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A multigrid approach to visual cortex mapping
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Abstract

Standard unconstrained optimisation methods, utilising conjugate
gradient and limited memory reduced Hessian search direction updates,
are implemented in a multigrid mode on an objective function min-
imisation model of visual cortex mapping. The multigrid operations,
executed on a hierarchy of four grids, easily outpace fine grid iterations,
and penetrate deeper into the objective function.
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1 Introduction

Multigrid methods offer substantial performance enhancements in a wide
variety of computational settings, from elliptic solvers in atmospheric flows [8]
to shape optimisation of turbine blades [5]. Visual cortex mapping calcu-
lations, implemented under the elastic network formulation [4, 6], are also
well placed to reap the benefits of multigrid. This particular model involves
the unconstrained minimisation of a certain objective function, the argu-
ments of which comprise neuronal preferences for various visual attributes
including orientation and position, defined on a regular mesh. Nonlinear
conjugate gradient iteration has successfully reduced this objective function
to levels which provide results agreeing qualitatively with those produced
by an equivalent dynamical systems approach [12, 13], at the cost of rather
slow convergence. The main objective of this study is to revisit my previous
calculations [12], armed with an alternative quasi-Newton search direction
update [3] and multigrid, in pursuit of enhanced performance.

The fine grid under consideration is a 128× 128 cortex mesh, holding four
variables at each grid point, making a total of 216. This becomes the top
of a four level grid hierarchy, with successively coarser levels simply halving
the number of points in each direction. Data transfer between grids plays a
key role, fulfilled by four different prolongation operators for coarse to fine
transfer, and direct copying for the reverse direction. After reviewing the basic
iteration schemes and demonstrating their fine grid behaviour, extensions to
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multigrid are outlined. A set of 64 numerical experiments will be presented,
comparing different aspects via a specifically chosen compact performance
measure in a single plane view.

2 Numerical methods

The calculations described here fall into the category of unconstrained min-
imisation, applied to a nonlinear objective function of 216 variables. Memory
limitations prohibit the storage of full Hessian matrices of this size, necessi-
tating economy storage options. The term “visual cortex map” refers to the
pattern of calculated preferences, such as orientation angle, spatially evolving
across the cortex lattice.

2.1 The objective function

The visual cortex is treated as a two dimensional sheet onto which response
properties are mapped, according to the elastic network formulation [6]. For
a discrete cortex lattice, with receptive field vector uj defined at each lattice
location j, the objective function

f(u;v, λ,β) =
1

2
βuTAu− λ

∑
i

log
∑
j

exp
−(uj − vi)

T(uj − vi)

2λ2
, (1)

where u is the concatenation of all uj, and vi is a corresponding visual
stimulus point, similarly concatenated in v, represents conflicting biological
demands of continuity and coverage on the visual cortex [4, 6]. Quoting from
Carreira–Perpiñán et al. [4], “This is a feature space model which works by
minimizing an objective function that explicitly trades off coverage versus
continuity constraints”. Continuity is enforced by the sparse matrix A acting
on the four nearest neighbours of each cortical point to give a sum of squared
differences operation. Coverage is represented in the second term of (1) via
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squared differences between receptive fields and associated visual stimuli at
every cortex point. Parameters λ and β denote the receptive field size and
lateral interaction strength respectively, as detailed by Wolf and Geisel [13].

The four dimensional receptive field under consideration comprises two retinal
position coordinates and two orientation coordinates,

uj =
[
xj yj rj cos 2θj rj sin 2θj

]T
,

in which (xj,yj) are the centre of the receptive field in visual space, θj is the
preferred angle of orientation, and rj is the associated selectivity [6]. Stimulus
points vi, comprising a set of size 2400, and parameter values for (λ,β), are
all taken from my earlier work [12].

2.2 Iteration details

At iteration k, a line search [10] attempts to minimise the objective function
along the current search direction pk−1,

φ(s) = f(u(k−1) + spk−1),

producing the next iterate

u(k) = u(k−1) + sk−1pk−1 , k = 1, 2, . . . .

The line search algorithm is based on quadratic and cubic interpolants of the
objective function along the search direction [10], and terminates when the
average and instantaneous rates of change meet certain tolerances according
to the Goldstein–Wolfe criteria [7, 9],

φ(s) − φ(0) 6 αsφ′(0) and φ′(s) > ηφ′(0), (2)

with parameters 0 < α < η < 1.

Two different search direction updates are employed: the first being the best
performer from previous conjugate gradient calculations [12], combining the



2 Numerical methods C307

new and previous gradients gk = ∇f(u(k)), gk−1, and the previous search
direction pk−1 via the Polak–Ribière–Polyak (prp) update [9],

pk =
(gk − gk−1)

Tgk
gTk−1gk−1

pk−1 − gk . (3)

The second is a limited memory version of the bfgs inverse Hessian update
(l-bfgs), based on a set of secant pairs, yk = gk+1−gk and zk = u(k+1)−u(k),
generated from recent iterations [3, 7]

pk = −γkgk − Zk
[
R−T
k (Dk + γkY

T
kYk)R

−1
k Z

T
k − γkR

−T
k Y

T
k

]
gk + γkYkR

−1
k Z

T
kgk .

(4)
Formula (4) is a low budget approximation to the acclaimed Newton search
direction [7], avoiding storage of the full Hessian matrix, which is prohibitively
large in these calculations. Columns of the matrices Yk and Zk contain a set
of recent secant pairs, while curvature information is furnished by the upper
triangular matrix Rk,

Rk(i, j) =

{
zTi−1yj−1, i 6 j ,

0, i > j ,

with Dk holding its diagonal elements, and the scalar γk = yTkzk/y
T
kyk . At

the first iteration, k = 0 , when no previous search direction is available, the
steepest descent direction is applied, along the negative gradient.

2.3 Multigrid implementation

As the quantities of interest in these calculations reside on a regular mesh,
or matrix, they naturally lend themselves to the multigrid methodology,
involving a judicious combination of operations on a hierarchy of meshes,
with appropriate transfer between levels playing a key role [2]. With little
extra effort, the conjugate gradient and quasi-Newton iteration schemes are
implemented in a multigrid setting, using the same set of stimulus points.
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Consider a hierarchy of four grids, the top level comprising the original
128 × 128 cortical mesh, while subsequent coarser grids simply halve the
number of points in each direction, giving 64×64, 32×32, and finally 16×16
on the bottom level. A multigrid V cycle commences by executing a small
number of iterations on the top grid, the results of which are restricted to the
next coarser grid, either by direct copying or a weighted average process [2].
Invoking recursion, the same routine is then called, with more iterations being
done as the grid becomes coarser, before finally prolongating the result back
to the fine level and iterating again to complete the cycle. The prolongation
is achieved by an interpolation operator, from simple linear to various higher
order polynomials and splines [2]. Recursive W cycles involve a second
restriction to the coarse level, generating additional effort on the coarser grids,
with potential performance improvements.

There is considerable scope for tuning in multigrid calculations, limited in this
study to prolongation operators, search direction updates, and exit tolerance
applied to the relative absolute difference in the objective function. Fixed
iteration limits of 16, 32, 64 and 128 were imposed, in order from fine to
coarse, so that each V cycle involves a maximum of 32 fine grid iterations, or
48 for a W cycle. Direct copying is applied for restriction, while prolongation
is implemented with a piecewise cubic Hermite (pch) spline, cubic spline,
local cubic interpolation, or local linear interpolation, as supplied by the
Octave numerical computation package [11]. Line search exit parameters
for (2) are fixed at (α,η) = (0.0001, 0.001), and all available secant pairs are
used in (4), which makes a comfortable 16 on the fine grid. Search direction
or gradient information is not transferred between levels, giving ‘kick starts’
on each level with steepest descent directions.

3 Numerical results

I report on the fine grid calculations, and the performance improvements
achieved by using a multigrid strategy.
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Figure 1: Comparison of previous best cg/prp result from [12] with nearest
rivals generated by quasi-Newton reduced Hessian (rh), with m denoting the
number of secant pairs in the Hessian matrix reconstruction. The common
initial condition is that I previously used [12].
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3.1 Fine grid calculations

Previous calculations on a 128 × 128 cortex mesh, employing conjugate
gradient iteration with a variety of search direction update schemes [12],
were characterised by long and tedious trajectories, taking thousands of
iterations to converge. Best results in [12], achieved with the prp search
direction update (3), are compared with some l-bfgs results in the iteration
trajectories of Figure 1, showing continued superiority of the cg/prp scheme.
Also to note in this diagram is the oscillatory gradient behaviour, as previously
observed [12], and local minima trapping.

3.2 Acceleration by multigrid

Fine grids are often allied with slow convergence [2], as witnessed in the
trajectories of figure 1, requiring thousands of iterations to converge on
the original 128 × 128 grid. As an initial demonstration of the multigrid
implementation, consider the previous best cg/prp fine grid result from
Figure 1, which has been executed in V cycle mode with four different
prolongation operators, producing the results displayed in Figure 2. For
50 V cycles, this diagram gives objective function profiles on the top level
grid, showing deeper penetration of the multigrid cycles in comparison to the
original fine grid profile also included. This is dramatically demonstrated in
the first cycle, where the multigrid curves all break away after the common
initial 16 iterations, revealing the valuable contribution from the coarser grids.

In terms of overall objective function reduction, the multigrid operations
achieve in roughly 10 cycles what the fine grid iterations achieve in over
100 equivalent cycles, at 32 iterations per cycle, representing substantial
savings. However there appear to be some negative side effects, most ob-
viously a ‘stalling’ phenomenon visible in later cycles, which return larger
objective function values than those at the cycle start. This is particularly
pronounced for the local linear prolongation, appearing as early as the fifth
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Figure 2: Multgrid V cycle implementation of the cg/prp scheme, using
four different prolongation operators at exit tolerance 10−10, with the original
fine grid result, horizontally scaled to an equivalent number of cycles.
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cycle, accompanied by large spikes upon return to the top grid. Ironically,
it is also the local linear prolongator that returns the best overall result
after 50 cycles, penetrating well below its counterparts amid some intense
spiking activity. On closer inspection, this result actually holds the lead
after 10 cycles, subsequently reaching its lowest depth near 30 cycles, with
negligible overall progress in the final 20. Spiking is also present in the
objective function gradient, somewhat familiar in the light of Figure 1 and
previous studies [12], to a degree that precludes any appreciable gradient
reduction during the 50 cycles. Not surprisingly then, convergence to the
specified tolerance has not occurred; however, what is more important at this
stage is the deeper objective function penetration, especially its implication
for the resulting orientation preference map structure.

Pinwheels, or orientation vortices [6], are singularities at which no preference
occurs, mathematically defined as the intersection of zero contours for the
cartesian orientation preference components [13]. These key structures have
become a regular focus of experimental and computational studies [1, 12, 13],
once again attracting attention in this study. A steady pinwheel depletion
was observed previously [12] as the iterations progressed, ultimately yielding
large stripe-like iso-orientation domains with local plane wave character, in
qualitative agreement with the dynamical systems calculations of [13]. Further
objective function reductions beyond those achieved in [12], afforded by the
multigrid results of Figure 2, indeed brought fewer attendant pinwheels, in
line with the expected depletion behaviour. This underlying connection
between objective function and pinwheel density points naturally to a certain
visualisation device and performance indicator based on these two quantities,
to expedite comparison of different multigrid results.

The four multigrid results appearing in Figure 2 belong to a set of 64 numerical
experiments involving both search direction updates (3) and (4), V and
W cycles, four prolongation operators, and four exit tolerances, between
10−9 and 10−12. Using the final objective function value and number of
pinwheels present in the associated orientation preference map, Figure 3
presents a graphical summary of the entire set, also including some of the
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Figure 3: Summary of 64 multigrid experiments, expressed as final objective
function value and corresponding number of pinwheels in the orientation
preference map, accompanied by some fine grid results. The experiments
comprise 50 multigrid cycles with V and W configurations, four exit tolerances,
four prolongation operators, and two search direction updates.
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Figure 4: Calculated orientation preference map for the overall best result
from Figure 3, produced by multigrid W cycles and reduced Hessian search
direction updates. The left panel gives zero contours of the cartesian orienta-
tion preference components, with pinwheels at the intersection points, while
the right panel gives pinwheels with preference angles (π periodic) using the
hsv colormap (red −90◦, yellow, green, cyan, blue, magenta).

leading fine grid results for comparison. A striking linear tendency is apparent
in this view, with superiority of W cycles evident by the dominance of
these points at the lower left of the diagram. The V cycle results have
dispersed further along the linear corridor, being outperformed by fine grid
iteration on a small number of occasions. In terms of search direction updates,
W cycles favoured reduced Hessian while V cycles favoured conjugate gradient.
Regrouping the results in Figure 3 by prolongation operators sees pch ahead
on average, and similarly for exit tolerance, the value 10−10 held a narrow
lead.

The overall best performance in Figure 3, possessing only four pinwheels in
its orientation preference map, was claimed by multigrid W cycles operating
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with reduced Hessian search direction update, local cubic prolongation, and
exit tolerance of 10−11. Two alternative versions of the resulting orientation
preference map are displayed in Figure 4, one with zero contours and the
other with angles, demonstrating the characteristic plane wave structure
seen previously [12, 13], with even larger iso-orientation domains. Like the
multigrid results in Figure 2, this result has not yet converged on the fine
grid; however, additional fine grid iteration essentially reduces the gradient
only, achieving convergence along vertical ‘tails’ as in the trajectories of
Figure 1. Slight migration of the four pinwheels also took place during the
iteration, with no further depletion occurring, showing a relative insensitivity
of pinwheel density to gradient. Such a low pinwheel density in Figure 4
leads to the conjecture that, with further targeted numerical experimentation,
all pinwheels can be removed to deliver a plane wave structure, placing in
question the model’s ability to support pinwheel structures in this particular
four dimensional configuration, at the associated parameter settings.

4 Summary and conclusions

By treating a 128 × 128 cortex mesh as the top of a four level hierarchy,
multigrid implementation of standard unconstrained minimisation schemes
on a visual cortex model delivered deeper objective function penetration than
that of exclusive fine grid operations, at a fraction of the computational cost.
Pinwheel densities in the resulting orientation preference maps were reduced
to an extent that challenges the model’s capacity to support these structures,
in its current configuration.

Scope for improvement exists, particularly with respect to the gradient be-
haviour, which underwent oscillation and little overall reduction during the
multigrid cycles. Transferring gradient and search direction information be-
tween grids, in addition to the working variables, is an obvious option to
consider in this regard. An intermittent stalling phenomenon, which reverses
progress in some cycles, points to the prolongation operators for coarse to
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fine transfers. Restriction operators could also be enhanced by employing
weighting of neighbours rather than direct copying.

Having established a working multigrid system on four dimensional receptive
fields, future studies will enhance and apply this methodology on a more
computationally demanding five dimensional case, which incorporates ocular
dominance with the existing orientation and position attributes. An expected
suppression of the pinwheel depletion [13] will be explored along two initial
avenues, one starting from the same pinwheel-rich initial state of the current
study, and the other starting from a heavily depleted state produced by the
multigrid schemes, the latter of which should see a return of pinwheels as the
objective function is reduced.
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