for all lattices used in
this work cs = 1/

√
3 .

Rigorous proof of this ns equivalence and order of accuracy was given by
Benzi, Succi and Vergassola [3], Wolf and Gladrow [15] and Junk, Klar and
Luo [7]. These works also discussed isotropy requirements used to derive the
D3Q15 and D3Q19 lattices used in the present work.

3 Problem specification

We simulate a fully resolved turbulent channel flow in a periodic domain. The
domain is a rectangular prism with periodic boundaries in the streamwise x and
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Table 1: Dimensions of lattices used.
Ny Nx Nz ly lx lz Ntot y+wall

lbm - 92 92 288 176 2 2π π 4.6× 106 3.82
lbm - 112 112 352 176 2 2π π 6.9× 106 3.16
lbm - 132 132 416 212 2 2π π 11.6× 106 2.69
lbm - 152 152 480 246 2 2π π 17.8× 106 2.35
lbm - 92 - 4π 92 576 198 2 4π 4/3 π 10.4× 106 3.82
lbm - 112 - 4π 112 704 234 2 4π 4/3 π 18.0× 106 3.16
Moser et al. [12] 129 128 128 2 4π 4/3 π 2.1× 106 0.05

spanwise z directions and solid wall boundaries in the wall-normal y direction.
The half height of the channel δ is equal to one. Results are obtained for
streamwise domain lengths of 2π and 4π and spanwise widths of π and 4/3π
and compared to the spectral results of Moser, Kim and Mansour [12]. Table 1
details the domain size and lattice resolutions used here, and those of Moser
et al. Our implementation of the lb method requires the use of a uniform
lattice, resulting in a coarser mesh at the wall, as compared to ns methods
which commonly use nonuniform grids. The distance to the node closest to
the wall is given in terms of wall units

y+ =
uτy

ν
. (5)

The uniform grids result in a slightly higher wall normal resolution in the
centre of the channel and a much higher resolution in the streamwise and
spanwise directions. The flow is driven by a body force equivalent to a
pressure gradient.

The simplest solid wall boundary condition (bc) bounces particles back along
their incoming path at solid walls. This ‘bounce back’ bc is only first order in
space while the rest of the method is second order. We use the extrapolation
bc introduced by Guo, Zheng and Shi [6] in order to maintain second order
accuracy. Here, one layer of ghost nodes is maintained outside the fluid with
the boundary falling anywhere in the region between the ghost node and
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the fluid node. This bc has the capacity to deal with curved boundaries;
however, we use a simplified version to deal with a boundary aligned with
the Cartesian grid, and place the boundary exactly on the ghost node.

4 Implementation

Mattila et al. [10, 11] outlined many implementations of the lb method. We
use a ‘two step’ method where the collision and streaming operation are
performed separately and only one copy of lattice information is stored. This
method is a factor of two slower than the ‘two lattice’ method where the
collision and streaming are fused into one step, writing results to a second
copy of the lattice to remove data dependence. Mattila et al. [10, 11] also
present a more efficient ‘swap’ algorithm where the collision and streaming
are fused and only one lattice is required; however, it is unsuitable for our
purposes as it relies on sequential execution. Bailey et al. [2] propose a new
algorithm, suitable for parallel operation and tested on a gpu, that uses only
one copy of the lattice and achieves performance in between the ‘two step’
and the ‘two lattice’ methods. Their algorithm performs the collision step
alone for even time steps, odd time steps fuse streaming followed by collision
followed by another streaming operation.

We use Nvidia’s cuda language extensions for C to write code for the gpu,
implementing domain decomposition in order to use multiple gpus in a single
machine. The machine used for testing has two Nvidia gtx295 graphics cards,
each with two GT200 series processors. Each gpu has 896MB of ram and
30 multiprocessors, each containing eight stream processors (equivalent to
fpus), resulting in a theoretical performance of 894Gflops in single precision
and 112GB/sec memory bandwidth.
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4.1 Parallel processing

Each element of a calculation has its own thread on the gpu. With an
enormous reserve of threads, typically at least tens of thousands, ready to
perform work, the gpu’s task scheduler keeps the processing units constantly
busy while idle threads perform memory transactions. Synchronisation over
the entire domain stalls thread scheduling and degrades performance. Nonlocal
communication such as dot product or matrix multiplication type operations
require data reduction. This increases the complexity of the algorithm and
reduces efficiency. The lb method is well suited to both of these concerns.
The collision step is fully local and the streaming step requires only nearest
neighbour communication. Also, synchronisation is only required once per
time step for most algorithms, increasing to twice per time step for the ‘two
step’ method.

The memory controller achieves optimal bandwidth if the data requested by
a group of 16 threads (half a warp) is sequential and aligned to 64 byte or
128 byte segments. Our method groups threads into blocks consisting of two
parallel stripes of 32 nodes incremented in the primary indexing direction (the
x direction), thus allowing all reads to be both aligned and sequential during
collision. However, during the streaming step, 10 out of 19 store operations
are shifted in the x direction and are no longer aligned. Bailey et al. [2]
and Toelke and Krafczyk [14] stored stripes as long as the domain in the
x direction into on-die shared memory in order to shift values and restore the
alignment for all store operations. This is not feasible for larger domains due
to limited shared memory.

The ratio of the number of active threads to the maximum number of threads
per multiprocessor (1024 on GT200 hardware), referred to as the occupancy, is
also important to thread scheduling. The number of 32 bit registers (16, 000)
and the amount of shared memory (16 kB) available on each multiprocessor are
the most common constraints to the number of active threads. With threads
grouped into blocks of 64, our main kernel uses 50 registers per thread and
1332 bytes of shared memory per block using single precision, thus allowing
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five active blocks (320 threads). In double precision, it uses 2624 byte of
shared memory and only 40 registers allowing six active blocks (384 threads);
however, the compiler spills 152 bytes per thread worth of register space into
local memory, greatly impacting performance. The compiler spills variables to
local memory when arrays are accessed dynamically and when the maximum
number of registers is exceeded. There are enough registers available using
single precision that we avoid spilling by referring to lattice velocities explicitly.

Domain decomposition is accomplished by slicing in the wall-normal direction,
with each slice overlapping its neighbour by one node. Each slice is further
subdivided into three sub-slices, which are calculated sequentially. The sub-
slices on the edges, which are linked to data on other gpus, are calculated
first and then the boundary communication is performed while the centre
sub-slice is computed. Boundary data needs to be passed through the cpu
and buffered in the system memory since there is no direct communication
between the gpus.

4.2 Simulation parameters

The flow is defined by the Reynolds number Reτ based on the friction veloc-
ity uτ. The wall shear τw is related to the applied body force f, by a static
balance of forces as

fδ = τw = µ
∂u

∂y

∣∣∣∣
y=0

, (6)

with uτ and Reτ defined in terms of f as

uτ =

√
τw

ρ
=

√
fδ

ρ
and Reτ =

uτδ

ν
=
δ

ν

√
fδ

ρ
. (7)

Lattice spacing and time step are both fixed at one in lattice units. The size
of the domain δ is determined by the resolution, whereas the viscosity and
the body force remain variable.
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We specify the Reynolds number, with the added constraint that the Mach
number should be below some threshold in order to decrease the compress-
ibility error. The Mach number plays a similar role to the cfl number

cfl =
∆t · umax

∆x
. (8)

With ∆t and ∆x both equal to one in lattice units,

cfl = umax , and Ma =
umax

cs
=

cfl

cs
=
√
3× cfl . (9)

We used a Mach number of 0.1, equivalent to a cfl number of 0.06 for all
simulations.

5 Results

5.1 Turbulent channel flow

To generate turbulent channel flow, the flow field had to be initialized with a
sufficiently large perturbation. A random three dimensional vector field was
smoothed to reduce high frequency noise, a potential source of instability. We
take the curl of this field to yield a divergence free velocity perturbation that
is superimposed on a mean streamwise velocity profile based on the 1/7 power
law. After initialization, the friction velocity first drops and then rises to a
peak, corresponding to the onset of turbulence. We let the simulation run for
1000 eddy turnover times after this peak to be certain that the flow is in the
fully developed regime,

teddy =
δ

umax

. (10)

Turbulence statistics are then sampled for a further 1000 eddy turnover times.

The results presented below are obtained on the ly = 2 , lx = 2π and lz = π
domains summarised in Table 1. Results obtained with the larger domains
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Figure 1: Mean streamwise velocity profiles.

show negligible variation. The largest feasible grid with the large domain
is 110 nodes in the wall normal direction, increasing to 150 nodes using the
smaller domain. The results were validated against the spectral results of
Moser, Kim and Mansour [12].

Figure 1 shows that the mean velocity profile approaches the spectral results
as the grid is refined. We see the viscous sublayer where y+ is less than five.
The log law region has y+ greater than 30. The closest node to the wall
using the grid with Ny = 152 is shown as a white filled dot. The black dots
are grid points using the spectral method showing the increased near wall
resolution used by Moser and colleagues.

The streamwise fluctuating velocity is the largest contributor to the turbulent
kinetic energy (tke). The height of the peaks in tke, as shown in Figure 2, is
a good indicator of agreement between results, with the results obtained using
the lb method approaching the spectral method with increasing resolution.
The tke profile shows better agreement away from peaks. Figure 3 shows
the streamwise energy spectrum for y+ = 19 with our results agreeing with
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Figure 2: Turbulent kinetic energy profiles.

those of Moser et al. [12] in the inertial range and extending further into the
dissipative range.

We avoid numerical instability at Reτ = 180 despite reports of stability
problems at higher Reynolds numbers using the lb method. The viscosity is
kept sufficiently high by the high grid resolution. Experiments with Reτ = 395
did prove to be unstable using the largest feasible lattice for our system,
152 nodes in the wall normal direction. If possible, increasing the resolution
to 180 nodes in the wall normal direction would increase the viscosity to a
value that has been stable in other situations. This minimum resolution is
still lower than the 256 nodes used by Moser et al. for the same Reynolds
number.
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Figure 3: Streamwise energy spectrum for y+ = 19 .

5.2 Computational performance

Table 2 shows performance results, measured in Mlups (million lattice updates
per second) for various configurations tested. The first three entries in
the table are performance benchmarks obtained by iterating the lb kernel
alone, with the fourth entry ‘two step full’ demonstrating the 30% reduction
in performance after adding boundary conditions and sampling turbulence
statistics.

Performance per processor using domain decomposition and four gpus is
shown in the final entry ‘two step multi’, with parallel efficiencies of 65%
and 88% using single and double precision respectively. The main issue
degrading performance when using domain decomposition is the bandwidth
available for communication of boundary information between gpus.

Bailey et al. [2] and Toelke and Krafczyk [14] used a Nvidia 8800 Ultra which
has a memory bandwidth of 104GB/sec and computational throughput of
576Gflops compared to the 112GB/sec and 894Gflops of the gtx295 used in
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Table 2: Computational performance.
Single precision Double precision

Algorithm Mlups Gflops GB/sec Mlups Gflops GB/sec
two lattice ? 358 91.3 54.4 91 23.2 27.7
two lattice 186 47.4 28.3 - - -
two step simple 101 25.8 30.7 55 14.0 33.4
two step full 71 18.1 21.6 42 10.7 25.5
two step multi 46 11.7 14.0 37 9.4 22.5

our work. Bailey et al. [2] achieved an impressive 300Mlups using a ‘two lattice’
algorithm and 260Mlups using their improved single lattice method. Toelke
and Krafczyk achieve up to 582Mlups using the less computationally intense
D3Q13 lattice and mrt collision operator. They both use a technique to make
all memory stores aligned. As detailed in Section 4.1, this optimization is not
feasible for larger domains. The ‘two lattice ?’ method shows the performance
of our kernel if all stores are artificially forced to be aligned; when this is
done our method has a speed comparable to that of Bailey et al. [2].

Table 3 gives the performance of the present algorithm, implemented using
standard C and parallelized using OpenMP, for comparison with gpu perfor-
mance. We tested two processors: an Intel i7 920 overclocked to 3.2GHz; and
an amd X6 1090T at the standard clock speed of 3.2GHz. The memory of
both systems is set to 2GHz. The gpu achieves a minimum speed up factor
of around 20.

We also tested the less computationally intense D3Q15 lattice and encountered
the chequerboard instability as shown in Figure 4 and documented by Kandhai
et al. [8]. The D3Q19 lattice does not show these effects and so is used for all
our simulations.
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Table 3: cpu performance
Single precision Double precision

cpu Threads Mlups Gflops GB/sec Mlups Gflops GB/sec

amd X6 1090T 1 0.66 0.17 0.20 0.52 0.13 0.32
amd X6 1090T 4 2.08 0.53 0.63 1.75 0.45 1.06
amd X6 1090T 6 2.44 0.62 0.74 2.14 0.55 1.30
Intel i7 920 1 0.89 0.23 0.27 0.84 0.21 0.51
Intel i7 920 4 3.22 0.82 0.98 2.99 0.76 1.82

Figure 4: Vorticity magnitude at the same simulation time using the D3Q15
lattice (left) and the D3Q19 lattice (right).
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6 Conclusion

The lb method has been successfully used to simulate turbulent channel flow.
The main errors stem from the inability to capture near wall gradients due to
the uniform lattice. The method may be more suitable for studying turbulent
flows that are not bounded by walls. One option to make the method practical
for simulation of wall bounded flows would be to use embedded high resolution
grids close to the walls. This is possible with the lb method.

We achieved an efficient parallel implementation due to the explicit and local
nature of the lb method. Using gpu computing, we achieved a much higher
performance than possible using standard cpus. The performance levels
reached were lower than some published results due to a different choice of
algorithm and our code having additional features to study fully turbulent
flow. Our code also scales well to multiple gpus using domain decomposition.
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