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Natural convection in a sidewall heated cube
using an immersed boundary method
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Abstract

Numerical simulation of a square cavity was conducted to validate
an implementation of an Immersed Boundary Method (ibm). The
cavity consists of two differentially heated side walls and adiabatic
top and bottom walls. A Cartesian grid is used with a finite volume,
fractional step pressure correction method. Simulations use Dirichlet
boundaries for vertical walls and Neumann boundaries for horizontal
walls. The Immersed Boundary Method involves modifying the Navier–
Stokes equations to include a forcing function in the momentum and
energy equations that creates a virtual boundary. This method is useful
because the boundary does not necessarily have to coincide with grid
points; however, it is much less computationally expensive than other
similar methods such as the cut cell method. The ibm is commonly used
in simulations involving complex objects and can also accommodate
moving boundaries. A standard numerical simulation with grid aligned
with the boundary is first compared with previous results. The same
geometry is then simulated by tilting the grid at various angles and
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using the ibm for each of the walls, and comparing these results with
those initially obtained. We detail the implementation method and
common problems associated with this. Velocity and temperature
profiles are presented and the ibm is shown to maintain second order
spatial accuracy.
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1 Introduction

The Immersed Boundary Method (ibm) has been used successfully for a
number of applications. The ibm allows simulation of complex geometry,
including moving boundaries, on a Cartesian grid. An example of an early
implementation is by Peskin [7] who simulated blood flow through a human
heart. This is particularly interesting as the work involved complex geometry
as well as moving boundaries.
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Simulation of flow past a cylinder is commonly used as a way of testing a
particular ibm implementation [1, 2, 9]. These examples all looked at the
momentum equation aspect of the boundary; however, treatment of heat
transfer at the boundary is much less common. One example that does
examine heat transfer is the work of Zhang and Zheng [11]. Both Dirichlet
and Neumann type boundaries were simulated, but again concentrating on
flow past a cylinder.

This article concentrates on the heat transfer aspect of the ibm in natural
convection flow rather than the traditional forced convection cases typically
shown. This is done by simulating a cube with differentially heated side-
walls. This problem has been studied extensively both experimentally and
numerically [8, 6]; however, it has not been studied in conjunction with
the ibm.

2 Method

Figure 1 illustrates the configuration of the computational grid and the flow
domain. The hat operator (for example X̂) represents values associated with
the computational grid coordinates, while other values are associated with
the flow domain coordinates. The angle between the two sets of coordinate
axes is γ. All work presented is 2D, therefore the z axes of each coordinate
system are always aligned. Extension to 3D is straightforward.

The area of interest is the shaded area in Figure 1, with the surrounding area
required to enforce the boundary. This surrounding area is simulated but
has no effect on the shaded area we are interested in so is simply ignored.
The result is a square domain with the grid sloped relative to the walls and
gravity (the gravity vector g is always aligned with the y direction).
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Figure 1: This is the setup of the grid. Dashed lines represent virtual
boundaries, with the shaded area being the part of the simulation that is of
interest. The hat operator represents values in the coordinate system aligned
with the grid, as opposed to the coordinate system of the tilted domain.

2.1 Immersed boundary method

This section consists of a brief overview of the ibm used. The method used
for the Immersed Boundary is based on work by Zhang et al. [10, 11], and
these articles contain a more comprehensive description of the procedure.

The original solver used was originally developed and validated by Kirkpatrick
et al. [3, 4]. It uses a finite volume, fractional step, pressure correction
method. The code solves the Navier–Stokes equations using a fourth order
Central Difference scheme for momentum, a fourth order Central Difference
scheme with ultra flux limiter [5] for scalars and second order accurate time
stepping.
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Figure 2: Diagram showing the grid in the vicinity of the Immersed Boundary.
The small black circles are the virtual boundary points and have coordinates xs.
The large filled circles below the virtual boundary represent points on the
computational grid outside the flow where the forcing functions are applied.
The large rings on the other side of the boundary are in the flow, meaning the
forcing function is not applied, but they are used to calculate the properties
at the virtual boundary points.

The ibm was implemented within this code through the addition of an extra
term fm to the momentum equations, and an extra term fe to the energy
equation, so the equations solved become

∇ · u = 0 , (1)

∂u

∂t
+ u · ∇u = −

1

ρref
∇P +

ρ− ρref
ρref

g + ν∇2u + fm , (2)

∂T

∂t
+ u · ∇T =

ν

Pr
∇2T + fe , (3)

where u is the velocity vector, ρ is density, ρref is density at the reference
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conditions, P is pressure, g is the gravity vector, ν is kinematic viscosity, T is
temperature, and Pr is the Prandtl number.

The forcing terms are calculated by comparing actual velocity and temperature
values on the boundary to desired values. There are nodes situated on the
Immersed Boundary as shown in Figure 2. For any given Immersed Boundary
node the actual value at the node is calculated using a weighted average of
the four surrounding grid nodes. This procedure uses the equations

U(xs) =

is+1,js+1∑
is,js

Di,j(xs)ui,j and T(xs) =

is+1,js+1∑
is,js

Di,j(xs)Ti,j , (4)

where xs is the position of the nodes, (is, js) is the grid position immediately
below and left of the Immersed Boundary node and the weighting function

Di,j(xs) = d(xs − xi)d(ys − yi). (5)

Here (xs,ys) is the position of the node on the Immersed Boundary whereas
(xi,yi) is the position of a node on the computational grid. This weighting
function is non-zero only when the boundary point is within one grid space of
the grid node of interest. The terms on the right hand side of this weighting
function are calculated according to

d(xs − xi) = (xs − xi+1)/(xi − xi+1) if xi < xs ,

d(xs − xi) = (xs − xi−1)/(xi − xi−1) if xi > xs ,

d(xs − xi) = 1 if xi = xs . (6)

Finally, these actual boundary values are compared with the desired boundary
values (V and Tw) and the forcing terms are calculated using

fm(i,j) = (u · ∇u)i,j +∇Pi,j − ν(∇2u)i,j

+
1

δtNb

∑
s∈N(i,j)

Di,j(xs)[V − U(xs)], (7)
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fe(i,j) = (u · ∇T)i,j −
ν

Pr
(∇2T)i,j

+
1

δtNb

∑
s∈N(i,j)

Di,j(xs)[Tw − T(xs)], (8)

where N(i, j) is the set of Immersed Boundary nodes associated with the
current grid node and Nb is the total number of nodes in the set. These two
equations use the same weighting functions as (5). In the case of Dirichlet
boundary conditions the values of V and Tw are just set. For a Neumann
boundary condition an extra layer of virtual nodes is created a small distance
inside the immersed boundary nodes so that each node on the boundary
has a corresponding node in the flow. The value of Tw is then calculated at
each time-step using the extra nodes in the flow in order to give the desired
temperature gradient at the boundary.

3 Results

3.1 Immersed Boundary Method accuracy

Simulations were performed to determine the accuracy of the Immersed
Boundary. The vertical velocity very close to the hot wall compared across
different grid sizes and the L2 norms calculated are shown in Figure 3. This
log-log plot shows a −2 slope for the L2 norm. This slope indicates the
Immersed Boundary maintains second order accuracy in space. This order is
possible to achieve even though forcing is applied only to a single layer of cells
because a bi-linear interpolation method is used and also because the number
of Immersed Boundary points are increased independently of the grid.
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Figure 3: L2 norm based on vertical velocity near the hot wall versus grid
resolution

3.2 Velocity and temperature profiles

The following plots show velocity and temperature profiles in the standard
cavity where the grid is aligned with the boundaries (no Immersed Boundary).
On the same plots are results for the same cavity with the grid rotated
relative to the boundaries, as described earlier. Therefore we expect to see
the profiles look the same if the Immersed Boundary is not influencing the
flow in some way.

All results use constant temperature and non-slip conditions (u = v = 0)
for the side walls. The top and bottom walls have zero heat flux and are
also non-slip. The critical parameters are the Rayleigh number (Ra) and the
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Figure 4: Velocity at cavity mid-height close to the hot wall. The full domain
width is x = 1.0, hot wall temperature 300K, cold wall temperature 296K,
Ra = 106 and Pr = 7.0 .

Prandtl number (Pr) which are defined as

Ra =
gβ∆TH3

νk
and Pr =

ν

k
, (9)

where g is the acceleration due to gravity, β is the coefficient of thermal
expansion, ∆T is the temperature difference between the hot and cold walls
(Th − Tc), H is the cavity height, ν is the kinematic viscosity and k is the
thermal diffusivity. In all simulations values are chosen to give Ra = 106 and
Pr = 7.0 , which result in a non-turbulent flow.

Figures 4 and 5 show very good correlation. The lines in Figure 6 are also
very close to each other; the only appreciable variations occurring in Figure 7.
In this figure the velocity in the boundary layers compares very well; however,
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Figure 5: Temperature at cavity mid-height close to the hot wall. The full
domain width is x = 1.0, hot wall temperature 300K, cold wall temperature
296K, Ra = 106 and Pr = 7.0 .

it is the region where the boundary layer interacts with the central region
that shows some discrepancy. Unfortunately the cause of this discrepancy is
not clear at this stage.

4 Discussion

In general, the ibm cases correlate quite well with the base numerical simula-
tion. The code has been validated previously in other similar studies, so it is
therefore safe to use as the baseline.

Flow of this type generally involves a significantly finer grid in the vicinity
of the boundary. One drawback of the ibm is that refining the grid in this
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Figure 6: Temperature at cavity centre across full domain height. The
hot wall temperature is 300K, cold wall temperature 296K, Ra = 106 and
Pr = 7.0 .

way is generally not possible. Therefore comparing the results to experiments
will show poor results in the boundary layers. However, what these results
intend to show is that the ibm can produce results similar to that for other
equivalent numerical procedures.

5 Conclusions

An Immersed Boundary Method was successfully used to simulate a differ-
entially heated cavity. The scheme maintains second order spatial accuracy
and typical flow characteristics agree very well to a standard case. However,
detailed results for turbulent flow have not yet been completed.
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Figure 7: Velocity at cavity centre across full domain height. The hot wall
temperature is 300K, cold wall temperature 296K, Ra = 106 and Pr = 7.0 .
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