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Abstract

The computation of physical properties in a digital materials labora-
tory requires significant computational resources. Due to the complex
nature of the media, one of the most difficult problems to solve is
the multiphase flow problem, and traditional methods such as Lattice
Boltzmann are not attractive as the computational demand for the
solution is too high. A wavelet based algorithm reduces the amount
of information required for computation. Here we solve the Poisson
equation for a large three dimensional data set with a second order
finite difference approximation. Constraints and fictitious domains are
used to capture the complex geometry. We solve the discrete system
using a discrete wavelet transform and thresholding. We show that
this method is substantially faster than the original approach and has
the same order of accuracy.
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Tomographic imaging can now be routinely performed over three orders of
magnitude in length scale with correspondingly high data fidelity. This capa-
bility, coupled with the development of advanced computational algorithms
for image interpretation, three dimensional visualisation, structural charac-
terisation and computation of physical properties from image data, allows for
a new numerical laboratory approach to the study of real complex materials:
the Digital Materials Laboratory [3].

The computation of physical properties in a digital materials laboratory
requires significant computational resources. For large 3D data sets, the
number of data points is of the order of 8 billion; even for a simple binary
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image, we can benefit from a more efficient numerical approach to solve the
problem. Due to the complex nature of the media, one of the most difficult
problems to solve is the multiphase flow problem, and traditional methods
such as Lattice Boltzmann are not attractive as the computational demand
for the solution is too high. A wavelet based algorithm reduces the amount of
data needed for the computation. In the next section, we present our method
for solving PDEs, illustrated with the Laplace equation, and 3D digital images.
Sections 3-6 presents computational results, and Section 7 finishes the paper
with a general discussion and outlook.

2 Description of the method

We solve a discrete version of Poisson’s equation with Dirichlet boundary
conditions. The domain is obtained from a micro-CT scan of a large rect-
angular (2D) or cuboidal (3D) domain. It is given by a complex system of
intermediate spaces (pores) between solid rock. To solve the PDE on these
porous media, we use the fictitious domain method [2]. The algorithm is
presented in the following subsection.

2.1 Fictitious domain method

The total volume of the 3D images (pores and solid) is Q = Q; U Q,, where
Q); is the pore space domain on which the PDE will be solved and Q; is the
solid. From this we get a natural but slightly non-standard formulation of
the Dirichlet problem on Q:

—Au(x) =f(x), x€Q;, and u(x)=0, x€Q,. (1)

Here, A is the Laplacian. The fictitious domain Q) is open whereas Q,,
which contains the boundary of Oy, is closed. Note that the usual fictitious
domain method works with “internal boundary conditions” u(x) = 0 on the
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boundary 00);. While it seems at first sight that choosing to satisfy the
boundary conditions on the larger set (), is unnecessarily complicated, it
turns out that this does not cause additional work and has the advantage that
the complex shaped boundary 00Q); does not need to be treated explicitly.

The problem has a natural discretisation based on the voxels of the scan,
where the solution u(x) of the Poisson problem is characterised by one value
per voxel. One obtains the discrete Laplacian from the standard seven point
stencil approximation of the Laplacian. The (discrete) fictitious domain is
of the form D ={0,...,ny — 1} x{0,....,n; — 1} x{0,...,n3 — 1}. Then
D = Dy UD,, where the D; are the grid points of D which are contained
in Q;. Denote the discrete solution by i € RP. It will be shown that this i is
an approximation of u(x) for x € D. Let B € RP*? be the matrix modelling
the discrete version of the constraint of u(x) =0 in Q,. Then, the discrete
solution has to satisfy the condition that it is zero on D, that is,

Bi=0. 2)

Note that B is diagonal and symmetric, and B> = B. We denote the feasible
space by N(B) (the null space of B).

Both theoretically and for the derivation of numerical algorithms, it is most
convenient to formulate the discrete Dirichlet problem as a quadratic optimi-
sation problem with linear constraints. Consider the quadratic functional

AT — i

J(i) =

N —

Let 1 € N(B) satisfy
J(i) < J(V) for all v € N(B). (3)

Using Lagrange multipliers p € R? one then obtains a saddle point problem

5 o) Bl-1a) 2
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As BT = B, the vector B'p has only nonzero elements with indices in D,. It
follows that the components in Dy of the residual Atu—f are zero. Furthermore,
the components of U in D, are also zero.

The algorithm we consider here for the solution of saddle point problems is
an inexact Uzawa algorithm [2] defined by the iteration

G0 Z G0 4o (F— A0 — BTHM), (5)
ﬁ(k+1) _ ﬁ(k) +wB ﬁ(k+1)7

where p and w control the convergence of the Uzawa method and have to be
chosen such that good convergence is obtained. While, ultimately, a rational
choice of these parameters requires extensive error analysis, they can be
chosen based on some test problems and by monitoring the convergence.

If we start this iteration with ©(® = p® = 0, nonzero values of ©*) can
occur only for points in D; and for points in D, which are adjacent to points
in D;. Consequently Bii®, and thus p*), can be nonzero only on the points
of D, which are adjacent to D;. These points are just the boundary points
of D; and so one gets a natural representation of the boundary.

An implementation of this version of the Uzawa method requires a sparse
storage of the i®) and p®). The operators A and B are stored as sparse
matrices acting on sparse vectors. For such an implementation, the complexity
of the method is not proportional to the size of the fictitious domain D but
to the size of the actual domain D;. The next subsection discusses how to
further reduce the complexity using wavelets.

2.2 Wavelets

We start with a brief discussion of wavelets. Wavelets are basis functions that
are localised in both physical space and wavenumber space. Localisation in
physical space occurs due to the compact support, localisation in frequency
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space occurs due to vanishing moments and smoothness. Consider the analo-
gous case of the classical Fourier transform which has sine and cosine as basis
functions that are well localised in wavenumber space, but do not provide
localisation in physical space. While the Fourier transform behaves well for
continuous functions, the lack of localisation means that it provides poor
approximations for images containing discontinuities. Wavelets have four
fundamental properties that are highly desirable:

1. a local basis that is

2. easily refined,

3. they are fast to compute and

4. provide a good approximation using only a few terms.

The number of operations required to compute the wavelet transform is O(N).
The initial motivation for using a wavelet basis was due to a simple visual
inspection; we see a highly heterogeneous structure and as such choosing
a basis structure that can capture this information in a compressed way is
extremely desirable. A second reason is that using a typical mesh construction
of our finite element or finite difference scheme results in a very large linear
system of equations whose solution requires a lot of computational power.
This is why we study the use of a multilevel approximation scheme (the
wavelet transform) on top of the discrete equations. Multilevel methods are
a natural choice for flow in porous media and have been used in connection
with stochastic models of the pore domain [1].

We demonstrate that the multilevel wavelet approach considered here allows
efficient approximation, has a natural interpretation and admits a fast solution.
The only disadvantage of wavelets that we have encountered is that they
require domains of very regular shape. We had to use cube shaped domains
with linear dimensions equal to a power of two in our analysis, and hence had
to split our images into subdomains, the largest of which was 5122 in size.
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3 Wavelets for compression

A quick initial study shows the power of using wavelets in Micro-CT image data.
Our micro-CT images contain up to 2000° voxels, but many of these represent
slowly varying parts of the image with little information content. From such
data, we typically derive a binary image that distinguishes grain space and
pore space, which is subsequently used to model physical properties [4]. The
Haar wavelet transform is applied to the binary images to various subsets of
the same data set. The Haar wavelet is also the simplest possible wavelet.
The Haar wavelet transform is essentially made up of two components. A low
pass filter of 1/2, 1/2 that acts as the scaling function and a high pass filter
of 1/2, —1/2 that allows for the smooth compression. One component of the
Haar wavelet is

]7 X € (Oa %)a
h(X) = _17 X € (%71)a (6)
0, elsewhere.

Figure 1(a) shows a 2D slice through one of our CT images, showing the
geometrical complexity. Figures 1(b)—(c) show for two different subvolumes
that the number of Haar transform components falls rapidly with increasing
magnitude of wavelet coefficient. Hence, much of the information is contained
in only a small number of wavelet components. The Haar compression is
performed by setting to zero any wavelet coefficient that is initially less
than 0.01. We observed that for larger samples, wavelet compression is even
more effective. The Haar transform is efficient at capturing the sharp bound-
aries in the binarized image using a small number of wavelets. Since small
subvolumes have larger surface area-to-volume ratios than larger subvolumes,
there is less smoothly varying volume available for compression in the smaller
subsets. For the Haar transform of a 64° subvolume, about 2.5 x 10° wavelet
components have magnitude less than one, as shown in Figure 1(b), while for
the transform of the 512° cube, 1.3 x 108 components are less than one, as
shown in Figure 1(c).
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FIGURE 1: (a) a 2D slice from a micro-CT image of a real sandstone sample.
(b) Haar compression for a 64° subvolume and (c) a 512° subvolume.
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4 Operators in wavelet space

What follows is a brief discussion on an efficient construction of the finite
difference operator and how we apply the boundary conditions. Here we
wish to construct the seven stencil discrete Laplace operator. Let A be the
stiffness matrix, then, for the one dimensional case, A has a size of N by N.
Similarly, for the 2D and 3D cases, A has dimensions N2 by N? and N3 by N3,
respectively. One very efficient method for creating the 3D Laplace operator
is to use the Kronecker product. We begin with the discrete Laplace operator
in 1D,

A=Ap=|0o -1 2 ... (7)

whose sparsity pattern is shown in Figure 6(a). To produce, the 2D operator
we use the formula Asp = A ® [+ 1® A, where I is the identity matrix, and
A is the 1D Laplace operator. Similarly for the 3D Laplace operator, we use

App =ARIRI+IRARI+I®I®A. (8)

We ultimately wish to use the Lagrange multiplier methodology to apply
boundary conditions. However, to have a standard to compare against, we
first apply the boundary conditions to the operator by removing the row and
column and placing a “1” on the diagonal and the known value of “0” on the
right hand side of AU = F. The elements of A are stored in a sparse format
to save memory and increase efficiency. At this point we solve the quadratic
minimisation problem with boundary conditions by applying the conjugate
gradient method. We compare any subsequent solution to this reference
solution. As previously described, the images are segmented into pore and
grain space binary images. Ultimately, we wish to apply this methodology to
the solution of fluid flow problems, hence we set our boundary conditions in
such a way that the grain space has right hand side 0, indicating ‘no flow’,
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(a)

FIGURE 2: (a) 2D slice of 64° sample. (b) Exact Laplace solution for potential.
Colour contours are potential which varies from blue (zero) to red (maximum).
(c) Solution transformed from wavelet space.

while pore space has right hand side 1, indicating ‘normal flow’. In essence,
this amounts to a Poisson equation with complicated boundary conditions.
A much more efficient way of implementing the boundary conditions is to
use the fictitious domain approach, where Lagrange multipliers are used as a
sort of penalty term to enforce the boundary conditions on our domain. We
note that this fictitious domain implementation is particularly efficient for
the Galerkin scheme, where the construction of the stiffness matrix requires
no integration. Although it is very computationally efficient to formulate
the problem using this approach, there is a drawback. Looking at the block
representation shown in Equation (4), it becomes obvious that rather than a
quadratic equation, we have a saddle point problem which cannot be solved
by the conjugate gradient method.

5 Case study

Now that we have constructed our system and shown that it can be solved,
we show how the solution is computed efficiently using Uzawa’s algorithm.
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Algorithm 1: implement Uzawa’s iteration. Here the bar indicates a
wavelet transform.
1. Assume py—o, and Uyx— equal to zero.
Update Uy — U+ P (1?— Aﬂk — ETﬁk).
Update f)kJr] — f)k + waLk.
k——k+1.
if k > m then stop, otherwise go to step 2.

Ot WD

Let u(x) denote the reference solution and let ti(x) denote the numerical
solution computed using the Uzawa algorithm; thus, the relative error is

[u(x) —u(x)|
(x|

Error = (9)
Algorithm 1 implements Uzawa’s iterative scheme in wavelet space as defined

by Equation (5).

We start our computational experiments with an artificial granular model
of random ellipsoids. A 2D slice of this sample is shown in Figure 2(a).
The porosity is about 0.75, and the grain network is not connected. This is
clearly a poor example of a rock structure; however, we use it here as a case
study for showing the efficacy of the method. The computer simulation ran
100 iterations of the Uzawa algorithm. The inner solver is a preconditioned
conjugate gradient which also ran for 100 iterations. Starting with the
643 sample, we obtain the reference solution shown in Figure 2(b) and the
Uzawa solution shown in Figure 2(c). The error as derived in Equation (9) is
calculated at each step of Uzawa’s algorithm and plotted for three subsets of
the artificial sample. Figure 3(a) shows the number of nonzero values of i,
Figure 3(b) shows the error against the number of iterations, and Figure 3(c)
presents the error versus percentage of nonzero values for three different
subvolumes of size 323, 64° and 128%. For a given error, a larger sample has a
smaller percentage of nonzero wavelet coefficients, and hence is compressed
further than a smaller subvolume. Conversely, for a given number of iterations,
the relative error is greater for a larger subvolume, so a larger number of
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iterations is required for adequate convergence of a larger data set, although
the resulting compression is better.

6 Thresholding

We are now ready to apply the wavelet scheme to our problem. We apply
the WTAW wavelet transform on the operator in one dimension prior to
forming the Kronecker product, thus the wavelet transform is carried into
the higher dimensions. For this study, we solve the Laplace equation for
a 64° subvolume of the same artificial sample in Figure 2(a) (but from a
slice of different height z) with similarly complex pore structure. However,
while employing the Uzawa iteration, we apply a thresholding compression
on the solution space at each step of the iteration. The solution at each
step is in wavelet space, so to achieve a valid comparison to the reference
solution, we apply the inverse wavelet transform. In a normal application of
the scheme, this inverse transform will not be performed until convergence in
wavelet space is reached. Further, thresholding is only done on u(x) in the
solution space. In future work, we will report on the effects of compression
on the Lagrange multipliers and the operators. Figure 4 shows the converged
solution for compressions of 0%, 50% and 90%. The Lagrange multiplier
function p is presented in Figure 4. If the compression becomes too high,
there appears to be bleeding into the grain space (Figure 4(f)). Hence,
50% compression appears to be optimal for this Haar wavelet transform.
Figure (5) shows the behaviour of the error (9) as a function of the iteration
numbers; the sample space is the same one shown in Figure 2(a). The
results show that with 50% compression, convergence is achieved after only
20 iterations, approximately five times faster than with no compression. For
compression greater than 50%, a systematic error becomes apparent due to
the bleeding across the grain boundaries as noted above.
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FIGURE 3: (a) Number of nonzero elements of . (b) Relative error of Uzawa
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F1GURE 4: The top plots show the potential for different compression, and
bottom graphs show the boundary value parameter, p. The compression
is 0%, 50% and 90% from left to right.
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FIGURE 5: Relative error in U for different compressions, as a function of
iteration number.

7 Discussion and conclusion

It is also possible to perform compression on the operator. A discretisation of
the operator A with wavelet bases results in quasi-sparse matrices: the system
matrix becomes finger band structured in wavelet coordinates. Figure 6(a)
shows a standard discretisation of the Laplace operator as derived from a
second order finite difference three point stencil approximation for the one
dimensional case, whereas Figure 6(b) shows the clear finger band structure
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FIGURE 6: (a) Discrete form of the finite difference Laplace operator; coloured
boxes indicate nonzero matrix elements. (b) Operator in wavelet space.

of the same operator after it has undergone a Haar wavelet transform.

We first conclude that the fictitious domain approach works. Secondly, larger
systems are more compressible, both geometrically and for PDE solutions. We
found that a 50% thresholding allows for a factor of five speed increase in
solving the PDE. Third, wavelet bases are such that we get nonphysical results
for compressions greater than 50%. We aim to investigate this behaviour
further using other wavelet bases.

In future work, we aim to apply compression to the operator by discarding the
non-relevant matrix entries. The sparsity pattern will be chosen carefully by
a level dependent compression strategy so that we achieve an optimal order
of convergence. A diagonal scaling yields a well conditioned linear system of
equations.
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