
ANZIAM J. 52 (CTAC2010) pp.C853–C865, 2011 C853

Parallelising the finite state projection method

Vikram Sunkara1 Markus Hegland2

(Received 31 January 2011; revised 26 August 2011)

Abstract

Many realistic mathematical models of biological and chemical
systems, such as enzyme cascades and gene regulatory networks, need to
include stochasticity. These systems are described as Markov processes
and are modelled using the Chemical Master Equation. The Chemical
Master Equation is a differential-difference equation (continuous in time
and discrete in the state space) for the probability of a certain state
at a given time. The state space is the population count of species
in the system. A successful method for computing the Chemical
Master Equation is the Finite State Projection Method. We give a new
algorithm to distribute the Finite State Projection Method method
onto multi-core systems. This method is called the Parallel Finite
State Projection method. This article also analyses the theory needed
for parallelisation of the Chemical Master Equation.

http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/3958

gives this article, c© Austral. Mathematical Soc. 2011. Published October 13, 2011. issn
1446-8735. (Print two pages per sheet of paper.) Copies of this article must not be made
otherwise available on the internet; instead link directly to this url for this article.

http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/3958


Contents C854

Contents

1 Introduction C854

2 The finite state projection method C855

3 The parallel finite state projection method C857

4 Discussion C862

References C864

1 Introduction

The Chemical Master Equation (cme) describes systems in which multiple
species are interacting with each other with some propensity or intensity.
Recently the field of biology has found applications of the cme to model many
biological processes where proteins and species interact in small numbers.
Due to the small number of interactions, stochasticity plays a key role. Even
though the individual populations are small, that is, � 1000 , having many
different species grows the set of possible states the system can be in to a very
large number. Until 2005, it was considered only feasible to take stochastic
simulation methods where we average over realisations to find the solution
to the cme. Then we had the introduction of the Finite State Projection
method, which helped compute problems with larger state spaces [5, 2, 6, 7].

The main focus of this article is to give the framework and theory for dis-
tributing the cme problem onto large computational infrastructure. Clusters
are now accessible to most researchers. We want to be able to utilise this
infrastructure to compute faster the cme based models. Showing success
in demonstrating that we can compute systems with a few million possible
states, would make larger problems more feasible. Hence the main focus is on



2 The finite state projection method C855

distributing the cme problem onto multiple cores. A single core is technically
a single logic chipset.

The following sections show the theoretical foundation and theorems important
for the design of multi-core based computation of the cme. Section 2 gives a
brief background to the cme problem and the popular way of solving it, using
the fsp. Section 3 introduces the Parallel Finite State Projection method
(pfsp) and gives theorems necessary for that method. Section 4 finishes
with a discussion on what we expect and should analyse from the current
implementation of pfsp using the cmepy [1], a Python based cme library.

We do not discuss time comparisons of the pfsp method. This is because
the focus of the article is to give the framework for expanding the cme for
multi-core computation. We implemented the pfsp method in code; however,
it is not at a stage for benchmarking. This is further discussed in the last
section. Let us start by looking into the cme problem and the fsp.

2 The finite state projection method

Without any loss of generality the Chemical Master Equation is described as
the ode problem

dpt

dt
= Apt , (1)

with initial condition p0 = (1, 0, . . .). The generator matrix A has the
properties

• the diagonal elements are negative,

• the off-diagonal elements are all positive,

• the columns sum up to zero.

The dimension of A is the size of the state space, Ω. The vector pt is a
probability vector where each coordinate corresponds to a state in the state



2 The finite state projection method C856

space and its value describes the probability of the system being in that state
at time t > 0 .

In many applications we find that state spaces are very large; however,
the number of states which contribute significantly in probability is far
fewer. The Finite State Projection method (fsp), formulated by Mansky and
Khammash [5], takes advantage of this effect.

For the purpose of this article we generalise the fsp to the following form:
let Ω be the state space of problem (1). Given a tolerance ε > 0 , the
fsp method finds a sub matrix AJ of A such that ‖eAtp0 − eA

Jtp0‖1 < ε .
Furthermore, the fsp approximation has the following key properties: let p̄t
be the fsp approximation at time t of pt, then

• p̄t has finite support, and

• 0 6 p̄t(x) 6 pt(x) for all x ∈ Ω .

The Finite State Projection method has been shown to be a successful method
for solving the cme and was found to be faster then the conventional stochastic
simulation method [6, 4]. However, there was the following problem: the fsp
ensures the existence of a finite state space we can project onto; but it does
not inform us where it is. In applications where the factors that generate A
are non-linear, predicting the state space is difficult, at times requires brute
force. This problem led to the work by Sunkara and Hegland [7] giving the
Optimal Finite State Projection method (ofsp), which is known to be order
optimal [7]. The ofsp gives control over where the state space is and where
it might be drifting, helping us tackle bigger problems where the location of
the states with probabilities away from zero is unknown.

The major motivation for computing the cme is the presence of new applica-
tions arising in biology. For example, signalling cascades, tissue pigmentation,
chlamydia and neuron networks, where researchers are interested in the
stochastic interactions of small groups of particles. Moreover, they are in-
terested in the probability distributions over what is possible, rather than
expectations. These problems have more than a few million possible states. In



3 The parallel finite state projection method C857

such applications it becomes impractical to compute the solution on a single
core. In the next section 3 we introduce a new method called the Parallel
Finite State Projection method (pfsp), which describes a way of parallelising
the fsp method onto multiple computers. We also provide theory which
can be used to extend all other possible methods for solving the fsp, into a
parallel setting.

3 The parallel finite state projection method

We describe a new algorithm for solving the cme, The Parallel Finite State
Projection method (pfsp), where we distribute the computation over several
cores. We utilise the linearity of the cme to distribute smaller problems
onto multiple cores, which are solved and gathered, not introducing any
approximation to the cme structure.

We introduce some general notation to describe parts of the cme on different
cores. We use the notation superscript k when we refer to vectors, state spaces
and errors on the kth core. To distribute the problem onto multiple cores we
define a partitioning map Z : Ω 7→ {Ωk : k = 1, . . . ,K} where ∪Kk=1Ωk = Ω

with the conditions Ωk ∩Ωj = ∅ if k 6= j , and Ωk ⊂ Ω for all k. Now to
map the cme problem onto multiple cores, we define a projection of pt, the
probability vector, onto Ωk by

pkt (x) :=

{
pt(x), if x ∈ Ωk,

0, otherwise.
(2)

Clearly pt =
∑K

k=1 p
k
t . A simple application of the linearity of the cme (1)

shows that if we evolve pkt for a time step of ∆t by solving dpkt/dt = Ap
k
t to

obtain pkt+∆t = eA∆tpkt , separately for each k, then the
∑K

k=1 e
A∆tpkt is the

same as evolving pt to eA∆tpt. This is seen in

pt+∆t = e
A∆tpt = e

A∆t

K∑
k=1

pkt =

K∑
k=1

pkt+∆t .



3 The parallel finite state projection method C858

Algorithm 1: pfsp Master Algorithm

input : p0, K, ε, ε1, . . . , εK, εc, t, ∆t, h
output: p̃t+h∆t

begin1

p̄t, Ω̄t ← ofsp(t, ε)2

for i← 1 to h do3

p̄1t , p̄
2
t , . . . p̄kt ← projection(p̄t,Z(Ω̄t,K))4

for k← 1 to K do5

send (p̄kt , ε
k,∆t) to Core k6

p̂kt+∆t ← receive from Core k7

end8

t← t+ i∆t9

p̄t, Ω̄t ← compress (
∑K

k=1 p̂
k
t+∆t, εc)10

end11

return p̄t12

end13

We see that the support of any two pkt+∆t vectors can overlap. Now we have
split the problem into K pieces without any change to the cme. Hence a simple
way of parallelising the cme is to partition the state space into non-intersecting
subsets,Ωk, and project the cme problem (1) onto eachΩk. Then we compute
these smaller problems independently and collate the probabilities at the
end by simply adding all the vectors together. Algorithm 1 and Algorithm 2
describe the Parallel Finite State Projection method. The rest of this article
is an in-depth construction of the pfsp and a demonstration of how the error
evolves in this method.

We want to ensure that on each core, pk will bound our approximation p̂k.
We demonstrate this in the following lemma and theorems. The key structure
we repeatedly use is the linearity of the cme.

Lemma 1. Let p be a probability vector which is a solution to (1). If p̂ is a



3 The parallel finite state projection method C859

Algorithm 2: pfsp Slave Algorithm

input : p̂kt , ε
k,∆t

output: p̂kt+∆t

begin1

find Ak, a submatrix of A2

Γ ← eA
k∆tp̂kt3

if Γ >
∥∥p̂kt∥∥1 − εk then4

stop5

else6

Pick a bigger Ak and go to 27

end8

return p̂kt+∆t9

end10

vector which is positive and bounded element-wise by p and eAt is monotone,
then for any t > 0 , eAt(p− p̂) is positive element-wise.

Proof: Write p as the sum of two positive vectors, where one is p̂. Then
normalise the vectors and use the property of eAt. ♠

Extending the above lemma gives

0 6 (eAtp̂)(x) 6 (eAtp)(x) for all x ∈ Ω . (3)

Theorem 2. Let pt be a solution to the cme at some time t, and let p̂t be its
approximation, where 0 6 p̂t 6 pt element-wise. Applying the Z mapping on
both vectors we get p̂t =

∑K
i=1 p̂

k
t and pt =

∑K
i=1 p

k
t . If A is the infinitesimal

generator as in (1), then for any ∆t > 0 ,

∥∥eA∆tpt − eA∆tp̂t∥∥1 = K∑
i=1

∥∥eA∆tpkt − eA∆tp̂kt∥∥1 , (4)



3 The parallel finite state projection method C860

where pk is defined as in (2).

Proof: Using Lemma 1, eAtpk − eAtp̂k is positive element-wise for each k.
♠

Theorem 3. Let p ∈ `1 with ‖p‖1 = 1 . If A is a matrix whose columns sum
to zero with only diagonal negative terms and eAt : `1 7→ `1 is a matrix with
the property that its columns have positive real numbers and sum up to one,
then ∥∥eAtp∥∥

1
6 ‖p‖1 .

Proof: This theorem was proved by Engblom [3]. ♠

We look at the error associated with distributing the probability over multiple
cores and computing them independently. We are interested in errors which
arise in steps 2, 10 and 6 of Algorithm 1, and in steps 2 and 4 of Algorithm 2.

The first step of the pfsp method is that we compute the problem linearly on
a single core until some time t > 0 . Let p̄t denote the ofsp solution of (1)
for some error ε, that is,

‖pt − p̄t‖1 < ε . (5)

Now let supp p̄t = Ω̄t . Applying Z(Ω̄t,K) gives K distinct subsets, Ω̄k
t ,

where k = 1, . . . ,K . Define p̄kt , for k = 1, . . . ,K , as the projection (2) of p̄t
onto Ω̄t

k .

We distribute the p̄kt vectors onto K different cores and on each core solve the
problem

dp̂ks
ds

= Akp̂ks , (6)



3 The parallel finite state projection method C861

with initial condition p̄kt . If 0 < εk < 1 , then [5] there exists a fsp approxi-
mation Ak such that ∥∥eA∆tp̄kt − eAk∆tp̄kt

∥∥
1
< εk. (7)

Consider the error if (6) is evolved on each of the cores and then was collated.

Let pt+∆t be the real solution to (1) and p̂t+∆t :=
∑K

k=1 p̂
k
t+∆t . Then

‖pt+∆t − p̂t+∆t‖1 6
∥∥eA∆tpt − eA∆tp̄t∥∥1 + ∥∥eA∆tp̄t − p̂t+∆t∥∥1

=
∥∥eA∆tpt − eA∆tp̄t∥∥1 +

∥∥∥∥∥eA∆tp̄t −
K∑
k=1

p̂k∆t

∥∥∥∥∥
1

=
∥∥eA∆tpt − eA∆tp̄t∥∥1 +

∥∥∥∥∥
K∑
k=1

eA∆tp̄kt −

K∑
k=1

p̂k∆t

∥∥∥∥∥
1

.

Using Theorem 3, (5), (6) and (7) the above simplifies to

‖pt+∆t − p̂t+∆t‖1 6
K∑
k=1

εk + ε . (8)

When computing, εk and ε are found by introducing a sink state [5]. A sink
state is a fictitious state into which the probability on the boundary of the
truncated state space flows.

If (6) is evolved for too large a time step ∆t, then supp p̂k∆t starts to become
as big as Ωt+∆t. This implies a slow down in the speed of computation. To
prevent this from happening a trading step is introduced.

In the trading step the master core collates all the solution vectors computed
on the slave cores. Once that is done, the state space of the support of
the collated vectors is then reclustered into new non-intersecting subsets of
the state space. The problem is reprojected onto these new clusters and all
overlaps have been removed. We now demonstrate the trading step.



4 Discussion C862

Let us trade at time t+∆t , where we have evolved on a single core to time t
using the ofsp method and computed time step ∆t on the separate cores. To
trade we define a new partition over the union of the state spaces on all the
cores. Let

Λ̂∆t :=

K⋃
k=1

supp p̂k∆t .

Applying Z to Λ̂∆t gives us K non-intersecting clusters of the state space, Λ̂k∆,
where k = 1 . . .K . We reset problem (6) to having the initial condition as

p̄kt+∆t(x) =

{∑K
k=1 p̂

k
∆t(x), if x ∈ Λ̂∆t ,

0, otherwise,
(9)

on each of the K cores.

The final step is to compress each p̂t+∆t to its best N-term approximation for
error εc, that is,

‖p̂t+∆t − p̃t+∆t‖ < εc, (10)

where p̃t+∆t is our N-term approximation of p̂t+∆t .

4 Discussion

Figure 1 shows the number of computational states used in the ofsp and pfsp
methods. The system was a two dimensional birth process. We computed up
to a final time of 1000 seconds. In the pfsp we traded every 32 steps and we
distributed the problem over four cores. The error at each point in time is the
same for the ofsp method and the pfsp method. The key features are that
on every core the state space being computed is much smaller. This gives us
some evidence of the type of reduction that we can get. However, this was only
1.5 times faster than the single core method. The implementation of the pfsp
used the cmepy library [1] which is designed for fast computing but on a



4 Discussion C863

F
ig

u
re

1:
o
f
sp

ve
rs

u
s
p
f
sp

.



References C864

single core; however, it is not designed to distribute the state space to multiple
cores, hence slowing down the solver. For future work we would like to build
a cmepy module whose data structures are customised for parallel computing.
Then we would look at the impact and speedup when we distribute the state
space over multiple cores. Also for further research we would use the theory
given in this article to extend some other existing cme solution methods into
solvers which compute over large computing infrastructures.

References

[1] cmepy, Jan 2011. https://github.com/fcostin/cmepy C855, C862

[2] K. Burrage, M. Hegland, S. MacNamara, and R.B. Sidje. A Krylov-based
finite state projection algorithm for solving the chemical master equation
arising in the discrete modeling of biological systems. In: Langville,
A. N., Stewart, W. J. (Eds.), Proceedings of the 150th Markov
Anniversary Meeting, Boson Books, pp. 21–38, 2006. C854

[3] S. Engblom. Numerical Solution Methods in Stochastic Chemical
Kenetics. PhD thesis, Uppsala University, 2008. C860

[4] M. Hegland, A. Hellander, and P. Lotstedt. Sparse grid and hybrid
methods for the chemical master equation. BIT Numerical Mathematics,
48(2):265–283, 2008. doi:10.1007/s10543-008-0174-z C856

[5] M. Khammash and B. Munsky. The finite state projection algorithm for
the solution of the chemical master equation. Journal of Chemical
Physics, 124(044104):1–12, 2006. doi:10.1063/1.2145882 C854, C856,
C861

[6] S. MacNamara, A.M. Bersani, K. Burrage, and R.B. Sidje. Stochastic
chemical kinetics and the total quasi-steady-state assumption:
application to the stochastic simulation algorithm and chemical master

https://github.com/fcostin/cmepy
http://dx.doi.org/10.1007/s10543-008-0174-z
http://dx.doi.org/10.1063/1.2145882


References C865

equation. Journal of Chemical Physics, 129(095105):1–13, 2008.
doi:10.1063/1.2971036 C854, C856

[7] V. Sunkara and M. Hegland. An optimal finite state projection method.
Procedia Computer Science, 1(1):1579–1586, 2010. ICCS 2010. http://
www.sciencedirect.com/science/article/pii/S187705091000178X,
doi:10.1016/j.procs.2010.04.177 C854, C856

Author addresses

1. Vikram Sunkara, Centre of Mathematics and its Applications,
Mathematical Sciences Institute, The Australian National University,
Australia.
mailto:Vikram.Sunkara@anu.edu.au

2. Markus Hegland, Centre of Mathematics and its Applications,
Mathematical Sciences Institute, The Australian National University,
Australia.
mailto:Markus.Hegland@anu.edu.au

http://dx.doi.org/10.1063/1.2971036
http://www.sciencedirect.com/science/article/pii/S187705091000178X
http://www.sciencedirect.com/science/article/pii/S187705091000178X
http://dx.doi.org/10.1016/j.procs.2010.04.177
mailto:Vikram.Sunkara@anu.edu.au
mailto:Markus.Hegland@anu.edu.au

	Introduction
	The finite state projection method
	The parallel finite state projection method
	Discussion
	References

