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Study of biodegradation of xenobiotic
polymers with change of microbial population
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Abstract

Microbial depolymerization processes of polyethylene glycol are
studied. A mathematical model, developed originally for endogenous
type depolymerization processes, is applied to exogenous type de-
polymerization processes. An inverse problem is solved numerically
to determine a degradation rate. An initial value problem is solved
numerically to simulate the transition of weight distribution.
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1 Introduction

Microbial depolymerization processes are categorized into exogenous type
processes and endogenous type processes. In an exogenous depolymerization
process, molecules reduce in size by truncation of monomer units from their
terminals. Polyethylene (pe) is an example of a polymer subject to exogenous
depolymerization processes. In pe biodegradation, there are two essential
factors: the gradual weight loss of large molecules due to β-oxidation, which
is an exogenous depolymerization process, and the direct consumption or
absorption of small molecules by cells. A mathematical model based on those
factors was proposed to study pe biodegradation [5, 16, 6].

Polymers subject to exogenous depolymerization processes include polyethy-
lene glycol (peg). peg is one of the polyethers whose chemical structures are
represented by the expression HO(R-O)nH: for example, peg, R = CH2CH2;
ppg, R = CH3CHCH2; ptmg, R = (CH2)4 [1]. peg is metabolized by liberat-
ing C2 compounds exogenously [2, 3] (Figure 1). The mathematical techniques
developed for pe biodegradation were extended to studies of the exogenous
depolymerization processes of peg [9]. Inverse problems were solved nu-
merically to determine degradation rates based on the weight distribution
of peg with respect to molecular weight before and after cultivation of a
microbial consortium E-1. Once a degradation rate was found, the transition
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Figure 1: Metabolic pathways of peg. Anaerobic metabolism (left) and
aerobic metabolism (right).

of the weight distribution was simulated by solving an initial value problem.
Dependence of degradation rate on time was also considered in modeling and
simulation of depolymerization processes of peg [11, 14, 13, 15].

Analysis of peg biodegradation is continued. A model originally developed
for endogenous depolymerization processes is applied to the exogenous de-
polymerization processes. Unlike exogenous type depolymerization processes
in which monomer units are truncated from terminals, molecules are cleaved
internally in endogenous type depolymerization processes. Derivation of the
model is described, and an inverse problem is solved numerically to determine
a degradation rate. An initial value problem is solved numerically to simulate
transition of the weight distribution. Numerical techniques are illustrated
and numerical results are introduced.
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2 Modeling depolymerization processes

Polyvinyl alcohol (pva) is degraded in a succession of two processes: oxida-
tion of a couple of pendant hydroxyl groups, either by oxidase or dehydroge-
nase; followed by hydrolysis. A sequence of reactions leads to cleavage of a
carbon-carbon chain at a carbonyl group and an adjacent methyne group [4].
Matsumura et al. proposed a different metabolism of pva by oxidation of a
hydroxyl group and aldolase reaction of a monoketone structure, which results
in cleavage of a carbon-carbon chain between a methyne group adjacent to a
carbonyl group and an adjacent hydroxymethyne group [8]. Irrespective of
metabolic pathways, pva is in general depolymerized by oxidation and the
resultant cleavage of a carbon-carbon chain between two carbonyl groups, or
between a carbonyl group and an adjacent hydroxymethyne group, which
produces smaller molecules.

In order to model endogenous depolymerization processes of polymers such
as pva, let w(t,M) be the weight distribution with respect to the molecular
weight M at time t. Denote by C(A,B) the class of all molecules with molec-
ular weight between A and B. Then the total molecular weight in C(A,B)
present at time t is ∫B

A

w(t,M)dM . (1)

For K 6M , let p(t,K,M) denote the time rate of transition from w(t,M)
to w(t,K). Then the transition of the weight from C(A,B) to C(D,E) per
unit time is ∫∫

R

p(t,K,M)dMdK ,

where the integral is over the domain

R = {(K,M) | K 6M , D 6 K 6 E , A 6M 6 B} .

The total weight decrease in C(A,B) per unit time is∫B
A

∫M
0

p(t,K,M)dKdM , (2)
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while the total weight increase per unit time is∫B
A

∫∞
M

p(t,M,K)dKdM . (3)

The rate of change of quantity (1) equals the difference between quantities (2)
and (3),

d

dt

∫B
A

w(t,M)dM = −

∫B
A

∫M
0

p(t,K,M)dKdM

+

∫B
A

∫∞
M

p(t,M,K)dKdM .

The equation
d

dt

∫B
A

w(t,M)dM =

∫B
A

∂

∂t
w(t,M)dM

leads to∫B
A

{
∂

∂t
w(t,M) +

∫M
0

p(t,K,M)dK−

∫∞
M

p(t,M,K)dK

}
dM = 0 .

Since this equation holds for an arbitrary interval [A,B], the integrand

∂

∂t
w(t,M) +

∫M
0

p(t,K,M)dK−

∫∞
M

p(t,M,K)dK = 0 ,

and so w = w(t,M) satisfies [17, 10, 18]

∂w

∂t
= −

∫M
0

p(t,K,M)dK+

∫∞
M

p(t,M,K)dK . (4)

Let γ(t,M) be the loss of amount from w(t,M) per unit time and per unit
weight. The amount of loss from w(t,M) per unit time is γ(t,M)w(t,M)
which is expressed in terms of the integral of p(t,K,M):

γ(t,M)w(t,M) =

∫M
0

p(t,K,M)dK .
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This amount is distributed over the interval [0,M]. For K ∈ [0,M], let q(K,M)
denote the increase inw(t,K) per unit weight due to the weight loss inw(t,M).
Then p(t,K,M) = γ(t,M)q(K,M)w(t,M). Equation (4) leads to

∂w

∂t
= −γ(t,M)w+

∫∞
M

γ(t,K)q(M,K)w(t,K)dK . (5)

Note that∫B
A

γ(t,M)w(t,M)dM =

∫B
A

∫M
0

p(t,K,M)dKdM

=

∫B
A

∫M
0

γ(t,M)q(K,M)w(t,M)dKdM

=

∫M
0

q(K,M)dK

∫B
A

γ(t,M)w(t,M)dM ,

and that ∫M
0

q(K,M)dK = 1 . (6)

Given an initial weight distribution in terms of a prescribed function f(M) ,
equation (5) and the initial condition

w(0,M) = f(M) (7)

form an initial value problem, provided the degradation rate γ(t,M) is given.
Given an additional weight distribution at t = T (T > 0) in terms of a
prescribed function g(M),

w(0,M) = g(M), (8)

equation (5) and the conditions (7) and (8) form an inverse problem to find the
degradation rate γ(t,M), for which the solution of the initial value problem (5)
and (7) also satisfies the condition (8). Inputs of the inverse problem are an
initial weight distribution f(M) and a final weight distribution g(M). As is
seen in Section 4, experimental studies have made those inputs available.
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3 Reduction to a model with time

independent degradation rate

Time factors of degradability include temperature, dissolved oxygen, and
microbial population. Experimental results introduced in Section 4 were
obtained from incubation under constant temperature and aeration by a
shaker, and the only factor that affects the degradation rate is the microbial
population. The number of molecules depolymerized per unit time and unit
volume is proportional to the product of the microbial concentration and the
polymeric concentration in a solution. Note that the number of molecules
with molecular weight M is inversely proportional to the molecular weight,
and that the concentration of polymeric molecules with molecular weight M
is also inversely proportional to the molecular weight. The total number of
molecules with molecular weight M which are depolymerized per unit time
is also a product of the microbial population and a function of M, and the
degradation rate γ(t,M) is a product of a function of t, σ(t), and a function
of M, λ(M), so that equation (5) becomes

∂w

∂t
= −σ(t)λ(M)w+ σ(t)

∫∞
M

λ(M)q(M,K)w(t,K)dK . (9)

Let τ =
∫t
0
σ(s)ds and W(τ,M) = w(t,M). Then

∂W

∂τ
=
∂w

∂t

∂t

∂τ
=

1

σ(t)

∂w

∂t
,

and equation (9) becomes

∂W

∂τ
= −λ(M)W +

∫∞
M

λ(K)q(M,K)W(τ,K)dK . (10)

Equation (5) and the initial condition

W(0,M) = f(M) (11)
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form an initial value problem provided λ(M) is known. Let T =
∫T
0
σ(s)ds .

Then equation (10), together with the initial condition (11) and the condition

W(T,M) = g(M), (12)

form an inverse problem to find the degradation rate λ(M) for which the
solution of the initial value problem (10) and (11) also satisfies the condi-
tion (12). The initial value problem (5) and (7) corresponds to the initial value
problem (10) and (11), and the inverse problem (5), (7) and (8) corresponds
to the inverse problem (10), (11) and (12).

4 Computational results for an exogenous

depolymerization process

Suppose that q(K,M) is a product of a function of K, c(K), and a function
of M, d(M), so that the equation (10) becomes

∂W

∂τ
= −λ(M)W + c(M)

∫∞
M

λ(K)d(K)W(τ,K)dK . (13)

In view of the condition (6),∫M
0

q(K,M)dK =

∫M
0

c(K)d(M)dK = d(M)

∫M
0

c(K)dK = 1 .

If the number of molecules is uniformly distributed over the interval [0,M],
then [17, 10, 18]

c(K) = 2K , d(M) =
1

M2
. (14)

For these c(K) and d(M), equation (13) is the model proposed originally
for enzymatic degradation of polyvinyl alcohol. If the molecular weight is
uniformly distributed over the interval [0,M], then [12]

c(K) = 1 , d(M) =
1

M
. (15)
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Differentiation of the both sides of equation (13) and substitution of the
expression for the integral obtained from equation (13) lead to

∂

∂M

{
∂W

∂τ
+ λ(M)W

}
=
c′(M)

c(M)

{
∂W

∂τ
+ λ(M)W

}
− λ(M)c(M)d(M)W . (16)

Numerical techniques were developed for the inverse problem to find the
degradation rate λ(M) for which the solution of the initial value problem (16)
and (11) also satisfies the condition (12) in case c(M) and d(M) are given
by (14). Those techniques can be extended to cover the general case. Fig-
ure 2(a) shows the weight distribution of peg before and after incubation of
a microbial consortium E1 for seven days. The weight distributions shown in
Figure 2(a) were set as initial and final conditions for the inverse problem.
The weight distribution before cultivation was set as the initial condition (11),
and the weight distribution after the cultivation for three days was set as
the final condition (12) to solve the inverse problem numerically for the
functions c(K) and d(M) given by expressions (15). Figure 2(b) shows the
graph of the degradation rate λ(M).

The initial value problem was solved numerically to simulate the transition of
weight distribution of peg for seven days (Figure 2(c)). Figure 3(a) shows
the experimental result and a numerical result for the weight distribution of
peg after cultivation for three, five, and seven days.

5 Discussion

The mathematical model originally proposed for the endogenous depoly-
merization processes is applied to exogenous depolymerization processes of
peg. The dependence of degradation rate on time is shown in numerical
results. The results shown in Figures 2(c) and 3(a) were obtained with a
time independent or time averaged degradation rate. Figure 3(a) shows that
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Figure 2: (a) Weight distribution of peg before and after cultivation of
microbial consortium E1[13, 15]. (b) Degradation rate of peg based on the
weight distributions before and after cultivation for three days (Figure 2(a)).
(c) Transition of weight distribution for seven days based on the degradation
rate shown in Figure 2(b).
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Figure 3: (a) Experimental results and numerical results for the weight
distribution after cultivation for three, five, and seven days. (b) Degra-
dation rates based on exogenous depolymerization model and endogenous
depolymerization model.
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the degradation rate over the first three days of cultivation is smaller than
over the next two days, which was suggested in the previous studies. The
dependence of degradation rate on time is due to the change of microbial
population. Figure 3(b) shows the degradation rate from Figure 2(b) and the
degradation rate obtained by the exogenous depolymerization model [13, 15].

Numerical results show that the model originally proposed for endogenous
depolymerization processes is widely applicable not only to the endogenous
depolymerization processes, but also to the exogenous depolymerization
processes, and that depolymerization processes of mixed type can be analyzed
with the model.

Acknowledgements: We thank Ms Y. Shimizu for her technical support.
This work was supported by JSPS KAKENHI 20540118.

A Description of numerical techniques for

the inverse problem and the initial value

problem

In depolymerization processes, weight is shifted from larger molecular weight
classes to smaller molecular weight classes. The initial weight distribu-
tion f(M) defined on the interval [0,∞) has compact support, and the weight
distribution function W(τ,M) also has a compact support. The inverse
problem is formulated to determine the unknown degradation rate λ(M) for
which the solution of the initial value problem (16) and (11) also satisfies
the final condition (12). Equation (16) is reduced to an ordinary differential
equation. Let µ = b−M . Then the inverse problem consisting of (16), (11)
and (12) is converted to

∂

∂µ

(
∂v

∂τ
+ κ (µ) v

)
= −

c′(b− µ)

c(b− µ)

(
∂v

∂τ
+ κ (µ) v

)



A Description of numerical techniques for the inverse problem and the initial value problemC422

+ κ(µ)c(b− µ)d(b− µ)v , (17)

v(0,µ) = φ(µ), (18)

v(T,µ) = ψ(µ), (19)

where v(τ,µ) = W(τ,b − µ), κ(µ) = λ(b − µ), φ(µ) = f(b − µ), and
ψ(µ) = g(b− µ).

Let

u =
∂v

∂τ
+ κ(µ)v . (20)

Then equation (17) becomes

∂u

∂µ
= r(µ,u, τ), (21)

where

r(µ,u, τ) = −
c′(b− µ)

c(b− µ)
u+ κ(µ)c(b− µ)d(b− µ)v , (22)

in which v is given in terms of u according to the equation (20). Then, for a
fixed but arbitrary τ ∈ [0,T], equation (21) is an ordinary differential equation
whose solution is a function of the variable µ, and it should be associated
with an initial condition in terms of a prescribed function h(τ)

u(µ0, τ) = h(τ). (23)

Suppose that v(µ, τ) satisfies the problem (17), (18) and (19) with a prescribed
degradation rate κ(µ). Define u = u(µ, τ) and r(µ,u, τ) by equations (20)
and (22) with v = v(µ, τ), respectively. Then, for a fixed but arbitrary
τ ∈ [0,T], u = u(µ, τ) satisfies equation (21). For c(K) and d(M) given by
the expressions (15), used for the numerical results in Section 4, equation (22)
becomes

r(µ,u, τ) =
κ(µ)

b− µ
v .

For the problem to determine the degradation rate, given a nonnegative
continuous function u = u(µ, τ), the function r(µ,u, τ) can be specified as
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follows. The value of κ(µ) is a positive value of a parameter η, for which the
unique solution v(τ,µ,u,η) of the initial value problem (24) and (25) also
satisfies the final condition (26)

∂v

∂τ
+ ηv = u(µ, τ), (24)

v(0,µ,u,η) = φ(µ), (25)

v(T,µ,u,η) = ψ(µ). (26)

We show that such a value is necessarily unique whenever it exists, and
set κu(µ) equal to that unique value. Then r(µ,u, t) is given by substituting
v = v(τ,µ,u, κu (µ)) in equation (22).

For a fixed but arbitrary positive η, the solution v(τ,µ,u,η) of the initial
value problem (24) and (25) is

v(τ,µ,u,η) = e−ητ
[
φ(µ) +

∫ τ
0

eηsu(µ, s)ds

]
. (27)

The equation
Φu(µ,η) = 0 (28)

holds for η = κu(µ), where the function Φu(µ,η) is

Φu(µ,η) = v(T,µ,u,η) −ψ(µ) = e−ηT
[
φ(µ) +

∫T
0

eηsu(µ, s)ds

]
−ψ(µ).

(29)
Note that

Φu(µ, 0) = φ(µ) +

∫T
0

u(µ, s)ds−ψ(µ),

and that
lim
η→∞Φu(µ,η) = −ψ(µ) < 0

under the condition ψ(µ) > 0 . It follows that a sufficient condition for the
equation (28) to have a positive solution is

Φu(µ, 0) = φ(µ) +

∫T
0

u(µ, s)ds−ψ(µ) > 0 . (30)
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The partial derivative of Φu(µ,η) with respect to η is

∂Φu

∂η
(µ,η) =

∂v

∂η
(T,µ,u,η) = −e−ηT

[
Tφ(µ) +

∫T
0

(T − s)eηsu(µ, s)ds

]
,

(31)
and is always negative, a positive solution of equation (28) is unique, and (30)
is a necessary and sufficient condition for the unique positive solution of the
equation (28) to exist.

In order to solve the inverse problem numerically, the interval [0,T] is divided
into K intervals of equal length, and K+ 1 equally spaced points

τi = i∆τ (i = 0, 1, 2, . . . ,K),

where ∆τ = T/K . Given a nonnegative function u(µ, τ), we denote our
approximate value of u(µ, τi) by ui ≡ ui(µ). Then the initial value prob-
lem (21) and (23) becomes an initial value problem for the unknown variables
u0,u1, . . . ,uK :

dui

dµ
= ri(µ,u0,u1, . . .uK), ui(µ0) = h(τi).

Let v(τ,µ,u,η) be the solution of the initial value problem (24) and (25).
An approximate value vi = vi(µ,u0,u1, . . . ,uM,η) at τ = τi is obtained by
application of a numerical integration rule to the integral in equation (27), and
an approximate value of the function Φu(µ,η) obtained by setting Φu(µ,η) ≈
vK −ψ(µ). For the numerical results shown in Section 4, Simpson’s rule was
applied to the integral in equation (27) to obtain the expression

Φu(µ,η) = −ψ(µ) + e−ηT
{
φ(µ)

+
∆τ

3

K∑
j=1

(eητ2j−2u2j−2 + 4e
ητ2j−1u2j−1 + e

ητ2ju2j)
}

.

Similarly, an approximate value of the partial derivative of Φu(µ,η) with
respect to η is also obtained by application of a numerical integration rule
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to the integral in the expression (31), and an application of Simpson’s rule
results in

∂Φu

∂η
(µ,η) = −e−ηT

(
Tφ(µ) +

∆τ

3

K∑
j=1

{
(T − τ2j−2)e

ητ2j−2u2j−2

+ (T − τ2j−1)e
ητ2j−1u2j−1 + (T − τ2j)e

ητ2ju2j

})
.

Once those values are given, an approximate value κ̃ of the solution of equa-
tion (28), κu(µ), is obtained by Newton’s method, and then an approximate
value ri(µ,u0,u1, . . . ,uK) of the function r(µ,u, τ) at τ = τi is

ri(µ,u0,u1, . . . ,uK) = −
c′(b− µ)

c(b− µ)
ui + κ̃(µ)c(b− µ)d(b− µ)vi ,

where vi = vi(u0,u1, . . . ,uK,µ, κ̃), according to definition (22). In particular,
application of the trapezoidal rule and Simpson’s rule leads to

I0 =
∆τ

2
u0 , v0 = φ(µ) + I0 ,

I2j−1 = I2j−2 +
∆τ

2
(eητ2j−2u2j−2 + e

ητ2j−1u2j−1) ,

v2j−1 = e−ητ2j−1 (φ(µ) + I2j−1) ,

I2j = I2j−2 +
∆τ

3
(eητ2j−2u2j−2 + 4e

ητ2j−1u2j−1 + e
ητ2ju2j) ,

v2j = e−ητ2j (φ(µ) + I2j) , j = 1, 2, . . . ,K .

The initial value problem (21) and (23) was solved numerically for T = 3

and K = 1000 with the Adams–Bashforth–Moulton predictor and corrector
in pece mode, in conjunction with a Runge–Kutta method to generate
approximate solutions for the first three steps [7]. Here, p, e, and c stand for
an application of the predictor, an evaluation of a function, and an application
of the corrector, respectively. The step length

∆µ =
b− a

4000
,
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where a = 103.2 and b = 104.2. The initial condition was set by µ0 = 0 and
h(τ) = 0 for all τ ∈ [0,T].

Once the degradation rate λ(M) is found, the weight distribution W(τ,M)
is obtained numerically by solving the initial value problem (13) and (11)
directly by applying a numerical integration rule to the integral in equa-
tion (13). In particular [17], the application of the trapezoidal rule over each
interval [Mi−1,Mi], i = 1, 2, . . . ,N , for the integral on the right-hand side of
the equation (13) leads to the system

dWi

dτ
= −λiWi + c(Mi)∆MFi , i = 0, 1, 2, . . . ,N , (32)

where

∆M =
b− a

N
, Mi = a+ i∆M , λi = λ(Mi),

Fi =
1

2
d(Mi)λiWi +

N−1∑
j=i+1

d(Mj)λjWj +
1

2
d(MN)λNWN .

The unknown Wi =Wi(τ) denotes an approximate value of W(τ,Mi). The
system (32) is associated with the initial condition

Wi(0) = fi = f(Mi), i = 0, 1, 2, . . . ,N . (33)

The Adams–Bashforth–Moulton predictor and corrector in pece mode, in
conjunction with a Runge–Kutta method with the steplength 0.01, was applied
for 300 steps to solve the initial value problem (32) and (33) numerically for
N = 4000 .
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