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An efficient algorithm for simulating scattering
by a large number of two dimensional particles
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Abstract

Simulation of waves scattered by a large number of particles is
important for several applications—for example, to investigate interac-
tions between particles in an ensemble—and hence to design efficient
configurations. Substantial computer memory is required for the di-
rect treatment of an ensemble with hundreds of particles as a single
scattering configuration. This memory bottleneck is avoided by using
multiple scattering iterative methods, which allow treatment of one
particle at a time, but require substantial computing time at each step
of the iteration to take into account reflections from the rest of the
particles, and require a large number of iterations for convergence. We
develop a novel fast, high order, memory efficient algorithm to simulate
multiple acoustic scattering induced by an ensemble with hundreds of
particles in two space dimensions.
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1 Introduction

The understanding of many physical phenomena and processes is enhanced
by simulating the multiple scattering of waves by configurations of many
particles. Books by Martin [8] and Mischenko et al. [9] and references therein
describe various computational and mathematical aspects of multiple scat-
tering configurations and applications. We are interested in two dimensional
configurations consisting of hundreds of particles, such as those in Figure 1,
which naturally occur in various applications [8, 9], with the diameter of each
particle at least one wavelength.

Recently there has been substantial research activity to generalise various
single obstacle exterior scattering algorithms to the multiple particle case [1,
2, 5, 6]. One direct approach is to treat multiple particle acoustic scattering
by considering the multiple particle system as a single configuration and
solving coupled discretised systems [1]. This approach was demonstrated for
two dimensional problems using a few configurations, with each configuration
consisting of at most three particles [1]. While such an approach is expedient,
the computer memory required for configurations consisting of hundreds of
particles is prohibitive.
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The mathematical framework of the boundary decomposition technique [3] is
sometimes used to remove the memory bottleneck by iteratively decomposing
the multiple scattering problem into several single obstacle scattering problems,
taking into account at each step of the iteration reflected waves from other
particles in the configuration. This Neumann iterative technique was used for
acoustic and electromagnetic scattering in two and three dimensions [2, 5, 6].
Acoustic scattering by only two obstacles has been demonstrated [2, 5], but
other work demonstrated that, even for two obstacles, the Neumann iterations
diverge when the obstacles are close together [6]. Hence the Neumann-type
iterative methods are not appropriate to simulate scattering by hundreds of
obstacles.

Although iterative methods facilitate substantial memory reduction for scat-
tering by configurations with a large number of particles, the computational
time for such methods is prohibitively large. This is mainly because, at each
step of the iteration and for each particle in the configuration, reflected waves
from all of the other particles need to be evaluated in order to formulate the
associated single obstacle scattering problem. Such a formulation requires the
evaluation of thousands of boundary integrals at each step of the iteration,
leading to several days or weeks of simulation for multiple scattering config-
urations such as those in Figure 1. Because of this computational burden,
scattering by large numbers of particles has attracted minimal attention [9].

We overcome this computational bottleneck by developing a novel fast high
order memory efficient algorithm to simulate multiple acoustic scattering by
an ensemble with hundreds of particles in two space dimensions. Our iterative
approach is suitable for large particle configurations and avoids evaluation of
thousands of boundary integrals to compute the reflected waves at each step
of the iteration.

In the next section we introduce the multiple scattering problem and describe
its reformulation as a boundary integral equation. Section 3 describes our
fast high order memory efficient fully discrete Galerkin iterative algorithm
to simulate scattering from configurations with a large number of particles.
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Figure 1: A multiple scattering configuration with 400 particles in a lattice.

Finally, Section 4 demonstrates the efficiency of our multiple scattering
algorithm by simulating scattering from configurations such as the one in
Figure 1, consisting of several hundred convex or non-convex particles.

2 A multiple acoustic scattering model

The spatial component u of the time harmonic acoustic field scattered in
two space dimensions by a large number of closed obstacles D1, . . . ,DM ⊂ R2
located in a homogeneous medium satisfies the Helmholtz equation [4, 8, 9]

4u(x) + k2u(x) = 0 , x ∈ R2 \
M⋃
J=1

DJ , (1)

where k = 2π/λ is the wavenumber and λ is the wavelength, and the radiation
condition

lim
|x|→∞

√
|x|

(
∂u

∂x
− iku

)
= 0 , (2)
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uniformly in all directions. The behaviour of the scattered field a long way
from a scatterer is described by the far field

u∞(x̂) = lim
|x|→∞

√
|x|e−ik|x|u(x), x̂ =

x

|x|
. (3)

The far field is important for acoustic cross section and inverse scattering
computations, and we use this physical quantity in our novel fast algorithm.

The scattered field is induced by an incident plane wave uinc(x) = eikx·d̂ with

direction given by the unit vector d̂. For brevity of presentation, we assume
that the obstacles D1, . . . ,DN ⊂ R3 are sound-soft. Thus the total field
u + uinc vanishes on the surface of each scatterer, leading to the boundary
condition

u(x) = −uinc(x), x ∈ ∪MI=1∂DI , (4)

where ∂DI denotes the surface of DI for I = 1, . . . ,M .

Due to the unbounded domain R2 \
⋃M
J=1DJ in (1), it is efficient to reformu-

late the scattering problem using a boundary integral representation of the
scattered field that automatically satisfies the radiation condition (2). Such
a representation requires computation of M acoustic density functions φJ
for J = 1, . . . ,M . The density functions are defined on the boundaries of
the particles in the configuration and satisfy a system of boundary integral
equations. The disadvantage of this favourable reformulation is that any
discretisation process requires solution of a dense complex linear system. This
is independent of whether compactly supported local basis functions or global
basis functions are used in the discretisation process.

Coupling of the single and double layer operators, with coupling parameter η >
0 , is necessary to obtain a uniquely solvable boundary integral reformulation
of the acoustic scattering problem [4]. (In our implementation we take η = k ,
which minimises the condition number of the boundary integral operators [4].)
Using the fundamental solution of the two dimensional Helmholtz equation,

Φ(x,y) =
i

4
H

(1)
0 (k|x− y|)
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where H
(1)
0 is the Hankel function of the first kind, we represent the exterior

field u satisfying (1)–(2) as

u(x) =

M∑
J=1

∫
∂DJ

{
∂Φ

∂n(y)
(x,y) − iηΦ(x,y)

}
φJ(y)ds(y), x ∈ R2 \

M⋃
I=1

DI .

(5)
Using the boundary condition (4), the M unknown acoustic densities φJ for
J = 1, . . . ,M , satisfy a system of M uniquely solvable boundary integral
equations [4, 8]

φI(x) +

M∑
J=1

(KIJφJ − iηSIJφJ) (x) = −2uinc(x), x ∈ ∂DI , I = 1, . . . ,M ,

(6)
where, for I, J = 1, . . . ,M , the operators KIJ and SIJ are respectively the
acoustic double and single layer operators with source density defined on the
Jth obstacle and observation point on the Ith obstacle,

KIJv(x) = 2

∫
∂DJ

∂Φ

∂n(y)
(x,y)v(y)ds(y), x ∈ ∂DI , I, J = 1, . . . ,M , (7)

and

(SIJv) (x) = 2

∫
∂DJ

Φ(x,y)v(y)ds(y), x ∈ ∂DI , I, J = 1, . . . ,M . (8)

These operators are weakly singular when I = J and smooth otherwise.

3 A fast high order iterative algorithm

For each J = 1, . . . ,M , we parametrize the closed boundary curve ∂DJ of the
scatterer DJ using the 2π-periodic mapping

qJ(θ) = (qJ1(θ),q
J
2(θ)), θ ∈ [0, 2π].
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Using this parametrisation we write y = qJ(s) and x = qI(t). Then (7)–(8)
give

(KIJv)(q
I(t)) =

∫ 2π
0

LIJ(t, s)v(qJ(s))ds , I, J = 1, . . . ,M ,

(SIJv)(q
I(t)) =

∫ 2π
0

MIJ(t, s)v(qJ(s))ds , I, J = 1, . . . ,M ,

where

LIJ(t, s) = 2
∂Φ

∂n(y)

(
qI(t),qJ(s)

)
JJ(s), I, J = 1, . . . ,M ,

MIJ(t, s) = 2Φ(qI(t),qJ(s))JJ(s), I, J = 1, . . . ,M ,

where JJ is the Jacobian of qJ for J = 1, . . . ,M .

The boundary integral equation (6) becomes

ψI +

M∑
J=1

MIJψJ = fI , ψI ∈ C([0, 2π]), I = 1, . . . ,M , (9)

where

ψI(t) = φI(q
I(t)), fI(t) = −2uinc(qI(t)), t ∈ [0, 2π],

(MIJw)(t) =

∫ 2π
0

[LIJ(t, s) − iηMIJ(t, s)]w(s)ds , t ∈ [0, 2π],

and C([0, 2π]) is the space of all continuous 2π-periodic functions. The
smoothness of ψI, for I = 1, . . . ,M , is determined by the smoothness of the
particle DI in the M-particle multiple scattering configuration.

We must approximate the M acoustic densities ψI ∈ C([0, 2π]) in some appro-
priate finite dimensional subspaces of C([0, 2π]). We seek approximations ψI,N
to ψI, for I = 1, . . . ,M , in an O(N)-dimensional subspace VN of C([0, 2π]).
(For notational convenience, we allow the discretisation parameter N to be



3 A fast high order iterative algorithm C146

independent of the particle index I.) The M coupled boundary integral
equations on an infinite dimensional space are then replaced by

ψI,N +

M∑
J=1

MIJψJ,N = PNfI , ψI,N ∈ VN , I = 1, . . . ,M , (10)

where PNfI is the orthogonal projection of fI onto VN. For a fixed positive
integer α (independent of N), let

VN = span{Yn : n = 0, . . . ,αN} (11)

be the finite dimensional approximation space.

Remark 1 In our implementation, for various values of N (that depend
on the shape and acoustic diameter of the particles, that is, the product of
the wavenumber with the diameter of the particles) we choose α = 2 and
Yn(s) = ei(n−N)s/

√
2π for n = 0, . . . ,αN and s ∈ [0, 2π] so that VN is the

space of all trigonometric polynomials of degree at most N.

Such a choice ensures that PNfI is a high order approximation of fI and that
high order approximations ψI,N to ψI exist in the space VN. It is efficient
to exploit such high order approximations, especially when each particle
in the multiple configuration is sufficiently smooth. Such a choice is also
very competitive with the boundary element discretisation (which requires at
least ten points per wavelength, per obstacle, for two digit accuracy) for the
multiple scattering problem with non-smooth particle configurations.

For ψI,N ∈ VN we use (11) to write

ψI,N =

αN∑
n=0

xI,nYn , I = 1, . . . ,M . (12)

The O(MN) coefficients in (12) for the M approximate acoustic densities
satisfying the M coupled boundary integral equations (10) are sometimes
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computed by solving the O(MN)× O(MN) dense complex linear Galerkin
system

〈ψI,N, Yn〉+
M∑
J=1

〈MIJψJ,N, Yn〉 = 〈fI, Yn〉, n = 0, . . . ,αN , I = 1, . . . ,M ,

(13)
where 〈·, ·〉 is the standard L2-inner product on [0, 2π]. Such a direct approach,
with an O(MN)×O(MN) dense complex matrix, is not memory efficient (and
is prohibitive in standard contemporary systems with say 4–8 GB memory),
especially when M is large. Using the mathematical boundary decomposition
framework [3] removes this memory bottleneck,

In particular, the iterative boundary decomposition method, or Neumann
iterative method, requires at each iteration solution of only M dense complex
linear systems (one for each particle) with each system of size O(N)× O(N).
This removes the memory bottleneck.

For any fixed discretisation parameter N we compute approximations ψ
(`)
I,N

to the solutions ψI,N of (13) for each I = 1, . . . ,M and for ` = 1, . . . ,L as
follows. For ` = 1 , the initial approximations are computed by assuming
each particle in the configuration is independent of all of the other particles,
leading to an O(N)× O(N) dense complex linear system for each unknown

ψ
(1)
I,N ∈ VN for I = 1, . . . ,M ,

〈ψ(1)
I,N, Yn〉+ 〈MIIψ

(1)
I,N, Yn〉 = 〈fI, Yn〉, n = 0, . . . ,αN , I = 1, . . . ,M .

(14)
We solve each of these O(N)× O(N) systems (14) to high order accuracy.

The main task required to efficiently solve (14) is to discretize the M weakly
singular boundary integrals MIIw, for I = 1, . . . ,M , for a given density w,
with high order accuracy. This is achieved by splitting the kernels LII and MII

in MII into weakly singular and smooth parts respectively

LII(t, s) = LII1 (t, s) log

(
4 sin2

t− s

2

)
+ LII2 (t, s)
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and

MII(t, s) =MII
1 (t, s) log

(
4 sin2

t− s

2

)
+MII

2 (t, s)

with analytic kernels LII1 ,LII2 ,MII
1 ,MII

2 , for I = 1, . . . ,M , having representa-
tions in a classical form [4, p. 68]. In particular, the resulting 2π-periodic

integrals are of the form
∫2π
0
g(s) log

(
4 sin2(t− s)/2

)
ds and

∫2π
0
g(s)ds for

given smooth 2π-periodic functions g. Utilising interpolatory approxima-
tions gN in the space YN described in Remark 1, at 2N + 1 equally spaced
points in [0, 2π), leads to quadrature approximations MII,N of the boundary
integrals MII in (14) with high order accuracy [4]. We also use this quadrature
rule to discretize the L2-inner product 〈·, ·〉 in (14) to high order accuracy,
and the associated discretisation is denoted by 〈·, ·〉N.

Thus a physically meaningful initial approximation, in any iterative boundary
decomposition method for the multiple scattering problem, is obtained by
solving M fully discrete O(N)× O(N) algebraic systems

〈(I+MII,N)ψ
(1)
I,N, Yn〉N = 〈fI, Yn〉N , n = 0, . . . ,αN , I = 1, . . . ,M . (15)

If required, the lu-decomposition of each of the M complex dense matrices,
each of size O(N) × O(N), can be computed once and stored. On parallel
architectures this can be done in a distributed way, exploiting memory across
multiple platforms. Storing the lu-factors in this way is useful for efficient
computation at subsequent iterations of ψ

(`)
I,N for ` = 2, . . . ,L . Here L denotes

the maximum number of iterates before the stopping criterion is met.

The subsequent iterations require solution of the O(N)×O(N) dense complex
linear systems such as the Neumann iterates [2, 5, 6]

〈(I+MII,N)ψ
(`)
I,N, Yn〉N = 〈fI, Yn〉N −

M∑
J=1,J6=I

〈MIJψ
(`−1)
J,N , Yn〉N (16)

for ` = 1, . . . ,L , n = 0, . . . ,αN , and I = 1, . . . ,M . Although the boundary
decomposition removes the memory bottleneck, we observed that in many
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cases the Neumann iterations in (16) do not converge, even after several days
of computations (with L > 1000). This is not unexpected; divergence has
been demonstrated for scattering by even two nearby obstacles [6]. Indeed
the theory imposes separation conditions on the particles that are not feasible
for configurations consisting of hundreds of particles [3].

An alternative way to view the iterative solver is to recognize that the
Neumann-type iterates in (16) are equivalent to iterates of a block Jacobi
method. Thus a natural, but unexplored, next step is to utilize Krylov sub-
space methods and consider a multiple scattering equivalent of the Generalized
Minimal Residual (gmres) method. Although we have observed that this
approach is superior to the Neumann-type iterates, the number L of gmres
iterations is still prohibitively large. We overcome this problem by developing
a multiple scattering version of the fgmres (Flexible-gmres) method so that
for configurations in Figure 1, we achieve convergence with the number of
iterations being fewer than ten percent of the number of unknowns.

To set up the right hand side vectors in (16) at each iteration, the iterative

method must compute the O(M2) boundary integrals
∑M

J=1,J6=IMIJψ
(`−1)
J,N for

I = 1, . . . ,M at O(N) points. The algorithm that uses a multiple scattering
version of fgmres and evaluates these O(M2NL) boundary integrals using
the high order quadrature rule is denoted the fgmres-int algorithm.

The M2 factor in the number of boundary integrals makes the fgmres-
int algorithm computationally expensive when M is large. We propose a
new approach to reduce the M2 factor to just M, that is, to evaluate just
O(MNL) boundary integrals. The result is a faster version of the fgmres-int
algorithm that we denote the fgmres-fast algorithm. In the next section
we numerically demonstrate the advantage of the fgmres-fast algorithm
compared to the fgmres-int algorithm.

A full description of the fgmres-fast algorithm and its convergence analysis
is beyond the scope of this article, but we briefly explain the main idea.
For each I, J = 1, . . . ,M with I 6= J , the integral MIJψ

(`−1)
J,N (x) for x ∈ ∂DI

represents the scattered field on the Ith obstacle induced by the surface current
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from the Jth obstacle. Each of these O(M2) scattered fields is represented as
a linear combination of classical wave functions [4]. This representation is
related to the T-matrix method [8, 9]. While the standard T-matrix approach
to compute the coefficients of the linear combination is not numerically stable,
we recently proposed and demonstrated a numerically stable way to compute
the coefficients using the far field [7]. Such coefficients are computed by
evaluating only O(M) boundary integrals.

4 Numerical Results

We demonstrate the efficiency of the fgmres-int and fgmres-fast algo-
rithms for simulating scattering by large numbers of particles. Our exper-
iments show that, in all cases, fgmres-fast is several times faster than
fgmres-int. All of our experiments are performed in Matlab on a 2.0 GHz
Opteron processor.

In our implementation the outer fgmres iteration is preconditioned using
a nearest neighbours preconditioner, which is implemented approximately
using three steps of block Jacobi preconditioned gmres. This choice provides
the optimal balance between conditioning and cpu time to implement the
preconditioner. The fgmres iteration is continued (without restarting) until
the residual norm is reduced by a factor of 10−8.

Our test configurations consist of unit circles or peanut shaped particles. The
unit circle is a standard test scatterer for both single and multiple scattering.
The peanut is a challenging scatterer because, as shown in Figure 3, it is
non-convex. In all of our experiments the incident wavelength is such that
the scatterers have diameter one wavelength. For these test scatterers we
use N = 10 and N = 35 respectively. We verified numerically that these
choices lead to a relative error less than 10−7 for single scattering problems.

Table 1 (left) tabulates the cpu time (in minutes) required to solve the
linear system for scattering by M circles each of diameter one wavelength
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Table 1: cpu time (minutes) for solving the linear system to simulate
multiple scattering by M circles of diameter one wavelength using N = 10
(left) and by M peanut shaped particles each of diameter one wavelength
using N = 35 (right).

M circles M peanuts
M fgmres-int fgmres-fast fgmres-int fgmres-fast
25 4.5 0.5 13.1 0.6
49 27.7 2.9 76.2 3.4
100 191.8 19.3 525.6 22.3
225 2 422.9 245.7 6 157.0 257.9
400 13 664.7 1 397.3 33 879.1 1 380.1

arranged in a square lattice. In each of these experiments the high order
algorithm facilitates a low 21-dimensional ansatz space. For this problem
the fgmres-fast method is about ten times faster than the fgmres-int
method.

Table 1 (right) tabulates the cpu time (in minutes) required to solve the linear
system for M peanuts of diameter one wavelength arranged in a square lattice.
The dimension of the ansatz space in each of these experiments using the
high order algorithm is only 71. For this problem the fgmres-fast method
requires less than 5% of the cpu time compared to that by fgmres-int
method.

Finally, Figure 2 visualizes the bistatic acoustic cross section of 400 circles of
diameter one wavelength, computed using the fgmres-fast method with
N = 10 . The acoustic cross section, in decibels, is

σN = 10 log10 2π|u
∞
N |
2,

where u∞
N is the approximation to the far field of the ensemble, computed

from ψJ,N for J = 1, . . . ,N . Figure 3 visualizes the bistatic acoustic cross
section of 400 peanut shaped particles of diameter one wavelength, arranged
in a square lattice, computed using fgmres-fast with N = 35 .
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Figure 2: Bistatic acoustic cross section (in dB) of 400 circles of diameter
one wavelength computed using fgmres-fast and N = 10 .
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Figure 3: Bistatic acoustic cross section (in dB) of 400 peanuts of diameter
one wavelength computed using fgmres-fast and N = 35 . (The inset shows
the shape of the peanut scatterer and the incident direction.)
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