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Abstract

We present a multiscale (or hierarchical) approximation of elliptic
variational inequalities where there is no need to develop an explicit
mesh refinement strategy. That is, we use wavelets to recast elliptic
variational inequalities as constrained quadratic optimisation problems
in `2 which we solve with the primal dual-path following method and
the projected gradient algorithm.

Contents

1 Introduction C950

2 Elliptic variational inequalities C951

http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/3964

gives this article, c© Austral. Mathematical Soc. 2011. Published November 24, 2011. issn
1446-8735. (Print two pages per sheet of paper.) Copies of this article must not be made
otherwise available on the internet; instead link directly to this url for this article.

http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/3964


1 Introduction C950

3 Uniform grids C952

4 Towards an adaptive method C960

References C964

1 Introduction

Variational inequalities (vi) are a way of formulating certain nonlinear prob-
lems in a variational framework. Classic examples include the obstacle
problem, Signorini’s problem in linear elasticity, stochastic games, and pricing
American options. This class of nonlinear problems is an interesting intersec-
tion between the areas of inequality constrained quadratic optimisation and
variational methods for partial differential equations.

Quite a large body of work exists on the construction of multigrid finite
element methods for vi [14] and multigrid methods for constrained quadratic
optimization whereby the mesh is adaptively modified to handle the nonlinear
problem structure given by the constraints. Using multigrid methods it was
also observed numerically that almost the same asymptotic convergence rates
(as the number of levels goes to infinity) are observed for the constrained
multigrid method as for the unconstrained case [15]. This motivates the
aim of this article whereby we present some first steps towards an adaptive
algorithm for vi in the spirit of the theoretical framework developed by Cohen
et al. [3, 4, 5]. In particular, we illustrate our approach with the example
of an obstacle problem but note that these methods apply to more general
situations.

We use the following notation. The relation a . b means that a is bounded
by some constant times b uniformly in all parameters on which a and b
may depend. We write a ∼ b to mean that a . b and b . a holds. The
spaces Lp(U), 1 6 p 6 ∞ , are the usual Lebesgue spaces on a domain
U ⊂ Rd and Wk,p ⊂ Lp(U), for k ∈ N are the Sobolev spaces of functions
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whose weak derivatives up to order k are bounded in Lp(U). We abbreviate
Hk(U) = Wk,2(U) and Hk0(U) = Hk(U) ∩ {u : u|∂U = 0}. We write ‘a.e.’ to
mean almost everywhere, and write supp f to denote the length of support of
the function f.

2 Elliptic variational inequalities

Let V be a real Hilbert space, whose inner product and norm are denoted
by (·, ·) and ‖ · ‖ respectively. Let a : V × V → R be a continuous bilinear
form and let K ⊆ V be closed, nonempty and convex. Let V ′ be the dual
of V with pairing between V ′ and V denoted by 〈·, ·〉. Given the functional
` : V → R , the problem

find u ∈ K such that a(u, v− u) > `(v− u), for all v ∈ K , (1)

is called an elliptic variational inequality (of the first kind). If for every
v ∈ V , a(v, v) > α‖v‖2 with α > 0 (that is, coerciveness), then Lions and
Stampacchia [18, Theorem 2.1] guaranteed that (1) has a unique solution.
Our approach to solving (1) is based on solving an equivalent minimisation
problem. Let E : V → R be given by E(v) := 1

2
a(v, v) − `(v), and consider

the problem
find u ∈ K : E(u) 6 E(v), for all v ∈ K . (2)

As K ⊆ V is closed, nonempty and convex, the functional E is strictly convex,
continuous and coercive on K. Further, if u solves (2), then u is also a
solution to (1) [1]. Throughout this article we illustrate our methods with
the following simple example.

Example 1. Take the interval (0, 1) and let V = H10(0, 1). For u, v ∈ V , take

a(u, v) =

∫ 1
0

u ′(ξ)v ′(ξ)dξ+ µ

∫ 1
0

u(ξ)v(ξ)dξ (3)

with µ > 0 and `(v) = 〈f, v〉 for f ∈ V ′ = H−1(0, 1). Finally, take χ ∈
H1(0, 1)∩C([0, 1]) with χ(0) 6 0 and χ(1) 6 0 and the set K := {v ∈ V : v >
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χ a.e. on (0, 1)}. With these choices, (1) is a weak formulation of the one
dimensional obstacle problem

− u ′′ + µu = f on {u > χ} ∩ (0, 1), u > χ on (0, 1), (4)

with boundary conditions u(0) = u(1) = 0 .

3 Uniform grids

Construction of a finite dimensional approximation of a variational inequality
in terms of finite elements is now well-known [12] and order of convergence
estimates for these approximations have been obtained [11]. We quickly recall
the construction of such an approximation. Let h be a parameter converging
to 0 and {Vh}h be a family of finite dimensional subspaces of V . Fix h and
assume that Vh has a basis of piecewise linear functions Φh := {φj : j ∈ Ih} for
some index set Ih. Thus an arbitrary element of vh ∈ Vh can be represented
as

∑
j∈Ih vjφj with vj ∈ R . We use the notation vThΦh :=

∑
j∈Ih vjφj for

v := {vi : i ∈ Ih}. One also constructs a convex subset Kh of Vh such that
Kh reduces to a finite number of constraints on the vj and Kh is a ‘good’
approximation of K [11]. Then problem (1) is approximated by

find uh ∈ Kh such that a(uh, vh−uh) > (f, vh−uh), for all vh ∈ Kh . (5)

Lions and Stampacchia [18] showed that problem (5) also possesses a unique
solution and an equivalent finite dimensional optimisation problem is

find uh ∈ Kh such that E(uh) 6 E(vh), for all vh ∈ Kh . (6)

In Example 1, a(·, ·) is symmetric and we obtain the constrained quadratic
optimisation problem

minimise
1

2
xTAx− f Tx , subject to x > c , (7)
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where x := {xi}i∈Ih , A := a(Φh,Φh), f := 〈f,Φh〉 , and c is a vector that
approximates Kh by evaluating χ at the nodal points of {φj} so that Kh :=
{x : xi > ci, i ∈ Ih}. A number of algorithms exist for solving constrained
quadratic problems of the form (7). Due to the geometry of Kh, we set Π to
be the projection operator onto Kh, Πx := {u : ui := max(xi, ci)}. One of
the simplest methods of solving (6) is the fixed step-size projected gradient
method which is based on the iteration

x(k+1) = Π
[
x(k) − κ(Ax(k) − f)

]
, x(0) ∈ Kh , (8)

with 0 < κ < 2α/‖A‖2. Unfortunately, similar to conjugate gradient methods,
the projected gradient algorithm takes a large number of iterations to obtain
a solution as its convergence rate is very slow on fine meshes unless good
preconditioning is applied.

We now perform a multiscale or hierarchical approximation of the minimiza-
tion (7) based on the multiscale theory for operator equations [9, 16] to obtain
a wavelet preconditioning for (7). We recall that for H = Hs(U) for s ∈ N0 ,
we construct a multiresolution that consists of closed subspaces Sj of H called
trial spaces such that they are nested and their union is dense in H,

Sj0 ⊂ Sj0+1 ⊂ · · · ⊂ Sj ⊂ Sj+1 · · · ⊂ S ,

( ∞⋃
j=j0

Sj

)
= H . (9)

The index j is the refinement level and j0 ∈ N0 is the coarsest level. We
assume that these multiresolution spaces Sj have the form

Sj := span{Φj}, Φj := {φj,k : k ∈ ∆j}, (10)

for some finite index set ∆j. We assume the set {Φj}
∞
j=j0

is uniformly stable,
that is, uniformly in j

‖u‖`2(∆j) ∼ ‖u
TΦj‖H , u := {uk}k∈∆j

∈ `2(∆j), (11)

where we use the notation uTΦj =
∑

k∈∆j
ukφj,k and ‖u‖`2(∆j) :=

√∑
k∈∆j

u2k .

The collection Φj is called a single scale basis, as all its elements live on
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the same scale j, or a generator basis of the multiresolution. We assume
that φj,k are compactly supported so that suppφj,k ∼ 2

−j and scaled so that
‖φj,k‖H ∼ 1 . Condition (9) and (11) imply that there exists a matrix

Mj,0 =
[
mj
r,k

]
r∈∆j+1,k∈∆j

of size (#∆j+1)× (#∆j) such that the two scale relation

φj,k =
∑
r∈∆j+1

mj
r,kφj+1,r , k ∈ ∆j , (12)

holds giving the matrix-vector refinement equation Φj = MT
j,0Φj+1 . A basis

for H is constructed from functions that span any complement between
successive spaces Sj and Sj+1:

span(Φj+1) = span(Φj)⊕ span(Ψj) (13)

where
Ψj = {ψj,k : k ∈ ∇j}, ∇j := ∆j \ ∆j . (14)

We call {ψj,k} the wavelet functions and they satisfy the refinement equation
Ψj = MT

j,1Φj+1 with Mj,1 of size (#∆j+1)× (#∇j). Further, (13) is equivalent

to the fact that Mj :=
[
Mj,0,Mj,1

]
is invertible as a mapping from `2(∆j∪∇j)

onto `2(∆j+1). It follows that Mj performs a change of basis in the space Sj+1,[
Φj

Ψj

]
=

[
MT

j,0

MT
j,1

]
Φj+1 = MT

jΦj+1 , (15)

called a decomposition identity, and applying the inverse of Mj to both sides
we obtain a reconstruction identity

Φj+1 = M−T
j

[
Φj

Ψj

]
= M−T

j,0 Φj +M−T
j,1 Ψj . (16)

Now fixing a finest resolution level J, we obtain

span(ΦJ) = span(Φj0)⊕
J−1⊕
j=j0

span(Ψj), (17)
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and every v ∈ span(ΦJ) can be written in single scale representation as

v = (vJ)
TΦJ =

∑
k∈∆j

vJ,kφJ,k , (18)

or in multiscale representation as

v = (vj0)
TΦj0 +

J−1∑
j=j0

(uj)
TΨj . (19)

We may pass from the single scale to the multiscale representation by an
application of the Wavelet transform TJ : `2(∆J) → `2(∆J) given by

TJvJ =
[
vj0 ,uj0 , . . . ,uJ−1

]T
, (20)

and TJ = TJ,J−1 · · ·TJ,j0 where

TJ,j =

[
Mj 0

0 I(#∆J−#∆j+1)

]
∈ R(#∆J)×(#∆J) . (21)

The inverse transform T−1
J is constructed in a similar way and maps from

the multiscale representation to the single scale representation. Applying
TJ or T−1

J has complexity of order O(#∆J) = O(dimSJ) uniformly in J and
TJ is called the Fast Wavelet Transform (fwt). Comparing this approach to
a multigrid method we see that it has two favourable features: there is no
need to develop explicit mesh refinement strategies; and the different scales
are introduced through the translations and dilations of a single function
which provides a simpler theoretical analysis [10].

We now return to our initial construction of minimization (7) for Example 1
given by the finite dimensional space Vh and connect it with the multiscale
representation. Suppose U = (a,b) ⊂ R and the basis for Vh is generated
by the functions φk(ξ) = φ(2

Jξ− k) where φ(ξ) = (1+ |ξ|)+ for ξ ∈ R and
some choice of J. The function φ is sometimes known as the ‘hat function’, or
in the wavelet setting as the (reverse) biorthogonal B-spline scale function of
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order (2, 2). Our construction does not depend on the choice φ(ξ) = (1− |ξ|)+
and applies equally well in the case of higher order biorthogonal B-spline
wavelets. For simplicity, we transform the problem so that (a,b) = suppφ ,
that is, (a,b) = (−1, 1). Notice that we can now relate Vh to the single scale
space SJ = span(ΦJ) by choosing h ∼ 2−J where J is our finest resolution
level. Therefore, with these choices we view minimization (7) as problem (6)
on the finest resolution J and since H = H10(0, 1) and by our choice of basis
functions (that is, φ(a) = φ(b) = 0), the number of degrees of freedom
N = 2J+1 − 1 and we approximate KJ := {vJ : vJ,k > cJ,k,k ∈ ∆J} where
cJ := {cJ,k := χ(k2−J) : k ∈ ∆J}. Applying operator TJ gives a multiscale
representation of minimization (7):

minimise
1

2
xTPx+ qTx subject to Gx > c , (22)

where P := T−T
J AT−1

J , q := −T−T
J f , and G = T−1

J .

We now make two comments. First, (22) has a fundamentally different
structure from (7) as the constraint is now Gx > c , that is, we must
transform x from the multiscale basis to the single scale basis before testing
if it is contained in KJ. Second, suppose we constructed the matrix G, then
due to the particular band structure of MJ and M−1

J we can estimate that
G contains O(J#∆J) entries. In practice to obtain Gx one ideally does not
construct the matrix G but instead applies the inverse fwt which is applied
in O(#∆J) operations. However, while exploring numerical techniques for vi
we decided to solve minimization (7) and (22) by a primal-dual path following
method based on the Nesterov–Todd scaling using the optimisation package
cvxopt [7] which solves the cone quadratic program (following their notation)

minimise
1

2
xTPx+ cTx subject to Gx+ s = h , Ax = b , s � 0 , (23)

with P positive definite. The most expensive part of the algorithm involves
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Table 1: Comparison of time (in seconds) between the finite element approxi-
mation and multiscale approximation using cvxopt.

Size 32 64 128 256 512 1024 2048

Finite element 0.27 0.38 0.45 0.59 0.96 1.74 3.29
Multiscale 0.28 0.37 0.60 1.18 2.84 8.06 32.79

the solution of a set of linear equations of the formP AT GT

A 0 0

G 0 −WTW

uxuy
uz

 =

bxby
bz

 , (24)

where W is a positive diagonal scaling matrix (see cvxopt documentation).
Due to the structure of minimization (7) and (22), (24) reduces to 2× 2 block
systems of the form[

A −I
−I −WTW

] [
ux
uz

]
=

[
bx
bz

]
,

[
P −G
−G −WTW

] [
ux
uz

]
=

[
bx
bz

]
. (25)

Unfortunately, in the multiscale formulation (22), the need to construct
the matrix G results in the difficulty of the problem being shifted into the
constraint. To illustrate this point, in Table 1 consider Example 1 using the
finite element approach and the multiscale approach and compare the timings
obtained with cvxopt for different problem sizes. This is very different from
the unconstrained situation considered by Dahmen and Kunoth [10], in which
the multiscale representation P is an ‘optimally preconditioned’ version of A
which ensures a more favourable convergence.

We now return to the theory of constructing an adaptive method and recall
that there exists a set of functions Ψ̃ called dual wavelets that are biorthogonal
or dual to Ψ in the sense that 〈Ψ, Ψ̃〉 = I [16, Theorem 3.1] and in the same
way, a set of functions Φ̃ called dual generators satisfying 〈Φ, Φ̃〉 = I . We
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have the norm equivalence

‖v‖2H1(U) ∼

∞∑
j=j0−1

22j‖〈Ψ̃j, v〉‖2`2(∇j)
, (26)

which implies that every v ∈ H1(U) can be expanded uniquely in terms
of the Ψ [16, Corollary 3.1]. Its expansion coefficients v satisfy ‖v‖H1(U) ∼

‖Dv‖`2 where D is a diagonal matrix with entries D(j,k),(j ′,k ′) = 2
jδj,j ′δk,k ′ or

alternatively, given by the inverse of the diagonal of P. As such, we assume
that P in (22) is replaced by a rescaled version

P̄ := D−1
J T−T

J a(ΦJ,ΦJ)T
−1
J D−1

J , (27)

whose condition number is bounded independently of J. In particular, contin-
uing the situation of Example 1, if µ = 0 , then we obtain P̄ = IJ under this
wavelet preconditioning of A.

As proposed by Schölberl [20], to introduce preconditioning into the projected
gradient algorithm, the iteration (8) is modified to

x(k+1) = Π
[
x(k) − αC(Ax(k) − f)

]
, x(0) ∈ Kh , (28)

where C is some self adjoint positive definite matrix approximating A−1. To
accomplish favourable convergence, C must be chosen so that the spectral
condition number κ(C1/2AC1/2) as small as possible [10]. Further, one would
also like to ensure that the matrix-vector operation Cx and the projection
operator Π, with respect to the C−1 energy norm onto Kh, has complexity of
order O(dimVh) [20]. That is, Πx is the element in Kh that satisfies

‖Πx− x‖C−1 6 ‖z− x‖C−1 , for all z ∈ Kh . (29)

The matrix C := (TJD
−1)(TJD

−1)T is a candidate for such a precondi-
tioner [10, Remark 2.2] and as TJ is the fwt, the operation x 7→ Cx has
complexity O(dimSJ) uniformly in J.
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As the exact projection Π is too expensive to compute, we follow Schöberl [20]
and replace it with an approximate projection Π̃ giving the approximate
projected gradient method

x(k+1) = Π̃(x̃(k)), x̃(k) = x(k) − αC(Ax(k) − f), x(0) ∈ Kh . (30)

Theorem 2 (Schöberl [20]). Let x(k) be generated by (30), cA 6 ‖A‖ 6 CA ,
and α ∈ (0, 1/CA]. If Π̃ satisfies

‖Π̃(x(k))−x̃(k)‖2C−1 6 ρΠ‖x(k)−x̃(k)‖2C−1+(1−ρΠ)‖Π(x̃(k))−x̃(k)‖2C−1 , (31)

with ρΠ ∈ [0, 1), then the estimate

E(x(k+1)) 6 ρE(x(k)) + (1− ρ)E(x) (32)

holds for every k ∈ N with convergence rate ρ = 1 − 1
2
αcA(1 − ρΠ) and the

error in the A-energy norm is bounded by

‖x− x(k)‖2A 6 2ρk−1
(
E(x(1)) − E(x)

)
. (33)

Taking ρΠ = 0 in Theorem 2 gives the estimate for the case of the exact
projection. It follows that one obtains the same error estimator as for the
unconstrained case.

Corollary 3. If the sequence x(k) is generated by (30), then with ρ given by
Theorem 2, then the iteration error is bounded by

‖x− x(k+1)‖2A 6
ρ

1− ρ
(x(k+1) − x(k))T(2f −Ax(k) −Ax(k+1)). (34)

We conclude this section with two remarks. First, Theorem 2 is an estimate
that is independent of the highest refinement level J. Second, we now need to
construct an approximate projection operator Π̃ that satisfies the assumptions
of Theorem 2.
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4 Towards an adaptive method

The first step in constructing an adaptive wavelet method for the solution of (1)
relies on mapping the problem from V onto the sequence space `2 endowed
with inner product xTx for x ∈ `2 and norm ‖x‖ :=

√
xTx . Our approach is

structured on the adaptive wavelet schemes recently development by Cohen
et al. [3, 4] and we refer you to those articles for the formal construction in
the section. However, heuristically we simply take J→ ∞ in the framework
of Section 3. As such, we obtain a wavelet basis Ψ := {ψλ : λ ∈ J} ⊂ V where
the index λ ∈ J encodes scale, spatial location, and the type of wavelet ψλ.
We denote by |λ| the scale associated with ψλ. Again, we consider only
compactly supported wavelets and assume that the index set J has the
structure J = Jφ ∪ Jψ where Jφ is finite and indexes the scaling functions
on a fixed coarsest level j0. Jψ indexes the wavelets with |λ| > j0 . From
the compactness of the supports, it follows that at each level |λ| = j the set
Jj := {λ ∈ J : |λ| = j} is finite with #Jj ∼ 2

jd where d is the ambient spatial
dimension (for example, Rd). Finally, we assume that the wavelet basis forms
a Riesz basis for V , that is, the analysis operator

T : V ′ → `2 ; v 7→ {〈v,ψλ〉}λ∈J =: {vλ}λ∈J =: v ,

is bounded and invertible. We identify `2 with its dual. The adjoint opera-
tor T ′, called the synthesis operator, is given for v := {vλ}λ∈J ∈ `2 by

T ′ : `2 → V ; v 7→ ∑
λ∈J

vλψλ =: vTΨ .

Using this framework, we now introduce the functional E : `2 → R given
by E(x) := E(T ′x) and one can show E(x) = E(T ′x) = 1

2
xTPx− qTx where

P := TAT ′ ∈ L(`2, `2) and q := Tf ∈ `2 . Here P is considered an infinite
dimensional matrix, q as an infinite dimensional vector, and we obtain an
infinite dimensional version of minimization (22). The functional E restricted
to κ := {v : T ′v ∈ K} retains all of the properties of E restricted to K: strict
convexity, continuity and coercivity. We conclude that our problem (2) has
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now been mapped from V to `2 and again, to determine if v ∈ κ one must
check if T ′v ∈ K so the convex set κ ⊂ `2 is no longer of ‘bound type’ (that
is, {x : x > z} for some z ∈ `2). To follow the framework of Cohen et al. [3, 4],
we first need to identify an infinite dimensional algorithm that constructively
obtains a solution to (2), then we need to construct a computable version
that adaptively retains a best N term approximation.

Let ΠK be the projection operator that assigns to a given point in V its closest
point in K, that is, if v ∈ V then ΠKv ∈ K satisfies ‖v− ΠKv‖ 6 ‖v− u‖ for
all u ∈ K . The operator ΠK is well defined and Lipschitz [2]. Choose u0 ∈ K
then let un ∈ V be a sequence recursively given by

un+1 := ΠK [un − α(Aun − b)] , n = 1, 2, . . . , (35)

for some α > 0 . This projected gradient process is an infinite dimensional
version of the projected gradient method and if 0 6 α < ‖A‖−1 then by
Goldstein [13], un → u ∈ K where u solves (2). Therefore, we have our infinite
dimensional algorithm as required. As performed in Section 3, we now map the
sequence {un} to the sequence {x(n)} ∈ `2 through the use of the operators T
and T ′. This results in an infinite dimensional version of minimization (22)
and we can also obtain an infinite dimensional version of the ‘preconditioned’
projected gradient algorithm given by the iteration (28). A computable
version of this algorithm now needs the following ingredients: an adaptive
matrix-vector operation which is provided by the routine APPLY of Cohen et
al. [3], a nonlinear approximation of q which can be obtained by RHS [3], and
an approximation Π̃ of the projection operator Π. As mentioned at the end
of Section 3, Theorem 2 is independent of J therefore an equivalent theorem
can be obtained in the `2 case. Therefore, we are left with constructing the
approximate projection operator Π̃. However, it can be shown that Π satisfies
the assumptions of the results by Cohen et al. [6] and as such, we obtain a
computable Π̃.

The method has been implemented and Figure 1 displays some results. In
the one dimensional examples the solution either follows the constraint or is
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x

g(x)

h(x)

v(x)

x
v0(x)

v(x)

Figure 1: (top) Solution of −v ′′(x) = 0 with v(−1) = v(1) = 0 with the
constraints g 6 v 6 h where g(x) = (1 − 4x2)(x2 − 1/2) + 1 and h(x) =
3/4+ 4x2 when h(x) < 1.1 and h(x) = 1.1 otherwise. (bottom) Solution of
−v ′′(x) = x/10 with v(−1) = v(1) = 0 with the positivity constraint v > 0

and v0 is the unconstrained solution.



4 Towards an adaptive method C963

1.0
χ

u

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Level 7
0

Figure 2: Solution of a one dimensional obstacle problem showing the best
16 term approximation of the solution.

linear (that is, has second derivative zero) and thus solves the constrained
problem. These examples demonstrate the feasibility of the approach.

Further investigations are currently being done to assess the performance
based on different choices of the approximate projection operator Π̃; Lindon
Roberts [19] gave a more detailed discussion and additional computational
results.

Finally we remark that an adaptive method provides a nonlinear (finite
dimensional) approximation of the solution. The efficiency of such approxi-
mations is determined by the regularity of the solution in the scale of Besov
spaces Bαq(L

p(U)) for some bounded, simply connected, Lipschitz domain
U ⊂ Rd. The higher smoothness of the solution for the Dirichlet problem
ensures adaptive methods perform better than linear methods [8]. Therefore,
we believe it would be interesting to connect, in a similar way, the regularity
theory for the obstacle problem [17, Theorem 3.1] with the rate of convergence
of nonlinear approximation.
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