
ANZIAM J. 52 (CTAC2010) pp.C1084–C1101, 2012 C1084

A comparison of interval methods in symbolic
circuit analysis applications

B. Thanigaivelan1 T. J. Hamilton2 A. Postula3

(Received 3 February 2011; revised 13 December 2011)

Abstract

Symbolic circuit analysis involves deriving symbolic expressions for
performance measures, such as voltage gain, input impedance, and
evaluating them to obtain more insight into the behaviour of a circuit.
In modern semiconductor technologies, it is more useful to evaluate the
symbolic expressions using interval methods in order handle variations
in parameter values. We compare the performance of different interval
methods in evaluating symbolic expressions. Our experiments show
that Generalised Interval Arithmetic is the most efficient method
in affine form for our application. However, this method should be
modified to suit long chains of computation. Our modification yields
tighter interval bounds compared with other interval methods.

http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/3981

gives this article, c© Austral. Mathematical Soc. 2012. Published January 16, 2012. issn
1446-8735. (Print two pages per sheet of paper.) Copies of this article must not be made
otherwise available on the internet; instead link directly to this url for this article.

http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/3981

Contents C1085

Contents

1 Introduction C1085

2 Intervals in affine form C1086

3 Multiplication of intervals in affine form C1089

4 GIA in symbolic analysis application C1091

5 Experimental results and discussion C1095

6 Conclusion C1099

References C1099

1 Introduction

Symbolic circuit analysis is a method for analysing electric circuits by deriving
transfer functions in which some or all of the circuit parameters are retained
as symbols. A fully expanded symbolic circuit expression in the Laplace
domain can be represented as

G(s) =
a0 + a1 · s+ a2 · s2 + a3 · s3 + a4 · s4 + a5 · s5 + · · ·+ am · sm

b0 + b1 · s+ b2 · s2 + a3 · s3 + a4 · s4 + a5 · s5 + · · ·+ bn · sn
, (1)

where s is the complex frequency variable. The coefficients of s-powers
(such as {a0, a1, . . .am} and {b0, b1, . . .bn}) are usually represented in
sum-of-product form, consisting of symbolic circuit parameters. In modern
semiconductor technologies, the circuit parameter values vary due to process
variations, temperature and supply voltage fluctuations, and so on. The
symbolic circuit expressions need to be evaluated or processed further in
many applications, such as circuit sizing, optimization, and pole-zero anal-
ysis [1], under parameter variations. The use of interval methods helps to

2 Intervals in affine form C1086

evaluate symbolic expressions efficiently, taking parameter variations into
account. This article is concerned with using interval methods—such as Affine
Arithmetic (aa) [6], Revised Affine Arithmetic (raa) [5], Extension to Affine
Arithmetic (eaa) [4], and Generalized Interval Arithmetic (gia) [2, 3]—to
evaluate the expressions with interval values and compare their results to
identify the most suitable method for this application.

Since the arithmetic operations in the coefficients of the s-powers in (1) are
predominantly multiplication, the interval methods are compared based on
their performance in multiplication, which is a non-affine operation. We
show that the gia yields optimal multiplication results, but its size in affine
form grows with the number of multiplication operations. In order to restrict
the growth of the affine form, we also present our modifications to the gia
multiplication rules suggested by Kolev [2, 3].

2 Intervals in affine form

An interval number in its affine form is

x̃ = x0 + x1 · ε1 + x2 · ε2 + x3 · ε3 + · · ·+ xn · εn , (2)

where x0 and xi are known real numbers and εi is a symbolic variable whose
value lies in the interval [−1,+1]. The value x0 is the central value of x̃,
whereas each product xiεi quantifies an uncertainty which, when algebraically
added to x0, yields x̃.

Whenever two affine forms share common noise symbols, they are said to be
dependent on each other. For example, if

x̃ = 6+ 0.6ε1 + 0.1ε2 + 0.3ε4 and ỹ = 7− 0.4ε1 + 0.1ε3 − 0.5ε4 , (3)

then the affine forms x̃ and ỹ share the noise symbols ε1 and ε4. The
benefits of sharing noise variables is understood better by using a graphical

2 Intervals in affine form C1087

representation called a joint range plot, which is a convex polygon symmetric
around a central point (x0,y0). The common noise symbols determine the size
of the joint range polygon, as shown by the dotted line in Figure 1(a). Each
noise symbol coefficient determines the length of two edges in the polygon
as indicated in the figure. In this example, coefficients of ε1 and ε4 are
significantly larger than the coefficients of other noise terms such as ε2 and ε3,
resulting in a small size polygon. This information is completely lost when the
two ranges are represented in interval form. The joint range of two intervals
is a rectangle, as shown by the solid line in Figure 1(a), and has a larger area
than the enclosed polygon. Therefore, by preserving the dependency between
parameters, all those combinations of values in the operand intervals that do
not yield a valid result are eliminated, resulting in tighter interval bounds.

The arithmetic operations between two affine forms are broadly classified
into affine and non-affine operations. The interval methods [2, 3, 4, 5, 6]
vary in the way non-affine operations (for example, multiplication, division,
exponentiation) are handled. We compare these methods to each other using
a quantitative measure for overestimation in their results, called the Relative
Accuracy (ra). The ra measure is defined as the ratio between the size of
the actual range and that of the computed range [7]. The actual range is
the smallest interval that contains only the possible values of the evaluated
expression when the value of each variable in the expression is set to vary
over its given range. If the width of the computed range is wc and the width
of the actual range is wa, then the relative accuracy is

ra = wa/wc . (4)

The actual range is not a known quantity, especially in a long computation
chain. So the relative accuracy measure is computed based on Interval
Arithmetic (ia) results [7]. The ratio of the width of the ia result to the
width of the aa result represents the relative accuracy of aa when compared
against ia. Therefore, ra should not be less than one for a good interval
method using affine forms. The comparison is based on ia, because it is the
fundamental interval method and assumes all the variables in the computation

2 Intervals in affine form C1088

(a) Affine numbers shown in (3)

(b) Affine numbers shown in (9)

Figure 1: Joint range plots of two affine numbers.

3 Multiplication of intervals in affine form C1089

to be independent of each other. The methods using affine forms preserve the
dependencies between variables during computations so as to achieve tighter
bounds, albeit with additional computational effort.

3 Multiplication of intervals in affine form

The multiplication of two affine forms is classified as a non-affine operation,
because the result cannot be expressed again in affine form. Therefore, the
exact result is approximated and expressed in affine form,

z̃exact = x̃× ỹ = z̃approx + zerr · εerr . (5)

The z̃approx and zerr computed using aa [6] for the example in (3) are

z̃approx = 42+ 1.8ε1 + 0.7ε2 + 0.6ε3 − 0.9ε4 and zerr = +1 , (6)

z̃exact = x̃× ỹ = 42+ 1.8ε1 + 0.7ε2 + 0.6ε3 − 0.9ε4 + εerr = [37, 47]. (7)

The product of x̃ and ỹ, when expressed in interval form, is [30, 56]. Therefore,
the ra for this example is (56 − 30)/(47 − 37) = 2.6 . The ra measure is
consistent with the expectation from the joint range plot in Figure 1(a)
that aa helps to achieve tighter bounds than ia.

The multiplication rules defined previously [2, 3, 4, 5, 6] attempt to com-
pute the best estimate for z̃approx and zerr in (5). To gain insight into the
performance of these rules, consider the following two examples

x̃ = 5+ ε1 − 3ε3 , ỹ = 10− ε1 + 2ε2 ; (8)

x̃ = 4.5+ 0.5ε1 , ỹ = 10+ 2ε2 . (9)

These two examples represent two different cases during the multiplication
of affine forms. Example (8) represents multiplication between affine forms
when they share common noise symbols. Figure 1(b) shows their joint range.

3 Multiplication of intervals in affine form C1090

The products, obtained using aa [6], eaa, raa [5] and gia [2], are

(x̃× ỹ)aa = 50+ 5ε1 + 10ε2 − 30ε3 + 12εerr = [−7, 107],

(x̃× ỹ)eaa = 50+ 5ε1 + 10ε2 − 30ε3 + 11εerr1 + εerr3 = [−7, 107],

(x̃× ỹ)raa = 49.5+ 5ε1 + 10ε2 − 30ε3 + 11.5εerr = [−7, 106],

(x̃× ỹ)gia = 54+ 6ε1 + 2ε2 − 21ε3 + 16ε4 = [9, 99].

(10)

(In the case of eaa, we use the multiplication rule for Affine Form 2, af2,
suggested by Messine and Touhami [4].) The product of x̃ and ỹ is [7, 117] in
interval form. As can be seen from (10), the aa, raa and eaa (ra ≈ 0.97)
results are overestimated, where as the gia (ra = 1.22) result is consistent
with the joint range plot in Figure 1(b). In addition, this example was chosen
to illustrate that the overestimation can result in unacceptable bounds. The
negative lower bound in (10) is unacceptable because the intervals of the two
multiplicands contain only positive numbers. Therefore the interval of their
product is expected to at least have positive bounds.

Example (9) illustrates multiplication of two affine forms when they do not
share a noise symbol and are said to be independent. The products of these
two affine forms obtained using aa, raa, eaa and gia [3] are

(x̃× ỹ)aa,raa = 45+ 5ε1 + 9ε2 + εerr = [30, 60],

(x̃× ỹ)eaa = 45+ 5ε1 + 9ε2 + εerr1 + 0εerr2 + 0εerr3 = [30, 60],

(x̃× ỹ)gia = 46+ 4ε1 + 8ε2 + 2ε3 = [32, 60].

(11)

The product of x̃ and ỹ is [32, 60] in interval form. Since ia assumes all
the intervals in a computation to be independent of each other, the joint
range plot for this example is a rectangle for both interval and affine form.
In contrast, the aa, raa and eaa (ra = 0.93) results are overestimated,
whereas gia (ra = 1) results are as expected. This is because the aa, raa and
eaa use the same conservative multiplication rules for both dependent and
independent affine forms, whereas the gia suggests separate multiplication
rules for independent and dependent affine forms [2]. While the improvement

4 GIA in symbolic analysis application C1091

in ra from 0.93 to 1 appears small, it is important that ra is equal to or
greater than one to avoid additional computation effort.

The gia provides consistent results with no overestimation in both the
scenarios discussed in this section and proves to be the method of choice for
symbolic analysis applications. However, the difficulty in using gia is that
there is always an extra noise term (εm+1) added to the result after each
multiplication. Thus, in symbolic circuit analysis the number of noise terms
grows dramatically and hence the multiplication rules of Kolev [2, 3] must be
modified to improve the feasibility of gia for this application.

4 GIA in symbolic analysis application

Let x̃ and ỹ be the results of two separate multiplications in a computation
chain obtained using the gia multiplication rules shown in (12) [2, 3]. If m is
the total number of noise variables in the entire computation, then

x̃ = x̃approx + xm+1εm+1 = x0 +

n1∑
i=1

xiεi + xm+1εm+1 ,

ỹ = ỹapprox + ym+2εm+2 = y0 +

n∑
j=C

yjεj + ym+2εm+2 .

(12)

Assuming n > n1 , (C = n1 + 1) if x̃ and ỹ are independent, and C = 1 if
x̃ and ỹ are dependent. Let z̃ be the result of multiplying x̃ and ỹ in a chain,

z̃ = x̃ ∗ ỹ = z0 +

m∑
i=1

ziεi + zm+1εm+1 + zm+2εm+2 + zm+3εm+3 . (13)

In (12) and (13), the three new noise symbols, εm+1, εm+2 and εm+3, are
generated from three separate multiplication operations. The growth in the
number of noise symbols with the number of multiplications poses significant

4 GIA in symbolic analysis application C1092

implementation issues. This problem does not occur in aa or raa because
the approximation errors in products are accumulated in a single noise term.
The product z̃ in (16) needs to be generalized to the form shown in (13) in
order to overcome this difficulty:

z̃ = x̃ ∗ ỹ = z0 + z1ε1 + z2ε2 + · · ·+ zmεm + B , where B = [bl,bh]. (14)

Here B is an interval that represents the accumulated approximation error in
the product. The bounds of interval B are obtained from (13) by converting
the terms with subscripts m+ 1, m+ 2 and m+ 3 to interval form:

bl = −(|zm+1|+ |zm+2|+ |zm+3|); bh = +(|zm+1|+ |zm+2|+ |zm+3|). (15)

In our modifications to the gia multiplication rules, the accumulated approxi-
mation error terms are identified using a common symbol εerr. The coefficient
of εerr is obtained from the radius of B in (15). Since the central value of B
in (15) is zero, the product z̃ is computed as

z̃ = z0 +

m∑
i=1

ziεi + zerrεerr , zerr = |zm+1|+ |zm+2|+ |zm+3| . (16)

The multiplication rules stated as theorems [2, 3] were modified accordingly
to obtain the results in the form shown in (16).

In the case of independent intervals, the multiplication rule stated by Kolev [3,
Theorem 3.1] is used. The affine approximation error in that theorem is
modified to obtain the product as shown in (16).

Theorem 1 (Multiplication of independent affine forms). Let x̃ and ỹ be two
independent affine forms as given in (12). Let x and y be their respective
interval forms. The product

z̃ = z̃approx + zerrεerr = z0 + z1ε1 + z2ε2 + · · ·+ zmεm + zerrεerr (17)

of x̃ and ỹ reduces to z = xy, if the components of z̃ are determined as

z0 = −αβ+ αx0 + βy0 + b0 , zerr = b
′ + |αxm+1|+ |βym+2|,

zi = αxi for i = 1, . . . ,n1 ; zi = βyi for i = n1 + 1, . . . ,m .
(18)

4 GIA in symbolic analysis application C1093

(Parameters α, β, b0 and b ′ are real; their values were obtained by Kolev [3,
Theorem 2.1].)

Proof: From Kolev [3, Theorem 2.1], the product in affine form is expressed
in general as

z̃ = −αβ+ αx̃+ βỹ+ B where B = [bl,bh] = b0 + b
′εm+3 . (19)

Substituting from (12) in (19) we get

z̃ = z0+z1ε1+z2ε2+ · · ·+zmεm+αxm+1εm+1+βym+2εm+2+b
′εm+3 (20)

where

z0 = −αβ+ αx0 + βy0 + b0 , (21)

zi = αxi for i = 1, . . . ,n1 , and zi = βyi for i = n1 + 1, . . .,m . (22)

The product in (20) is equivalent to the result obtained from Kolev [3,
Theorem 3.1]. Since b0 and b ′ are known from Kolev [3, Theorem 2.1], the
terms with subscripts m + 1, m + 2 and m + 3 in (20) are accumulated as
done in (14)–(16) to obtain

zerr = b
′ + |αxm+1|+ |βym+2|, (23)

which completes the proof. ♠

In the case of dependent intervals the optimal multiplication rule of Kolev [2]
is used. The first step in this rule is to compute (as described in section 2 [2])
the narrowest possible interval z∗ ([z∗l , z

∗
h]), to which the product z̃ in (13)

reduces. The coefficients xm+1 and ym+2 are treated independently during
this computation. The product in affine form is then computed using Kolev’s
result [3, Theorem 2.1]. This theorem needs to be modified to obtain z̃ as
shown in (16). Our modifications are presented as follows.

4 GIA in symbolic analysis application C1094

Theorem 2 (Multiplication of dependent affine forms). Let x̃ and ỹ be two
dependent affine forms as given in (12). Let x and y be their respective
interval forms satisfying property (1.5) [2]. Further, assume that the end
points of z∗ have been computed as described by Kolev [3, section 2] with xerr
and yerr treated as independent noise coefficients. The product

z̃ = z̃approx + zerrεerr = z0 + z1ε1 + z2ε2 + · · ·+ zmεm + zerrεerr (24)

of x̃ and ỹ reduces to z∗, if the components of z̃ are determined as

z0 =
z∗h + z

∗
l

2
, zerr =

z∗h − z
∗
l

2
− R where R =

n∑
i=1

|zi|,

zi = ylxi for i ∈Mx and i 6= err

zi = xlyi for i ∈My and i 6= err ; zi = ylxi + xlyi for i ∈Mc .

(25)

(Each of the sets Mx and My contain the subscripts of independent noise
symbols from x̃ and ỹ respectively along with this subscript, (err), indicating
that the approximation errors are treated independently similar to the original
gia rule. The value R, which is the radius of z̃approx, does not contain the
magnitudes corresponding to εerr terms.)

Proof: From Kolev [3, equation (2.1)], the product z̃ is in general

z̃ = −xlyl + ylx̃+ xlỹ+ B , where B = [bl,bh]. (26)

Substituting (12) in (26) we get

z̃ = z ′0 + z1ε1 + z2ε2 + · · ·+ zmεm + ylxm+1εm+1 + xlym+2εm+2 + B (27)

where
z ′0 = −xlyl + ylx0 + xly0 and zi = ylxi + xlyi . (28)

The objective is to find the interval B, such that the product z̃ reduces to an
optimal interval z∗, [z∗l , z

∗
h]. By equating the centre and radius of z̃ and z∗,

(z∗h + z
∗
l)/2 = z

′
0 + (bh + bl)/2 and

(z∗h − z
∗
l)/2 = R+ |ylxm+1|+ |xlym+1|+ (bh − bl)/2 ,

(29)

5 Experimental results and discussion C1095

where R is the radius of z̃approx. Since z∗ is a known quantity, obtained as
described by Kolev [3, section 2], the centre z0 and the accumulated error zerr
is derived from (29) as

z0 = (z∗h + z
∗
l)/2 and zerr = (z∗h − z

∗
l)/2− R . (30)

Therefore (27) is now rewritten as in (24) and (25) using (28) and (30), which
completes the proof. ♠

Thus the errors in a chain of computations are now accumulated under a
single error coefficient zerr for both dependent and independent cases.

5 Experimental results and discussion

The interval methods (aa, raa, eaa and gia) were implemented as a matlab
toolbox with all basic arithmetic operations. The ia results were computed
using intlab [10]. The gia toolbox was implemented along with the modifi-
cations presented in section 4. The symbolic expressions for different circuit
examples presented by Thanigaivelan et al. [8] were used for our experiments.
The experimental results for an Operational Transconductance Amplifier (ota)
circuit are presented and discussed. Figure 2 shows the circuit schematic
along with frequency response plots for the voltage gain. The specifications
for the elements in the circuit (transistors, resistor and capacitors) were
obtained from Kaminska et al. [9] and the nominal values of its transistor
model parameters (conductance, transconductance and capacitance) were
obtained from spice dc operating point simulation results. The conductance,
transconductance and capacitance parameters were then varied ±10% of their
nominal values. The interval values of parameters in the expression were then
converted to affine form. The symbolic expression in sum of product form
for the voltage gain of the ota was obtained using a determinant technique.
Table 1 lists the numerical coefficients of the s-powers in the lower and upper

5 Experimental results and discussion C1096

(a) ota Schematic

(b) Voltage Gain Bode Plot

Figure 2: ota circuit schematic and voltage gain frequency response plot.

5 Experimental results and discussion C1097

bound transfer functions for gia and ia. Table 2 compares ra measures for
each coefficient in the circuit expression for different interval methods.

Figure 2(b) compares the gia with ia using magnitude and phase plots.
The gia results are plotted using solid lines and the ia results are plotted
using dotted lines as indicated by the legends in the plot. As seen from
this figure, the ia results are overestimated by a large margin from medium
to high frequencies, starting from 1MHz. The plots for the gia results are
always enclosed by the plots for the ia results upto 1MHz. The upper bound
curve for ia in the magnitude plot is misleading from 100MHz because the
bounds for coefficients of higher powers of s in the numerator (especially a3,
a4 and a5 shown in Table 1) are wider than necessary. The ia results being
wider than necessary is because the dependencies are not preserved during
computations. The affine small signal model used for the transistors extracts
the dependencies between model parameters [8] and the gia uses special rules
for multiplying affine numbers that are well correlated [2]. The dependency
between parameters is high in the case of capacitance elements (as they
share two or more parameters) and low or absent altogether in the case of
conductance elements (as they share the parameters depending on circuit
connections) [8]. The coefficients a3, a4 and a5 are dominated by capacitance
elements resulting in overestimation.

The ia and gia results in Table 1 show the upper and lower bounds of s-power
coefficients in (1) for the ota example. The coefficients of lower powers of s
are numerically the same or nearly the same compared with coefficients of
higher powers because of the dependencies among parameters at higher powers
of s. The bounds of a3, a4 and a5 in the numerator of ia result are not only
wider than the gia result, but are of opposite sign. This is of particular
concern in applications where rational expressions in s are used in another
loop such as optimization and automated circuit sizing.

The interval methods aa, raa and eaa are compared against each other
using the ra measures as shown in Table 2. Although their average ra scores
are high, the overestimation in individual coefficients being worse than ia is a

5 Experimental results and discussion C1098

Table 1: Coefficients of s-powers in the transfer function for ota gain:
L denotes Lower Bound, and U denotes Upper Bound.

a5 a4 a3 a2 a1 a0

gia
L 9.4e−64 −5.3e−53 −1.6e−44 2.6e−35 1.7e−26 1.1e−18
U 2.5e−63 −1.9e−53 −7.6e−46 8.2e−35 4.7e−26 2.9e−18

ia
L −8.7e−63 −8.7e−53 −9.4e−44 −6.7e−36 1.5e−26 1.1e−18
U 1.2e−62 1.3e−53 7.6e−44 1.1e−34 4.9e−26 2.9e−18

b5 b4 b3 b2 b1 b0

gia
L 1.9e−60 2.7e−51 1.3e−42 2.4e−34 1.1e−26 2.3e−21
U 5.3e−60 7.3e−51 3.6e−42 6.7e−34 3.2e−26 6.5e−21

ia
L 7.8e−61 1.5e−51 9.9e−43 2.2e−34 1.1e−26 2.3e−21
U 6.4e−60 8.5e−51 3.9e−42 6.9e−34 3.2e−26 6.5e−21

Table 2: A comparison of interval methods for the ota circuit example:
N denotes the Numerator, and D denotes the Denominator.

s5 s4 s3 s2 s1 s0 Average ra

aa
N 3.6 1.9 3.2 1.5 1.0 0.9

1.52
D 1.3 1.2 1.0 0.9 0.9 0.9

eaa
N 3.6 1.9 3.2 1.5 1.0 0.9

1.52
D 1.3 1.2 1.0 0.9 0.9 0.9

raa
N 10.9 2.5 7.8 1.8 1.0 0.9

2.61
D 1.4 1.3 1.1 0.9 0.9 0.9

gia
N 12.8 3.0 10.7 2.2 1.1 1.0

3.20
D 1.7 1.5 1.3 1.1 1.0 1.0

6 Conclusion C1099

concern as it indicates that computational effort will be below optimal when
using these methods. The high ra scores for each coefficient and high average
accuracy for the gia indicates that it is the best method for circuit analysis
applications. The gia scores are high mainly because non-affine operations
are handled separately for dependent and independent affine forms.

6 Conclusion

The use of interval arithmetic leads to overestimation and therefore can be
regarded as unsuitable in symbolic circuit analysis applications. A comparison
between different interval methods in affine form presented in this article
shows that the Generalized Interval Arithmetic (gia) of Kolev [2] is suitable
for symbolic circuit analysis applications. This is because the gia defines
separate optimal rules for multiplying dependent and independent affine
numbers. However, the gia reported has to be modified because the number
of noise symbols grows dramatically with the number of multiplications. Our
experiments show that our modifications still yield optimal results, while
restricting the growth in the number of noise symbols and thus improving
computational efficiency.

References

[1] Francisco Fernandez et al., Symbolic Analysis Techniques Applications
to Analog Design Automation IEEE Press, 1998. C1085

[2] L. Kolev, Optimal Multiplication of G-intervals Reliable Computing, 13,
pp.399–408, 2007. C1086, C1087, C1089, C1090, C1091, C1092, C1093,
C1094, C1097, C1099

References C1100

[3] L. Kolev, New Formulae for Multiplication of Intervals, Reliable
Computing, 12, pp.281–292, 2006. C1086, C1087, C1089, C1090, C1091,
C1092, C1093, C1094, C1095

[4] F. Messine and A. Touhami, A General Reliable Quadratic Form: An
Extension of Affine Arithmetic, Reliable Computing, 12, pp.171–192,
2006. C1086, C1087, C1089, C1090

[5] Xuan-Ha Vu, Rigourous solution techniques for numerical constraints
satisfaction problems, PhD thesis no. 3155 (2005), Swiss Federal
Institute of Technology, Lausanne, Switzerland 2005. C1086, C1087,
C1089, C1090

[6] G. Manson, Calculating frequency response functions for uncertain
systems using complex affine analysis, J. Sound and Vibration, 288,
pp.487–521, 2005. C1086, C1087, C1089, C1090

[7] L. H. d. Figueiredo and J. Stolfi, Self-Validated Numerical Methods and
Applications, IMPA, Rio de Janeiro, Brazil, July 1997. C1087

[8] B. Thanigaivelan et al., A modified mosfet small-signal model based
on Affine Arithmetic concepts, Proceedings of Asia Pacific Conference
on Postgraduate Research In Microelectronics and Electronics, Shangai,
China, 2009. C1095, C1097

[9] Bozena Kaminska et al. Analog and Mixed-Signal Benchmark
Circuits-First Release Proceedings of ITC, pp.183–190, 1997 C1095

[10] S. M. Rump. (July 2010). Interval Laboratory.
http://www.ti3.tu-harburg.de/rump/intlab/ C1095

Author addresses

1. B. Thanigaivelan, School of Information Technology and Electrical
Engineering, The University of Queensland, Queensland, Australia.

http://www.ti3.tu-harburg.de/rump/intlab/

References C1101

mailto:velan@itee.uq.edu.au

2. T. J. Hamilton, School of Electrical Engineering and
Telecommunications, The University of New South Wales, New South
Wales, Australia.

3. A. Postula, School of Information Technology and Electrical
Engineering, The University of Queensland, Queensland, Australia.

mailto:velan@itee.uq.edu.au

	Introduction
	Intervals in affine form
	Multiplication of intervals in affine form
	GIA in symbolic analysis application
	Experimental results and discussion
	Conclusion
	References

