• Caunce, J., Barry, S. I., and Mercer, G. N., A simple mathematical model of wool scouring ANZIAM Journal E, 47, C34--C47, 2006.
  • Crank, J., Free and moving boundary value problems, Oxford University Press, Oxford, UK, 1984.
  • Davey, M., Landman, K., McGuiness, M. and Jin, H. , Mathematical modelling of rice cooking and dissolution in beer production. AIChE Journal, 2002, 48 (8), 1811--1826. doi:10.1002/aic.690480821
  • Hill, J. M., One-dimensional Stefan problems: An introduction. Longman Scientific and Technical, New York, USA, 1987.
  • McGuiness, M., Please, C., Fowkes, N., McGowan, P., Ryder, L., and Forte, D. Modelling the wetting and cooking of a single cereal grain. IMA J. of Math. Appl. Bus. Ind. 2000, 11, 49--70. doi:10.1093/imaman/11.1.49
  • Anderson, C. A., A new picture of the raw-wool fibre. J. Text. Inst., 1982, 6, 289--292.
  • Barry, S. I, and Caunce, J, Exact and numerical solutions to a Stefan problem with two moving boundaries. Applied Mathematical Modelling, (accepted 2006).
  • Barry, S. I, Marchant, T. and Mercer, G. N., Grease recovery and dirt removal in wool scouring. Mathematics in Industry Study Group, Proceedings, ed: J. Hewitt and K. White, 2002.
  • Caunce, J., Barry, S. I., Mercer, G. N. and Marchant, T., Modelling a wool scour bowl. ANZIAM Journal E, 47, C19--C33, 2006.

Remember, for most actions you have to record/upload into this online system
and then inform the editor/author via clicking on an email icon or Completion button.
ANZIAM Journal, ISSN 1446-8735, copyright Australian Mathematical Society.