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Application of wavefront coordinates
to acoustic ray tracing

John P. Best∗

(Received 20 September 1996)

Abstract

Acoustic wave propagation is considered by transforming the equations
of inviscid compressible flow to a coordinate system defined by the wave-
front geometry. These equations are linearised and equations for the trajec-
tory of rays are derived in the high frequency limit. The formulation in terms
of the new coordinates facilitates a rapid derivation of an expression for the
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transmission loss associated with propagation along a ray. The form of the
equations permits easy and robust calculation of sound propagation through
media characterised by a non-uniform sound speed and demonstrates the
utility of the coordinate system defined by the natural geometry of the wave-
front.
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1 Introduction

Ray tracing is a technique widely applied to approximately calculate wave prop-
agation in acoustics and optics. In addition to predicting the trajectory followed
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by rays, often normal to the wavefront, a critical quantity required is the variation
of wave intensity along a ray. The approach usually used is to supplement the
equations defining the trajectory of a ray with additional equations that describe
the variation of the intensity, or transmission loss as it is known in underwater
acoustics. This approach has been considered by Krol [4], Solomon & Armijo [5]
and Uginičius [6, 7]. A very general formulation for dispersive inhomogeneous
media has been given by Buckley [2] and a recent exposition in the context of
electromagnetic propagation in the ionosphere is that of Budden [3].

In this paper, an alternative derivation of the ray trace equations is given, along
with an expression for the variation of intensity along a ray. The feature that dif-
ferentiates this work from that carried out previously is that the derivation here
proceeds by introducing a coordinate system defined by the wavefront geometry,
hence the terminology wavefront coordinates. The equations of inviscid com-
pressible flow are transformed to this new coordinate system and the ray trace
equations derived. The equations deduced are readily implemented in a robust nu-
merical scheme in order that propagation may be considered in non-homogeneous
media. Calculation of the wave intensity along a ray is particularly straight for-
ward in this formalism and demonstrates the utility of the coordinate system that
may be considered natural for this problem.
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2 The wavefront coordinate system

Consider the equations of inviscid gas dynamics in three dimensions. They may
be written as

∂tρ + ∂x(ρu) + ∂y(ρv) + ∂z(ρw) = 0 , (1)

∂tu+ u∂xu+ v∂yu+ w∂zu+ ∂xp/ρ = 0 , (2)

∂tv + u∂xv + v∂yv + w∂zv + ∂yp/ρ = 0 , (3)

∂tw + u∂xw + v∂yw + w∂zw + ∂zp/ρ = 0 , (4)

∂tp+ u∂xp+ v∂yp+ w∂zp− a2(∂tρ + u∂xρ+ v∂yρ+ w∂zρ) = 0 , (5)

where
a2 = (∂p/∂ρ)S , (6)

with S the entropy. In the above equationsρ is the fluid density,p is the pressure,
(u, v, w) is the fluid velocity in Cartesian coordinates(x, y, z) anda is the sound
speed.∂µ denotes a partial derivative with respect toµ. In the case where the fluid
is an ideal gas

a2 = γp/ρ , (7)

whereγ is the ratio of specific heats.

This paper is concerned with small amplitude wave propagation described by
the linearised form of (1)–(6), although it is noted that problems involving the
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propagation of shock waves may be dealt with using similar ideas to those pre-
sented here [1]. At any point on the wavefront the normal vector isI, given in
terms of anglesθ andφ as

I = (cosφ cos θ, sinφ cos θ, sin θ) . (8)

Consider a local orthonormal coordinate system defined at a point by the direc-
tion of I when the wavefront passes this point. The coordinate in the direction of
propagation isη and the other two coordinate directions areζ andξ. As a matter
of conventionζ is chosen to lie in thexy plane. This coordinate system is illus-
trated in Figure1. The coordinate system is defined formally by its relation to the
Cartesian coordinate system;

dη = cos φ cos θ dx+ sinφ cos θ dy + sin θ dz ,

dζ = − sin φ dx+ cos φ dy ,

dξ = − cos φ sin θ dx− sinφ sin θ dy + cos θ dz ,

(9)

from which it follows that

∂x = cosφ cos θ ∂η − sin φ ∂ζ − cosφ sin θ ∂ξ ,

∂y = sinφ cos θ ∂η + cosφ ∂ζ − sinφ sin θ ∂ξ ,

∂z = sin θ ∂η + cos θ ∂ξ .

(10)

It is also useful to note that

∂η = cosφ cos θ ∂x + sinφ cos θ ∂y + sin θ ∂z ,

∂ζ = − sin φ ∂x + cosφ ∂y ,

∂ξ = − cos φ sin θ ∂x − sinφ sin θ ∂y + cos θ ∂z .

(11)
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For future convenience the commutator notation[A,B] = AB−BA is introduced.
Noting that[∂x, ∂y] = [∂y, ∂z] = [∂z , ∂x] = 0 for functions with continuous second
derivatives it follows using (10) that

[∂η, ∂ζ ] = − cos θ ∂ηφ∂η − cos θ ∂ζφ∂ζ + (sin θ ∂ηφ− ∂ζθ)∂ξ ,
[∂ζ , ∂ξ] = (cos θ ∂ξφ− ∂ζθ)∂η − sin θ ∂ζφ∂ζ − sin θ ∂ξφ∂ξ ,

[∂ξ, ∂η] = ∂ηθ∂η + (sin θ ∂ηφ+ cos θ ∂ξφ)∂ζ + ∂ξθ∂ξ ,

(12)

so that partial derivatives inη, ζ andξ do not commute.

Before proceeding it is pertinent to consider in a little more detail the transfor-
mation to the new coordinate system. Firstly consider a wavefront area elementA
at the point(η, ζ, ξ) as illustrated in Figure2. It is given by

A(η, ζ, ξ) = dξ dζ . (13)

At (η, ζ, ξ + dξ) the direction of propagation is to leading order defined byθ +
∂ξθ dξ, φ + ∂ξφ dξ and at(η, ζ + dζ, ξ) by θ + ∂ζθ dζ , φ + ∂ζφ dζ . Hence at
(η + dη, ζ, ξ) this element of the wavefront has, to leading order, sides of length
dξ + ∂ξθ dξ dη anddζ + cos θ ∂ζφ dζ dη. Hence the area element is

A(η + dη, ζ, ξ) = A(η, ζ, ξ)(1 + (∂ξθ + cos θ ∂ζφ) dη +O(dη2)) , (14)

from which it is deduced that

∂ηA/A = ∂ξθ + cos θ ∂ζφ . (15)
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FIGURE 1. The wavefront coordinate system.
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FIGURE 2. Propagation of a wavefront area element.
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Since the intensity of a wave is fundamentally dependent upon the wavefront area
it is expected that this quantity will assume significance in derivation of an equa-
tion for the variation of the intensity along a ray. Notice that the variation of the
area is dependent upon the local geometry of the wavefront. In particular, the rate
of change of the area is dependent upon the spatial rate of change of the direction
of propagation across the wavefront.

Next consider the manner in which the anglesθ andφ change along a ray.
Let the normal speed of the wavefront bec. This is not necessarily equal to
the ambient sound speeda0. Consider the pointB in Figure3 with coordinates
(η, ζ, ξ + dξ). The normal speed of propagation isc + ∂ξc dξ, so it follows that
B′C = ∂ξc dξ dη/c so

dθ = −∂ξc dη/c , (16)

from which it is deduced
∂ηθ = −∂ξc/c . (17)

Similar consideration of the pointD in Figure4 with coordinates(η, ζ + dζ, ξ)
yields

∂ηφ = −∂ζc/(c cos θ ) . (18)

To proceed, (1) is transformed to the new coordinate system and in doing so
fluid velocity components(ū, v̄, w̄) are defined with respect to the new coordinates
and are related to the original components by

u = cosφ cos θ ū− sinφ v̄ − cosφ sin θ w̄ ,

v = sin φ cos θ ū+ cosφ v̄ − sin φ sin θ w̄ ,

w = sin θ ū+ cos θ w̄ .

(19)
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It may be readily shown that

u∂x + v∂y + w∂z = ū∂η + v̄∂ζ + w̄∂ξ . (20)

Using (10), (19) and (20) in (1) and dropping the bar over velocity components
yields

∂tρ+ ∂η(ρu) + ∂ζ(ρv) + ∂ξ(ρw)− ρw∂ηθ + ρu∂ξθ − ρv cos θ ∂ηφ

+ρ(u cos θ − w sin θ )∂ζφ+ ρv sin θ ∂ξφ = 0 ,
(21)

∂tu+ u∂ηu+ v∂ζu+ w∂ξu+ ∂ηp/ρ− uw∂ηθ − vw∂ζθ − w2∂ξθ

−uv cos θ ∂ηφ− v2 cos θ ∂ζφ− vw cos θ ∂ξφ = 0 ,
(22)

∂tv + u∂ηv + v∂ζv + w∂ξv + ∂ζp/ρ

+(u cos θ − w sin θ )(u∂ηφ+ v∂ζφ+ w∂ζφ) = 0 ,
(23)

∂tw + u∂ηw + v∂ζw + w∂ξw + ∂ξp/ρ+ u2∂ηθ + uv∂ζθ + uw∂ξθ

+uv sin θ ∂ηφ+ v2 sin θ ∂ζφ+ vw sin θ ∂ξφ = 0 ,
(24)

∂tp+ u∂ηp+ v∂ζp+ w∂ξp− a2(∂tρ+ u∂ηρ+ v∂ζρ + w∂ξρ) = 0 . (25)

The consideration of small amplitude wave propagation proceeds by linearising
(21)–(25) about undisturbed values of the flow variables. The undisturbed density,
pressure and sound speed are denoted byρ0, p0 and a0 and hereafterρ and p
refer to the perturbations in density and pressure caused by the wave motion. In
the following derivation it is assumed thatp0 is uniform and thatρ0 anda0 may
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depend upon the spatial coordinates, so that the propagation medium may be non-
homogeneous. The undisturbed fluid velocity is considered to be equal to zero.
Performing the linearisation yields

∂tρ + ρ0(∂ηu+ ∂ζv + ∂ξw) + u∂ηρ0 + v∂ζρ0 + w∂ξρ0− ρ0w∂ηθ + ρ0u∂ξθ

−ρ0v cos θ ∂ηφ+ ρ0(u cos θ − w sin θ )∂ζφ+ ρ0v sin θ ∂ξφ = 0 ,
(26)

∂tu+ ∂ηp/ρ0 = 0 , ∂tv + ∂ζp/ρ0 = 0 , ∂tw + ∂ξp/ρ0 = 0 , (27)

∂tp− a2
0(∂tρ+ u∂ηρ0 + v∂ζρ0 + w∂ξρ0) = 0 . (28)

An alternative derivation may have proceeded by linearising (1)–(5) and then un-
dertaking the transformation to the(η, ζ, ξ) coordinate system. This process yields
exactly (26)–(28).

3 Derivation of ray trace equations

Eliminating the velocity components and density from (26)–(28) yields

∂2
t p/a

2
0− (∂2

ηp+ ∂2
ζp+ ∂2

ξp) + (∂ηρ0∂ηp+ ∂ζρ0∂ζp + ∂ξρ0∂ξp)/ρ0 + ∂ξp∂ηθ

−∂ηp∂ξθ + cos θ ∂ζp∂ηφ− (cos θ ∂ηp− sin θ ∂ξp)∂ζφ− sin θ ∂ζp∂ξφ = 0 .
(29)
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Following Whitham [8], assume an asymptotic solution of the form

p = e−iω(t−σ(r ))
∞∑
n=0

Pn(r)(−iω)−n

=
∞∑
n=0

Pn(r)fn(S) ,
(30)

where

S = t− σ(r) , fn(S) =
e−iωS

(−iω)n
. (31)

Notice that
f ′n(S) = fn−1(S) . (32)

The symbolr denotes some point in space whose position may be specified by
either Cartesian coordinates or(η, ζ, ξ) coordinates. The form of this asymptotic
solution is applicable in the high frequency limit and the surfacesS = constant
denote surfaces of constant phase, otherwise known as wavefronts. With an ap-
propriate choice of the functionsfn, this form of solution is equally applicable to
the case of propagation of a surface of discontinuity [8].

Recall that the coordinates(η, ζ, ξ) are defined in terms of the normal to the
wavefront. Hence it is evident that sinceσ is constant over a wavefront, it follows
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that∂nζ σ ≡ 0 and∂nξ ≡ 0 for n ≥ 1. Using (30) in (29) yields

∞∑
n=0

{ [
1/a2

0− (∂ησ)2
]
Pnfn−2

+
[
2∂ησ∂ηPn + (∂2

ησ − ∂ησ∂ηρ0/ρ0)Pn + (∂ξθ + cos θ ∂ζφ)∂ησPn
]
fn−1

−
[
∂2
ηPn + ∂2

ζPn + ∂2
ξPn − (∂ηρ0∂ηPn + ∂ζρ0∂ζPn + ∂ξρ0∂ξPn)/ρ0

+(∂ξθ + cos θ ∂ζφ)∂ηPn + (sin θ ∂ξφ− cos θ ∂ηφ)∂ζPn

−(∂ηθ + sin θ ∂ζφ)∂ξPn] fn

}
= 0 .

(33)
The quantitiesσ andPn are determined by equating coefficients offn to zero.
Equating the coefficients off−2 andf−1 to zero yields equations forσ and the
leading term in the expansion of the wave amplitudeP0:

1/a2
0− (∂ησ)2 = 0 , (34)

2∂ησ∂ηP0 + (∂2
ησ − ∂ηρ0∂ησ/ρ0)P0 + (∂ξθ + cos θ ∂ζφ)∂ησP0 = 0 , (35)

where (34) has been used to eliminate a term involvingP1 from the coefficient of
f−1. Equation (34) is the known result that the normal speed of propagation of the
wavefront isa0. Equation (35) yields the leading order approximation to the wave
amplitude and it is from this expression that the variation of the wave intensity
along the rays is determined.

Multiplying (35) by p0/ρ0 yields

∂η

(
P 2

0

ρ0a0

)
= − P 2

0

ρ0a0
(∂ξθ + cos θ ∂ζφ) , (36)
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and identifyingP 2
0/(ρ0a0) as the intensityI of the sound wave, (36) integrates to

ln(I(η)/I(η0)) = −
∫ η

η0

(∂ξθ + cos θ ∂ζφ) dη . (37)

Recalling (15), which relates the integrand of (37) to the rate of change of the
area of an element of the wavefront, it is clear that this relation merely reflects
the fact that the energy flux is constant down a tube defined by the normals to the
wavefront. It is further remarked that in the traditional approach to geometrical
acoustics, rays are defined to be in the direction of the characteristics of the eikonal
equation and that these are coincident with the wavefront normal only in the case
of an isotropic medium. The rays are in fact in the direction of energy propagation.
The preceding analysis shows that energy propagates in the direction defined by
η and hence the rays are normal to the wavefront. In the event that the medium is
non-isotropic, the equation corresponding to (36) has additional terms reflecting
the difference between the direction of energy propagation and wavefront normal.

From this pointc anda0 shall be used interchangeably, since the analysis has
demonstrated the known fact that in the case of an isotropic medium the normal
speed of the wavefront is equal to the ambient sound speed. The trajectory of the
rays is determined as follows. From (11) it follows that

∂ηx = cosφ cos θ ,

∂ηy = sinφ cos θ ,

∂ηz = sin θ .

(38)

The ray trajectory is determined by integrating these equations simultaneously
with (17) and (18). Ordinarily, the sound speedc is known as a function of the
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Cartesian coordinates so converting the derivatives ofc in (17) and (18) using (11)
yields

∂ηθ = cos φ sin θ cx/c+ sin φ sin θ cy/c− cos θ cz/c ,

∂ηφ = (sin φ cx − cosφ cy)/(c cos θ ) .
(39)

Thus given the initial direction of a ray and the sound speed distribution, (38)
and (39) may be integrated simultaneously to determine the trajectory of the ray.
Notice the particularly simple form of these equations.

It is remarked that in the event the sound speed depends in some complex man-
ner onx andy the possibility exists thatcos θ = 0 at some point on a ray, render-
ing the second equation of (39) undefined. If this circumstance is expected the ap-
proach to follow is to replace the equation for∂ηφ by equations for∂η(cosφ cos θ )
and∂η(sinφ cos θ ). It may be routinely shown that such equations, in conjunction
with (38) and the first equation of (39) yield a closed system, without the possible
defect of becoming undefined in the event thatcos θ = 0.

The determination of the variation of the intensity, or the transmission loss
in underwater acoustics, necessitates that∂ξθ and∂ζφ be computed along a ray.
The approach followed is to obtain expressions for∂η∂ξθ and∂η∂ζφ and integrate
these simultaneously with (38) and (39). This is achieved using the commutator
relations (12). Application of these toθ andφ yields

∂η∂ξθ = ∂ξ∂ηθ − (∂ηθ)
2− (∂ξθ)

2− (sin θ ∂ηφ+ cos θ ∂ξφ)∂ζθ , (40)

∂η∂ξφ = ∂ξ∂ηφ− ∂ηθ∂ηφ− ∂ξθ∂ξφ− (sin θ ∂ηφ+ cos θ ∂ξφ)∂ζφ , (41)

∂η∂ζθ = ∂ζ∂ηθ − cos θ ∂ηφ∂ηθ − cos θ ∂ζφ∂ζθ + (sin θ ∂ηφ− ∂ζθ)∂ξθ , (42)
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∂η∂ζφ = ∂ζ∂ηφ− cos θ (∂ηφ)2− cos θ (∂ζφ)2 + (sin θ ∂ηφ− ∂ζθ)∂ξφ . (43)

In these expressions the terms∂ξ∂ηθ, ∂ξ∂ηφ, ∂ζ∂ηθ and∂ζ∂ηφ are determined by
differentiating (39) and converting derivatives of the sound speed to Cartesian co-
ordinates. The resulting equations are written in full in the appendix. Equations
(41) and (42) for ∂ξφ and∂ζθ are given so that (40)–(43) yield a closed system of
equations in conjunction with (38) and (39). Despite the number of terms in these
expressions it should be noted that in implementing a numerical scheme to solve
these equations, such as a Runge-Kutta method, the expressions for the derivatives
of the dependent variables merely involve algebraic expressions of these variables,
derivatives of the sound speed and elementary trigonometric functions. Their in-
tegration is routine. The equation

∂η(ln I) = −(∂ξθ + cos θ ∂ζφ) (44)

completes the formulation. Simultaneous integration of (44) with the equations
describing the ray trajectory permits determination of the intensity at any point on
a ray, given the initial ray direction and intensity.

4 Discussion

To illustrate the ease with which this formulation may be implemented, the ex-
ample of underwater sound propagation is considered where the sound velocity
is simply a function of the vertical coordinatez. Without loss of generality the
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angleφ is taken to be initially equal to zero. It is further assumed that the initial
wavefront is a sphere of radius1. Hence it follows that∂ζθ and∂ξφ are equal to
zero here. Suppose that the centre of the sphere is at the origin and the ray under
consideration is propagating initially in thexz plane. Thus its original location is
(cos θi, 0, sin θi) whereθi is the initial value ofθ. Equations (38) and (39) become

∂ηx = cos θ ,

∂ηy = 0 ,

∂ηz = sin θ ,

∂ηθ = − cos θ c′/c ,

∂ηφ = 0 ,

(45)

wherec′ denotes differentiation with respect toz. The second and last of these
equations show thaty andφ are identically equal to zero, either fact demonstrating
that the ray propagates in a vertical plane.

The variation of the intensity is given by (44) and to evaluate the required
terms notice that (40)–(43) become

∂η∂ξθ = −(∂ηθ)
2− (∂ξθ)

2− cos θ ∂ξφ∂ζθ + c′ sin θ ∂ξθ/c

−c′′ cos2 θ/c+ (c′)2 cos2 θ/c2 ,
(46)

∂η∂ξφ = −(∂ξθ + cos θ∂ζφ)∂ξφ , (47)

∂η∂ζθ = −(∂ξθ + cos θ ∂ζφ− c′ sin θ /c)∂ζθ , (48)

∂η∂ζφ = −∂ζθ∂ξφ− cos θ (∂ζφ)2 . (49)
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It is deduced from (47) and (48) that

∂ξφ ≡ 0, ∂ζθ ≡ 0 . (50)

Using (50) and (45) in (46) gives the important equation

∂η∂ξθ = −(∂ξθ)
2 + c′ sin θ ∂ξθ/c− c′′ cos2 θ/c . (51)

Noting that∂ζφ is initially equal to1/ cos θi = 1/xi, wherexi is the initial x
coordinate of a ray, (49) may be integrated with the help of the first equation in
(45) to give

∂ζφ = 1/x . (52)

Thus (37) becomes

ln(I(η)/I(η0)) = − ln(x/x0)−
∫ η

η0

∂ξθ dη , (53)

wherex0 is the value ofx atη0. Hence to evaluate the ray trajectory and intensity
variation along a ray the non-trivial equations of (45) are integrated along with
(51) and the last term in (53).

As an example, consider the case of propagation of a sound wave underwater
in the sound velocity profile illustrated in Figure5. The initial wavefront is con-
sidered to be spherical and of radius1. A fourth order Runge-Kutta method has
been used to carry out the integrations and a constant step size used. A key fea-
ture of this formulation is that the integrands are simply algebraic functions of the
dependent variables, derivatives of the sound speed and elementary trigonometric
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FIGURE 5. An example sound velocity profile for underwater sound propagation.
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FIGURE 6. The trajectories of a collection of rays describing propagation in the
sound velocity profile illustrated in Figure5. The initial orientations of the rays
lie between−15◦ and15◦.
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functions ofθ. This particularly facilitates calculation of ray trajectories which ex-
hibit a waveguide-like behaviour as shown in Figure6. This figure illustrates the
trajectories of a collection of rays withθi lying between±15◦ in 1◦ increments.
Whereas some formulations involving Cartesian coordinates yield ambiguities in
the sign of the square root function at points where the ray changes direction from
propagation downwards to upwards and vice-versa (see for example Whitham [8,
p250]), the equations used here apply naturally and robustly along the whole of
the ray. Indeed, as far as the equations forx andz are concerned, the magnitudes
of the derivatives with respect toη are always bounded by1. It is also remarked
that in the event that adjacent rays cross,∂ξθ becomes unbounded. Of course if
such a circumstance occurs, ray acoustics is no longer appropriate for predicting
the wave intensity. Note that this formulation is applicable even in the event that
c(z) has discontinuous derivatives at certain points, as may happen if this function
is represented as piecewise linear. It merely requires that the discontinuities in
c′ and delta functions inc′′ are appropriately dealt with in integration of the ray
equations.

As a final remark on the usefulness of this formulation it is noted that bound-
aries such as the ocean surface or bottom may be dealt with in a number of ways.
The propagation equations may be supplemented by appropriate reflection con-
ditions. An alternative method is to consider that the boundaries are defined by
thin regions of very high sound speed gradient, that in the limit of infinitesimal
thickness yield the appropriate reflection behaviour. If the form of the ray trace
equations presented here were numerically integrated in this case, a variable step
size algorithm should be utilised since the propagation directionθ changes rapidly
at reflection points.
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In conclusion, the mathematical formalism for acoustic ray tracing presented
here is elegant with the coordinate system chosen so that it is defined by the motion
of the wavefront itself. The coordinate system may thus be considered natural for
this problem. The ease with which ray trajectories and intensity variation along
a ray may be computed in non-homogeneous media demonstrates its practical
usefulness.

A Appendix

Differentiation of (39) with respect toζ andξ and conversion of derivatives of the
sound speed using (11) yields

∂ζ∂ηθ = − sin θ [sinφ cx − cosφ cy]∂ζφ/c

+[cos φ cos θ cx + sinφ cos θ cy + sin θ cz]∂ζθ/c

−[cosφ sin φ sin θ cxx + (sin2φ− cos2φ) sin θ cxy

− cosφ sin φ sin θ cyy + cosφ cos θ cyz − sinφ cos θ czx]/c

+[cos φ sinφ sin θ c2
x − cosφ sinφ sin θ c2

y + (sin2φ

− cos2φ) sin θ cxcy + cosφ cos θ cycz − sinφ cos θ czcx]/c
2 ,

(54)
∂ζ∂ηφ = [cosφ cx + sin φ cy]∂ζφ/(c cos θ )

+ sin θ [sin φ cx − cosφ cy]∂ζθ/(c cos2 θ)

−[sin2φcxx + cos2φcyy − 2 sinφ cosφcxy]/(c cos θ )

+[sinφ cx − cosφ cy]
2/(c2 cos θ ) ,

(55)
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∂ξ∂ηθ = − sin θ [sin φ cx − cosφ cy]∂ξφ/c

+[cosφ cos θ cx + sin φ cos θ cy + sin θ cz]∂ξθ/c

−[cos2φ sin2 θcxx + sin2φ sin2 θcyy

+ cos2 θczz + 2 cosφ sinφ sin2 θcxy

−2 sinφ cos θ sin θ cyz − 2 cosφ cos θ sin θ czx]/c

+[cosφ sin θ cx + sin φ sin θ cy − cos θ cz]
2/c2 ,

(56)

∂ξ∂ηφ = [cosφ cx + sin φ cy]∂ξφ/(c cos θ )

+ sin θ [sin φ cx − cosφ cy]∂ξθ/(c cos2 θ)

−[cosφ sin φ sin θ cxx − cos φ sin φ sin θ cyy + (sin2φ

− cos2φ) sin θ cxy + cosφ cos θ cyz − sinφ cos θ czx]/(c cos θ )

+[cosφ sinφ sin θ c2
x − cosφ sinφ sin θ c2

y

+(sin2φ− cos2φ) sin θ cxcy

+ cosφ cos θ cycz − sinφ cos θ czcx]/(c
2 cos θ ) .

(57)
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