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Model selection procedures for high
dimensional genomic data
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Abstract

Many complex diseases are thought to be caused by multiple genetic
variants. Recent advances in genotyping technology allowed investi-
gators of a complex disease to obtain data for a massive number of
candidate genetic variants. Typically each candidate variant is tested
individually for an association with the disease. We approach the
problem as one of model selection for high dimensional data. We
propose a method whereby penalised maximum likelihood estimation
provides a reasonably sized set of variants for inclusion in our model.
We then perform stepwise regression on this set of variants to arrive
at our model. Penalised maximum likelihood estimation is performed
with both the lasso and a more recently developed method known as
the hyperlasso, with smoothing parameters chosen by cross-validation.
The hyperlasso has a penalty function that favours sparser solutions
but with less shrinkage of those variables that are included in the
model, when compared to the lasso; however, this comes at extra com-
putational cost. We apply the above method to a large genomic data
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set from a previously published mice obesity study and use resample
model averaging to assess model performance.
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1 Introduction

Genome-wide association studies (GWAS) have been very successful in recent
years in identifying genetic variants (for example, single-nucleotide polymor-
phisms known as SNPs) that are related to common complex diseases [13]. In
GWAS, typically hundreds of thousands of SNPs across the entire genome are
genotyped in a number of individuals in order to determine genomic regions
associated with the trait of interest. Typically a single-marker approach is
used; however, this will only be appropriate when a single SNP is related
to the trait. For many complex diseases it is believed that there are many
causative genetic factors, in which case a single-marker approach may not be
able to identify joint effects of SNPs. For many GWAS for complex traits the
SNPs identified have explained only a very small percentage of phenotypic
variation [11, 12]. More sophisticated analyses may reveal further insight and
“advances in statistical methodology will be central in these developments” [21].
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The simultaneous analysis of all SNPs in GWAS for a complex trait has been
considered recently [10, 20, 4, 1].

The high dimensionality of GwAs data (with the number of SNPs far ex-
ceeding the number of individuals) poses challenges for traditional model
selection methods, such as stepwise selection, that use multiple regression
with a variable selection procedure. First, the huge number of SNPs causes
computational difficulties. Second, such methods are not well suited to deal
with the problem of multicollinearity among SNPs.

We approach the problem of model selection (that is, identification of the SNPs
that are associated with the phenotype) by making use of penalized-likelihood
methods. Fan and Lv [6] reviewed recent advances in variable selection in
high dimensional statistical modeling. Here we use the well-known lasso
procedure [16] and the more recently introduced variation known as the
hyperlasso [10], which is reported to be better able to select true causal
variants while keeping a sparse solution.

Penalized-regression approaches have been attracting increased attention
recently in the context of GWAS. However, it is still an open question as
to how a penalized-likelihood model selection method, such as the lasso or
hyperlasso, might best be incorporated into a GWAS analysis. We present a
three step procedure for simultaneous analysis of all SNPs in GWAS. Model
selection is performed in the first two steps, and model assessment is carried
out in the third step. The first step consists of penalized-likelihood variable
selection to identify a set of SNPs for further consideration. Here we use both
the lasso and hyperlasso for this first step. The second step is to refine the
model by using a traditional variable selection method with the candidate
SNPs selected in the first step. Here we use stepwise regression. We check
against over-fitting in the first two steps by using cross-validation (based on
the model selected by the combination of the first two steps) to determine
the smoothing parameters for the first step, which in turn determines the
number of SNPs that are selected.

The third step involves assessment of the performance of our model selection
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procedure with resample model averaging. This involves taking bootstrap
samples of the data, say 100, and, as the name suggests, calculating the
proportion of bootstraps for which each SNP is selected when the model
selection procedure is applied to the bootstraps. The use of resample model
averaging has been shown to improve false discovery rates for high dimensional
data [17, 14]. We compare the SNPs obtained by our model selection procedure
and the results of resample model averaging to assess model stability—that
is, whether the model is likely to change with small changes in the data.

We apply our method to data from a previous study into mice obesity [18],
and make comparisons with a simple approach which aims to identify joint
SNP effects using the results of a single SNP analysis.

2 Model selection procedure

We simultaneously analyse k SNPs typed in n individuals, with k > n. We
formulate the problem as variable selection in a linear regression analysis that
includes a covariate for each SNP and a continuous phenotype. That is, we
consider the multiple linear regression model,

k
yi=Bo+ ) Bixite, (1)

i=1

where yj is the phenotypic value of the jth individual, By is a constant, x;; is
a variable taking the value 0, 1, or 2 if the genotype of the jth individual at
SNP 1 is homozygous in the major allele, heterozygous, or homozygous in the
minor allele, respectively, (3; is a regression coefficient corresponding to the
ith SNP, and €; is the residual error for the jth individual. Residual errors are
assumed to be independent and identically distributed following a mean zero
Gaussian distribution. Our goal is to identify the causal sSNPs for which the
corresponding regression coefficient is non-zero.
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Since k > n one cannot perform standard maximum likelihood estimation. To
prevent model overfitting we employ a regularisation method, where we seek to
maximise a penalised form of the likelihood which imposes a constraint on the
size of the regression coefficients. Both the lasso [16] and the hyperlasso [10]
are considered. The lasso method provides an estimate of the regression
coefficients,

Al

B = argmax[L(B) — (B €], (2)
where L denotes the log-likelihood for the linear regression model, that is,

n

. 2
L(B) =— Z (Uj — Po— Z Bixij) + constant, (3)
i=1

j=1

and f, is a penalty function with a smoothing parameter £. When the penalty
function is zero we obtain the maximum likelihood estimate. The lasso uses
the penalty function

k
fo(B;E) =&Y IBil- (4)
i=1

. . . ah . .
The hyperlasso estimates of the regression coefficients, 3 , are obtained in
the same manner; however, the penalty function is

B\, y) = —i { Bizz +log D (_an—1) (lw)} , (5)
— 4y Y

where A and y are smoothing parameters, and D 4)(-) is the parabolic cylinder
function [8, 19], with parameter x. An advantage of the lasso and hyperlasso
for model selection is that these penalty functions tend to shrink many of the
regression coefficients to zero, leaving relatively few non-zero coefficients.

The inspiration for the hyperlasso penalty function can be seen by viewing the
problem in a Bayesian framework. The negative of the penalty corresponds to
the log-prior density of the regression coefficients. By Bayes’ theorem (after
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taking logarithms) the objective function in equation (2) is the log-posterior
density of the regression coefficients. By finding the maximum we are then
finding the mode of the posterior. Under this interpretation both the lasso and
hyperlasso assign independent priors with a density sharply peaked at zero
to each of the regression coefficients. For the lasso this is the Laplace density.
For the hyperlasso it is the normal exponential gamma density (NEG) [9].
The NEG is a generalisation of the Laplace distribution with an additional
parameter, and it can be generated by sampling from a Laplace distribution
with parameter drawn from a gamma distribution. The parameters A and vy
can be interpreted as shape and scale parameters, respectively. As A and y
both increase such that & = v/2A/y remains constant, the NEG converges to
the Laplace distribution with parameter §. The potential advantage of the
hyperlasso over the lasso is that, as A decreases, its prior density is steeper
near zero and flatter elsewhere. This corresponds to a strong prior belief that
there are few true causal variants and little prior knowledge of effect sizes,
and leads to a sparse solution with less shrinking of non-zero coefficients.

The lasso has a closed form solution for a linear regression model; however, the
hyperlasso does not. We make use of the implementation of these procedures
described by Hoggart et al. [10], and downloadable from the web [5]. The
posterior density is multi-modal and the mode identified depends on the
initial values used in the optimization algorithm and the order in which they
are updated. The software starts with all coefficients equal to zero, and allows
multiple iterations to be performed, each of which permutes the order in
which coefficients are updated. We perform 100 iterations as recommended
by Hoggart et al. [10].

We analyse our genomic data sets using both the lasso and hyperlasso pro-
cedures to obtain a set of candidate SNPs for inclusion in a multiple linear
regression model consisting of those SNPs for which we obtain a non-zero
regression coefficient estimate. We then restrict the analysis to the set of
candidate SNPs and carry out stepwise regression, starting with no variables
in the model and allowing variables to be added to and later deleted from the
model on the basis of the Bayesian information criterion (BIC). This analysis
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is performed using the R software function “step” [15]. The resulting multiple
linear regression model includes SNPs as predictor covariates which suggest
genomic regions for further investigation.

The values of the lasso and hyperlasso smoothing parameters used in the
analysis are determined by ten-fold cross-validation. The data is randomly
partitioned into ten groups of individuals. A model is fit to 9/10ths of the data
(the training set) and then assessed on the remaining 1/10th of the data (the
validation set). This is repeated ten times, corresponding to each of the ten
groups being used as the validation set. We vary the smoothing parameters
over a wide range of values. For fixed smoothing parameters, for each fold
we fit a prediction model by the procedure described above. That is, first
obtaining candidate SNPs using either the lasso or hyperlasso then obtaining
a linear model by stepwise regression, as described above. For each fold we
calculate the mean squared prediction error, and then obtain an estimate of
the cross-validation error by averaging over the ten-folds. In the case of the
hyperlasso, cross-validation is performed over two smoothing parameters. In
each case the smoothing parameters correspond to approximately fifteen SNPs
being selected by the lasso and hyperlasso.

2.1 Stability analysis

We perform “resample model averaging” [14, 17| to validate the stability of
the model selected using the lasso and hyperlasso. This involves repeatedly
resampling the data and performing the lasso and hyperlasso procedure (but
not subsequent stepwise regression) on each resample. We perform the form
of resample model averaging known as “bagging” based on nonparametric
bootstrapping, that is, sampling with replacement. We take 100 resamples,
each of size equal to the number of individuals in the analysis. We use
smoothing parameters identical to those used in our earlier model selection
procedure. We calculate the proportion of resamples for which each SNP is
selected, which is termed the “resample model inclusion probability” (RMIP).
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A plot of the RMIP for all SNPs versus genome position is used to visually
assess stability. It is desirable that the SNPs that were selected in our model
are those with the highest RMIP, which would indicate that the model is
stable with respect to perturbations in the data.

3 Results

We analyse an experimental data set that was the subject of previous inves-
tigations [18, 7]. The experimental details are described therein. The data
comprises SNP data for 320 F2 mice (162 female, 158 male) generated by
crossing C57BL/6J apoFE null with C3H/HeJ apoE null mice. The SNP data
consists of genotypes for 1347 sNPs that show variation between the C57BL/6.J
and C3H/HeJ strains. The quantitative trait analysed was abdominal fat
mass at 24 weeks of age.

Previous investigations with the current data [18, 7] showed major differences
in gene expression levels between sexes among the F2 mice used, and therefore
we analyse each sex separately. For each sex we obtain two models—one for
each of the lasso and hyperlasso—which we compare.

Several data quality control steps are taken. We exclude SNPs with greater
than 5% missing data, minor allele frequency less than 0.01, or a Hardy—
Weinberg equilibrium p-value less than 1073 for pooled male and female mice.
We further exclude those mice with greater than 2% missing SNP data. This
left 138 male and 151 female mice and 1180 sNps. We perform a final filtering
step on the sNPs, following the procedure by Carlson et al. [3] using a Linkage
Disequilibrium 12 threshold of 0.9 as suggested by Balding [2], in which SNPs
are grouped into highly correlated bins and only one SNP from each bin is
retained. After this step 250 SNPs were retained.

Table 1 summarises the final models obtained using the lasso and hyperlasso.
The sNPs selected in the lasso and hyperlasso stage show a lack of commonality
in selected SNPs between genders. Further, selected SNPs are from twelve
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TABLE 1: Comparison of model fits. Summary of the models obtained using
each of the lasso, hyperlasso and top-ranked SNPs based on a single-SNP
analysis, followed by stepwise regression.

Lasso Hyperlasso Single-SNP
Males
No. of candidate SNPs 15 15 15
No. of covariates 9 11 7
Residual standard error 0.380 0.363 0.453
Residual df 128 126 123
Multiple R-squared 0.577 0.620 0.306
Adjusted R-squared 0.547 0.587 0.278
p-value <2e—16 < 2E—16 1.1E—08
Females

No. of candidate SNPs 14 15 15
No. of covariates 8 9 6
Residual standard error 0.949 0.932 0.973
Residual df 142 141 133
Multiple R-squared 0.376 0.403 0.348
Adjusted R-squared 0.342 0.365 0.319
p-value 978—12  2.1E—-12 1.3—10

distinct chromosomes in males and eleven distinct chromosomes in females,
but only five of these chromosomes are in common. Of the SNPs selected
in the final models after the application of stepwise regression, there are no
common SNPs between genders for the models based on lasso and there is
only one SNP in common between genders for the models based on hyperlasso.

We compare our model selection procedure with a similar approach based
on ranking SNPs by their individual association with the phenotype. This
approach has two stages, with SNPs first ranked by the p-value of a single-SNP
linear model rather than using the lasso or hyperlasso. We retain the top
fifteen ranked sSNPs based on this single-SNP analysis. Stepwise regression is
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then applied to these sNPs. The model obtained with this approach is also
summarised in Table 1.

Only six of the top fifteen SNPs for males are selected in stage 1 by either
lasso or hyperlasso. This number is ten for females. Of those SNPs selected in
the final models after stepwise regression, only three sSNpPs for males and four
sNPs for females are in the respective lasso and hyperlasso final models.

The procedure is designed so that a similar number of SNPs are selected
as the “Candidate SNPs” in the first stage. The number of SNPs in the
final model is less for the “Single-SNP” approach. This is most likely due
to multicollinearity among the SNPs selected in the first stage. The residual
standard error, R-squared, adjusted R-squared and p-value of each model
shows that both the lasso and hyperlasso approaches outperform the single-
SNP approach. The hyperlasso approach also has a more modest advantage
over the lasso approach. The majority of SNPs selected with the lasso and
hyperlasso approaches were common to both. There were fewer SNPs that
were common to all three approaches.

3.1 Validation with resample model averaging

The plot of the resample model inclusion proportion (RMIP) for each SNP
against genome position for both the lasso and hyperlasso approaches for
males is shown as Figure 1 (a similar plot for females is not shown). This
plot has the sNPs selected in the final stage of our model selection procedure
marked, as well as those SNPs selected by the single-SNP approach and those
identified in the previous study of Wang et al. [18].

The plot shows that the majority of SNPs in the lasso and hyperlasso models
have high RMIP, which is desirable. This indicates that the SNPs are highly
likely to be retained in the model under perturbation of the data (noting that
each resample is a bootstrap). The lasso and hyperlasso do not select all of
the sNPs with the highest RMIP, which is not necessarily a problem. The



3 Results C374

=-{® SNPs selected by lasso method
o SNPs selected by individual SNP method
» SNPs identified in previous study

RMIP

.

Lk

|

ANl

u‘hh m\ ‘l it

Genome Position

M" fl

|

={ ® SNPs selected by hyperlasso method
o SNPs selected by individual SNP method
» SNPs identified in previous study

W' | }

FIGURE 1: The Resample Model Inclusion Proportion (RMIP) for each SNP
from bagging (resample model averaging) plotted against SNP genome position,
for the male mice. Upper figure is for the lasso approach and lower figure
is for the hyperlasso approach. Each chromosome is plotted in alternating
colours. The SNPs selected in various models are marked; red and green dots
mark SNPs selected by the lasso and hyperlasso methods, respectively; blue
dots mark SNPs selected by the individual SNP method; orange dots mark
sNPs identified in the previous study [18].
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lasso model shows one SNP with RMIP less than 0.4; however, this is not the
case for the hyperlasso. This fact, along with the slightly superior model fit
displayed in Table 1, indicates that the hyperlasso may be preferable to the
lasso.
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