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Abstract

We examine sparse grid quadrature on Korobov spaces; that is,
weighted tensor product reproducing kernel Hilbert spaces on the
torus. We describe a dimension adaptive quadrature algorithm based
on an algorithm of Hegland [ANZIAM J., 44(E):C335, 2003], and
also formulate a version of Wasilkowski and Woźniakowski’s weighted
tensor product algorithm [J. Complexity, 15(3):402, 1999]. We claim
that our algorithm is generally lower in cost than Wasilkowski and
Woźniakowski’s algorithm, and therefore both algorithms have the opti-
mal asymptotic rate of convergence given by Theorem 3 of Wasilkowski
and Woźniakowski. Even so, if the dimension weights decay slowly
enough, both algorithms need a number of points exponential in the
dimension to produce a substantial reduction in quadrature error.

http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/view/3952

gives this article, c© Austral. Mathematical Soc. 2011. Published July 29, 2011. issn
1446-8735. (Print two pages per sheet of paper.) Copies of this article must not be made
otherwise available on the internet; instead link directly to this url for this article.

http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/view/3952


Contents C501

Contents

1 Introduction C501

2 Setting C503

3 Algorithm C506

4 Analysis C508

5 Numerical results C512

References C514

1 Introduction

This article examines sparse grid quadrature on weighted Korobov spaces,
that is, weighted tensor products (wtp) of reproducing kernel Hilbert spaces
(rkhs) on the torus Td, the d-dimensional product of S1, the circle of unit
radius.

A function defined on the d-dimensional unit torus is equivalent, from the point
of view of integration, to a function which is periodic on the d-dimensional
unit cube. The integration of functions on a high dimensional unit cube
occurs in many applications, most notably in finance. Often, such integration
cannot be performed analytically, but must be approximated by quadrature,
that is, by a linear combination of function values obtained at a finite number
of points in the cube.

The study of rates of convergence of quadrature of periodic functions on the
unit cube goes back at least as far as Korobov [5, 6], who studied classes of
functions defined by the rate of decay of the coefficients in the Fourier series
of the function. The rate of convergence of a quadrature rule, as the number
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of points increases, generally depends on the properties of the function, or
space of functions, to which the quadrature rule is applied.

More recently, attention has shifted to Korobov spaces, defined as reproducing
kernel Hilbert spaces of periodic functions on the unit cube. In a Korobov
space, the reproducing kernel is the product of one dimensional kernels.
Weighted Korobov spaces are a generalisation of Korobov spaces where each
one dimensional kernel is defined using a possibly different weight. These
weighted spaces are used to study tractability of quadrature rules. The
general question studied is how the rate of convergence of a quadrature rule
depends on the number of dimensions of the space where it is defined. Rates
of convergence and criteria for strong tractability of quadrature in weighted
Korobov spaces spaces have been well studied by Hickernell and Woźnia-
kowski [4] and by Sloan and Woźniakowski [8]. As noted by Kuo and Sloan [7],
the setting of weighted Korobov spaces is equivalent to the setting they used
to examine quasi-Monte Carlo quadrature on d-dimensional products of the
unit sphere Ss ⊂ Rs+1, confined to the special case where s = 1 , that is, the
d-dimensional torus Td. This is the setting used in this article, and it is
described in more detail in the next section 2.

The idea of sparse grid quadrature is based on Smolyak’s quadrature rules.
Smolyak’s original article studied the convergence of rules for non-periodic
functions on the unit cube, as well as Korobov’s classes [9].

In function spaces where the dimensions may have different weights, Smolyak’s
original sparse grid algorithm has been modified and generalized, resulting in
dimension adaptive sparse grid algorithms. Such algorithms include those of
Wasilkowski and Woźniakowski [10], Hegland [3], and Gerstner and Griebel [2].
Of these, the wtp algorithm of Wasilkowski and Woźniakowski has the most
well-developed theory of the rate of convergence of the worst case error, but
this algorithm and its analysis are based on weighted spaces of non-periodic
functions on the unit cube, and must be modified for our weighted Korobov
setting.

The remainder of this article is organised as follows. Section 2 describes our
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weighted Korobov space setting in detail. Section 3 introduces our dimension
adaptive sparse grid quadrature algorithm. Section 4 analyses our version
of the wtp algorithm of Wasilkowski and Woźniakowski, and compares its
theoretical rate of convergence with that of our dimension adaptive algorithm.
Section 5 contains numerical results, comparing the two algorithms, and
shows how our algorithm performs as the dimension is increased.

2 Setting

Let D ⊂ Rs+1 be a compact s-dimensional manifold with probability mea-
sure µ. It follows that the constant function 1, with 1(x) = 1 for all x ∈ D , is
integrable and

∫
D
1(x)dµ(x) = 1 . Then let H be a Hilbert space of functions

f : D→ R , with a kernel K, satisfying

• for every x ∈ D there exists kx ∈ H such that

f(x) = 〈kx, f〉H for all f ∈ H , (1)

• every f ∈ H is integrable and∫
D

f(x)dµ(x) = 〈1, f〉H , (2)

where the functions kx(y) := K(x,y), and where 〈·, ·〉H denotes the scalar
product in H. We recognise H as a reproducing kernel Hilbert space. In this
framework, quadrature methods Q, defined by

Q(f) :=

n∑
i=1

wif(xi),

are continuous linear functionals and Q(f) = 〈q, f〉H with q =
∑n

i=1wikxi .
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We assume that the quadrature points xi are given. An optimal choice of
weights wi minimises the worst case quadrature error e(q), which is given by
the norm ‖1− q‖H. The optimal q∗ is thus defined as

q∗ := argminq
{
‖1− q‖H | q ∈ span{kx1 , . . . ,kxn}

}
. (3)

The weights of an optimal quadrature method are thus obtained by solving a
linear system of equations with a matrix whose elements are the values of
the reproducing kernel K(xi, xj) = 〈kxi ,kxj〉H . The right-hand side of these
equations is a vector with elements all equal to one.

We now describe our more specific reproducing kernel Hilbert space H of
functions on D. The space H satisfies (1), but as well as (2), it also satisfies
the more specific ∫

D

f(x)dµ(x) = 〈1, f〉H = 0 .

We now extend H into the space Hγ, which consists of all functions of the
form g = a1+ f , where a ∈ R , and f ∈ H with the norm ‖ · ‖Hγ defined by

‖g‖2Hγ = |a|2 +
1

γ
‖f‖2H .

It is easily verified that Hγ is an rkhs with reproducing kernel

Kγ(x,y) = 1+ γK(x,y),

where K is the reproducing kernel of the rkhs H.

For functions on the domain Dd we consider the tensor product space Hd :=⊗d
k=1H

γk where 1 > γ1 > · · · > γd > 0 . This is an rkhs of functions on Dd

with reproducing kernel Kd(x,y) :=
∏d

k=1(1+γkK(xk,yk)) where xk,yk ∈ D

are the components of x,y ∈ Dd. Moreover∫
Dd

f(x)dµd(x) = 〈1, f〉Hd
,
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where µd is the product measure, 〈·, ·〉Hd
is the scalar product on the tensor

product space Hd, and 1 is the constant function on Dd with value 1. It
follows that the space Hd satisfies the two conditions (1) and (2) and we can
derive optimal quadrature rules for given point sets.

We now describe our specific Korobov space setting, which is the setting of
Kuo and Sloan [7], with s := 1 . We take our domain D to be the unit circle
T := S1 := {x ∈ R2 | x21 + x22 = 1}, and consider the real space L2(T). We
use the real Fourier basis defined by Y0,0(x) := 1 , Y`,1

(
(cos θ, sin θ)

)
= cos `θ ,

Y`,2
(
(cos θ, sin θ)

)
= sin `θ , ` = 1, . . . ,∞ .

For f ∈ L2(T), we expand f in the Fourier series

f(x) = f̂0,0 +

∞∑
`=1

2∑
m=1

f̂`,mY`,m(x).

For positive weight γ, we define the rkhs

H(r)
1,γ :=

{
f ∈ L2(T) | ‖f‖H(r)

1,γ
<∞}, where

〈f,g〉H(r)
1,γ

:= f̂0,0 ĝ0,0 + γ
−1

∞∑
`=1

2∑
m=1

`2r f̂`,m ĝ`,m .

The reproducing kernel of H(r)
1,γ is then

K
(r)
1,γ(x,y) := 1+ γAr(x · y), where for z ∈ [−1, 1],

Ar(z) :=

∞∑
`=1

2

`2r
T`(z),

with T` the Chebyshev polynomial of the first kind, T`(cos θ) := cos `θ .
Convergence of Ar requires that r > 1/2 .

For γ := (γd,1, . . . ,γd,d), we now define the tensor product space

H(r)
d,γ :=

d⊗
k=1

H(r)
1,γd,k

.
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This is a weighted Korobov rkhs on Td, with reproducing kernel

K
(r)
d,γ(x,y) :=

d∏
k=1

K
(r)
1,γd,k

(xk,yk).

This space is equivalent to the weighted Korobov space of periodic functions
on the unit cube, studied by Hickernell and Woźniakowski [4] and by Sloan

and Woźniakowski [8]. Quadrature is therfore strongly tractable on H(r)
d,γ

if and only if
∑∞

k=1 γd,k < ∞ , and, in the case of exponentially decreasing
weights as studied here, the optimal worst-case error has an upper bound
of order O(n−r), where n is the cost of the quadrature rule in terms of the
number of points [8]. The order of the lower bound is known to be the same
as that of the non-periodic setting [4].

3 Algorithm

Algorithm 1 studied here is an adaptation of the dimension adaptive algorithm
for the solution of variational problems suggested by Hegland [3]. We describe
our algorithm in our general rkhs setting, as given in Section 2.

We assume here that the quadrature points in D are given and the same for
all spaces Hγ. We only consider up to a maximum of n points which we
denote by x1, . . . , xn ∈ D . The quadrature rules for Hγ are then defined as
some element of Vγi = span{kγx1 , . . . ,kγxni

} ⊂ Hγ. We denote the optimal rule

in Vγi by qγi . Now define the pair-wise orthogonal spaces Uγi by Uγ0 = Vγ0 ,
and by the orthogonal decomposition Vγi+1 = V

γ
i ⊕U

γ
i+1 . Using that the qγi

are optimal,

δγi+1 := q
γ
i+1 − q

γ
i ∈ U

γ
i+1

and δ0 := q
γ
0 ∈ U

γ
0 = V

γ
0 . Note that

Uγi+1 6= span{kxni+1 , . . . ,kxni+1 }.
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Algorithm 1: The dimension adaptive (da) algorithm.

Data: accuracy ε, incremental rules ∆j and their costs νj for j ∈ Nd
Result: ε approximation q(DA) and index set I
I := {0}; q := ∆0;1

while ‖1− q‖ > ε do2

i := argmaxj{‖∆j‖
2
/νj | I ∪ {j} is a down-set};3

I := I ∪ {i}; q := q+ ∆i;4

end5

A sparse grid quadrature rule is then of the form

q ∈ VI :=
∑
j∈I

d⊗
k=1

V
γd,k
jk

for some index set I. From the orthogonal decomposition Vγj =
⊕j

i=1U
γ
i one

derives the multidimensional orthogonal decomposition

VI =
⊕
j∈I

d⊗
k=1

U
γd,k
jk

,

where I = {i | i 6 j for some j ∈ I}, where the comparison i 6 j has to hold
for all components of i and j. When I = I , we say that I is a down-set [1,
p.13]. One can then show that an optimal q ∈ VI is obtained as

q∗I =
∑
j∈I

d⊗
k=1

δ
γd,k
jk

.

Thus both VI and q∗I are obtained in terms of the down-set I, effectively
restricting our choice of the set I to index sets which are also down-sets.

We now describe our dimension adaptive (da) Algorithm 1 to choose the set I.

We first define ν
(k)
jk

:= dimU
γd,k
jk

and δ
(k)
jk

:= δ
γd,k
jk

. The algorithm then uses
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the definitions

νj :=

d∏
k=1

ν
(k)
jk

and ∆j :=

d⊗
k=1

δ
(k)
jk

.

Here jk is the kth component of the multi-index j.

4 Analysis

We first describe the situation on a single circle where, if γ is large enough,
the norm of the one point rule is less than the norm of the difference between
the optimal two point rule and the one point rule, and show how this reverses
the usual order of norms between successive incremental rules in many cases.
In the following, we consider optimal weight rules in the sense of (3), and we

abbreviate K
(r)
1,γ to K.

The squared norm of the optimal one point rule on H(r)
1,γ is 1/K(x, x) =

1/
(
1 + γAr(1)

)
. The optimal two point rule, with points x1 and x2 and

weights w1 and w2, has squared norm 2/(K(x1, x1) + K(x1, x2)). Since Ar is
an increasing function over [−1, 1], K(x1, x2) is minimal when x2 = −x1 . (The
two point rules used by the da quadrature are of this form.) The optimal two
point rule therefore has squared norm 2/

{
2 + γ[Ar(1) + Ar(−1)]

}
. This is

more than twice the squared norm of the one point rule when Ar(−1) < −1
and γ > −1/Ar(−1). It can be shown that Ar(−1) < −1 for any r > 1/2 . For
our numerical examples, which have r = 3 , we have −1/A3(−1) ' 0.50733 .

Consider two incremental da rules ∆j and ∆j ′ , on H(r)
d,γ, with jk = j

′
k for all k

except that jk ′ = 0 and j ′k ′ = 1 . Since the norms of the incremental rules
are the products of difference rules on each circle, if γd,k > −1/Ar(−1), then
‖∆j ′‖ > ‖∆j‖.

We now turn to estimates for rules on a single circle, in order to use them
with an adapted version of the theory of Wasilkowski and Woźniakowski.
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On a single circle, our sparse grid quadrature rule is an optimal weight rule
qj := qr,γ(Sj), based on a set of equally spaced points Sj on the unit circle,
with nj := |Sj|. The series expansion of the function Ar then yields the

following error bound for quadrature on H(r)
1,γ, namely

e2(qj) 6
4r

2r− 1
γn−2r

j .

For our numerical example, we also have nj = 2
j. Since e2(qj) > 0 , we can

therefore show that ‖qj − qj−1‖H(r)
1,γ

6
√
γC2−rj, where

C := 21−r
√
r/(2r− 1) . (4)

In our setting, and our notation, the criteria needed by Wasilkowski and
Woźniakowski [10, Theorem 3] become

nj+1 D
jp 6 1 , for all j > 1 , and (5)

‖qj − qj−1‖H(r)
1,γ

6
√
γCDj, for all j > 1 , (6)

for some D ∈ (0, 1) and some positive C and p. For the points used by our
da quadrature rules, these criteria hold with C as per (4), D = 2−r, and
p = 1/r .

We now describe a second variant of wtp quadrature, q(WW) on H(r)
d,γ, identical

to the sequence of quadrature rules q(DA) described in Section 3, except that
the order in which the incremental rules are added to this second variant rule
is essentially the order used by Wasilkowski and Woźniakowski [10, §5]. As a
consequence of (6), we have

‖∆j‖H(r)
d,γ

=

d∏
k=1

∥∥∥δ(k)jk ∥∥∥H(r)
1,γd,k

6 b(d, j) :=

d∏
k=1

(√
γd,k CD

jk
)1−δ0,jk .
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Let (ξd,k), k = 1, . . . ,d , be a sequence of positive numbers. In contrast to
Wasilkowski and Woźniakowski [10, §5], we do not stipulate that ξd,k = 1 .
Define

ξ(d, j) :=

d∏
k=1

ξ
1−δ0,jk
d,k . (7)

We therefore have b(d, j)/ξ(d, j)→ 0 as ‖j‖1 →∞ . We order the incremental
rules in order of non-decreasing b(d, j)/ξ(d, j) for each multi-index j, creating
an order on the multi-indices j(WW)(h). We adjust ξ(d,k) so that this order
agrees with the lattice partial ordering of the multi-indices. For our numerical
examples, we use ξd,k := CD , with C and D defined as above. We now define

I
(WW)
N :=

{
j(WW)(1), . . . , j(WW)(N)

}
, and define the quadrature rule

q
(WW)
N :=

∑
j∈I(WW)

N

∆j .

To obtain a quadrature error of at most ε ∈ (0, 1), we set

N(ε,d) :=
∣∣∣{j | b(d, j)/ξ(d, j) >

(
ε/C1(d,η)

)1/(1−η)}∣∣∣ ,
where η ∈ (0, 1) and

C1(d,η) :=

√√√√ξ
2(1−η)
d,1

1−D2

d∏
k=2

(
1+ (C2γd,k)ηξ

2(1−η)
d,k

D2η

1−D2η

)
.

Finally, we define

q(WW)
ε :=

∑
j∈I(WW)

N(ε,d)

∆j . (8)

We now present our version of Wasilkowski and Woźniakowski’s main theorem
on the error and cost of wtp quadrature [10, Theorem 3].
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Theorem 1 Let η ∈ (0, 1). Then the quadrature rule q
(WW)
ε,d defined by (8)

has worst-case quadrature error e(q
(WW)
ε ) 6 ε , and its cost (in number of

quadrature points) is bounded by

cost(q
(WW)
ε,d ) 6 C(d, ε)

(
1

ε

)p/(1−η)
,

where

C(d, ε) :=
ξpd,1
∏d

k=2

(
1+ Cpγ

p/2
d,k/ξ

p
d,k g(k, ε)

)
f(k, ε)p

(1−Dp)(1−D2)p/(2(1−η))
,

f(i, ε) :=

(
1+ C2ηγηd,iξ

2(1−η)
d,i

D2η

1−D2η

)1/(2(1−η))
,

g(k, ε) :=

 log

(
Cγ

1/2
d,k/(ξd.k(1−D

2))1/(2(1−η))
∏k

i=2

(
f(i, ε)

)
ε−1/(1−η)

)
logD−1


+

.

By bxc+ , we mean max(0, x).

Wasilkowski and Woźniakowski’s proof, with s := 2 and α := 1 , applies
directly to our Theorem 1, once the change in ξd,1 is taken into account. For
exponentially decreasing dimension weights γd,k, Theorem 4 of Wasilkowski
and Woźniakowski [10] shows that the q(WW) rules are strongly polynomial.

We conjecture that our sequence of rules q(DA) is in general more efficient
than q(WW), since q(DA) relies on an ordering of multi-indices in terms of
decreasing average squared norm Wj/Nj, and this ordering is greedy with
respect to minimising the error of the overall quadrature rule with respect to
its cost in terms of function evaluations. Our conjecture is true when γd,1 <
−1/Ar(−1), since then the ordering with respect to nondecreasing norm Wj,
nondecreasing average squared norm Wj/Nj, and nonincreasing number of
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points agree for each single dimension, and therefore the ordering of their
products respects the lattice partial ordering. This makes the sequence q(DA)

optimal. When γd,1 > −1/Ar(−1), our numerical results indicate that the
conjecture is still true.

5 Numerical results

With the estimates given by our analysis in hand, we now compare these
to our numerical results. Our numerical results use r = 3 and γk = g

k, for
g = 0.1 , 0.5, and 0.9, to see how our rules q(DA) and q(WW) behave as the
decay of the dimension weights is varied.

For the da and ww weighted tensor product algorithms, each program run
used r = 3 ; g = 0.1 , 0.5, or 0.9; a particular dimension d, from d = 1

to 16; a particular maximum 1-norm for multi-indices, typically 20; and a
particular maximum number of points, up to 1 000 000. The numerical results
are potentially affected by two problems. First, if γ is close to zero, and
the number of points is large, then the matrix used to compute the weights
becomes ill-conditioned, and the weights may become inaccurate. Second,
if the current squared error is close to zero, and the squared norm for the
current multi-index is close to machine epsilon, then severe cancellation may
occur. If either problem is detected, the calculation of the quadrature rule is
terminated.

Figure 1 displays the typical convergence behaviour of the da and ww rules
for the cases examined. The particular case shown is that of T4, r = 3 ,
γd,k = 0.5k. The number of points used varies from n = 1 to 1 000 000. In
general, the da algorithm has a cost no greater than that of the ww algorithm.
Both are bounded by the ww bound of Theorem 1, and judging from the plot,
the rates of convergence of both algorithms appear consistent with that of
the bound. The ww cost bound itself has an asymptotic rate of convergence
of O(ε−1/3) for all of our cases.
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Figure 1: Error of da and ww rules vs ww bound for T4, r = 3 , γd,k = 0.5
k.

For γd,k = 0.1
k, Figure 2 shows how the convergence rate of the error of the

da quadrature rules varies with dimension d, for d = 1 , 2, 4, 8, and 16. The
cases d = 8 and d = 16 are almost indistinguishable on this graph. This is
an example of the convergence in dimension.

Figure 3 shows the equivalent results for the da quadrature rules for γd,k =
0.9k. As d increases to 16, the initial rate of convergence to zero of the error
becomes much slower than that for γd,k = 0.1

k. This behaviour is expected,
given the ww bound.

The most remarkable novel feature of Figure 3 is the series of distinct bumps
and kinks, evident for d = 4 and d = 8 . The main reason for these bumps and
kinks for these values of d is the interaction between the lattice partial ordering
constraint and the reversal of the order of norms described in Section 4. For
d = 8 , this results in the first 256 incremental rules each adding one point to
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Figure 2: Error of da rules for Td, d = 1, 2, 4, 8, 16 ; r = 3 , γd,k = 0.1
k.

the main rule, with each successive multi-index corresponding to the binary
expansion of the total number of points minus one. Figure 4 shows the average
norm squared of each incremental rule, up to 512 points.
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[10] G. W. Wasilkowski and H. Woźniakowski. Weighted tensor product
algorithms for linear multivariate problems. Journal of Complexity,
15(3):402–447, 1999. doi:10.1006/jcom.1999.0512 C502, C509, C510,
C511

http://dx.doi.org/10.1016/j.jco.2004.07.0015
http://dx.doi.org/10.1006/jcom.2001.0599
http://dx.doi.org/10.1006/jcom.1999.0512


References C517

Author addresses

1. Markus Hegland, Centre for Mathematics and its Applications,
Australian National University.

2. Paul C. Leopardi, Centre for Mathematics and its Applications,
Australian National University.
mailto:paul.leopardi@anu.edu.au

mailto:paul.leopardi@anu.edu.au

	Introduction
	Setting
	Algorithm
	Analysis
	Numerical results
	References

