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Effect of a moving boundary on the
deformation of a poro-elastic cylinder
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Abstract

The deformation of a poro-elastic cylinder due to radial fluid flow is
considered. This has application to modelling arterial flow and certain filtra-
tion processes. A diffusion equation for the dilatation with unusual integral
boundary conditions is derived for two typical boundary conditions. Asymp-
totic solutions, to the linearised equations for small times, are found using
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Maple and shown to be remarkably accurate even for relatively large times.
Since the position of the boundaries changes with time, the fully nonlinear
system is solved numerically as a moving boundary value problem. Solu-
tions for the dilatation and displacement are found and comparisons made
between the standard linearised and full moving boundary problems with a
nonlinear, strain dependent permeability. It is shown that inclusion of the
correct position of the moving boundaries has a comparable effect to inclu-
sion of a nonlinear permeability on the deformation of the cylinder.
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1 Introduction

Poro-elasticity describes the coupled interaction between fluid flow and solid de-
formation in saturated porous materials. The pressure gradient, driving fluid
through a porous solid, deforms the solid which in turn may affect the passage
of fluid. Poro-elastic modelling is common in both engineering and biology, in
particular the modelling of soils and soft biological tissue.

Arteries are an example of a biological tissue which may be modelled by poro-
elasticity [14, 15, 16, 17, 11, 10]. The small transmural fluid flux through the
artery wall is coupled to the deformation of the artery. If the porosity of the
artery changes, due to the applied fluid pressure, then this may enhance or restrict
the flux of fluid and proteins through the wall. This process may be linked to
atherogenesis—an accumulation of proteins within the artery wall [24, 25, 20].
An understanding of the internal deformation of the artery is hence a necessary
link in understanding the relationship between fluid flux, protein accumulation and
applied fluid pressure. Arteries have a complicated structure which homogeneous
poro-elastic models can not model. However, such models can lead to greater
understanding of the interaction between flow and deformation within the artery,
particularly when compared toin vitro studies of arterial transport such as [20].

Mathematical models of poro-elasticity began with studies of soil consolida-
tion [27, 5] which have been used extensively in soil science. Kenyon [13] used
the theory of mixtures to derive similar equations governing poro-elasticity which
he used to model arterial transport [14, 15]. The poro-elastic equations were fur-
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ther developed (for example [19, 22, 23]) to model the deformation and lubrication
properties of articular cartilage, including the effect of strain dependent perme-
ability [19], nonlinear stress-strain relations [23] and visco-elastic solid compo-
nents [21].

There have been several models of fluid flux through poro-elastic cylinders
or models of transport in arteries. Kenyon [14, 15] looked at the steady state and
small time response (due to a step change in pressure) of arteries using linear poro-
elasticity. Jayaraman [11] and Jain and Jayaraman [10] considered an oscillatory
pressure gradient using linear poro-elasticity. The effect on arterial transport of
a nonlinear dependence of permeability on strain was studied by Klanchar and
Tarbell [16] who looked at the steady state relationship between applied pressure
and velocity flux. This work was extended by Kim and Tarbell [17] to consider
macromolecular transport within the arterial wall. The mechanics of thin poro-
elastic shells has also been studied [26]. In most of these publications the gov-
erning equation (13) was used to find the displacement. An alternative approach
was used by Barry and Aldis [4] who solved a linear equation for the dilatation,
independent of the velocity or displacement. They found analytical solutions for
radial flow through a porous cylinder with an outer boundary constrained by a
rigid, impermeable mesh.

Nonlinearities appear in poro-elasticity due to a variety of causes. The depen-
dence of permeability on strain (for example [19, 7, 8, 2]) and nonlinear stress-
strain relations [23, 9, 3] are often considered in poro-elastic modelling. The po-
sition of the boundaries, however, also cause nonlinearities to occur although few
authors have studied the magnitude of this effect in poro-elasticity. Jensenet al.
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[12] incorporated the moving boundary position when they considered the relax-
ation of a porous deformable layer. They derived a nonlinear diffusion equation
for the surface height with a perturbation correction for the boundary position.

In this study we extend the work of Barry and Aldis [4] to consider the effect
of the moving boundaries involved in the deformation of poro-elastic cylinders.
In infinitesimal, linear poro-elasticity, the equations are represented in an Eulerian
(spatial) reference frame but the boundary conditions are applied at the original
position of the boundary. This assumes that the deformation is small so that the
final and original positions of the boundaries are sufficiently similar and hence the
resulting errors are minimal. With poro-elastic materials, however, the deforma-
tions are often much larger than found in other elastic materials (such as steel or
rock) thus violating the infinitesimal assumption. Two standard methods are often
used to compensate for the boundary position. First, the equations can be con-
verted to a Lagrangian (material) reference frame. Second, the equations can be
posed in Eulerian coordinates and solved as a moving boundary value problem—
that is, where the position of the boundary is an unknown to be determined from
the analysis. Barry and Aldis [3] considered the Lagrangian approach in solving a
one-dimensional steady deformation with various strain dependent permeabilities.
It will be shown, however, that conversion to a Lagrangian framework is difficult
for the time dependent deformation considered here. We thus solve the governing
equations as a moving boundary problem and compare our solution with the fully
linear system. The effect of a strain dependent permeability is also considered.

We make several standard assumptions. The elastic solid matrix is initially
homogeneous and isotropic and there exist no external body or osmotic forces
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acting on the medium. The individual components of the mixture are intrinsically
incompressible. Bulk compression arises from a reduction in the fluid volume
fraction rather than compression of the individual constituents. Inertia is also
assumed negligible [2] on the time scales appropriate to this problem. We consider
only a linear dependence of stress on strain.

An axisymmetric cylindrical geometry is used as illustrated in Figure1. Fluid
flow is radially outwards through the medium driven by a pressurep = p0 > 0
on the inner surface andp = 0 on the outer surface. The inner surface is assumed
to have zero solid contact stress. Two conditions are considered for the outer
boundary. These represent the two possible extremes. Figure1(a) illustrates a
cylinder constrained by a rigid, permeable mesh which limits the expansion of the
cylinder. In Figure1(b) the cylinder is free to expand as the outer boundary is
assumed to have zero contact stress. The inner radius is initially atr = α and the
outer boundary is initially atr = β.

In the next section we develop the poro-elastic model. The governing equa-
tions and boundary conditions will then be derived. A description of the numerical
scheme used to solve the moving boundary problem is then given, followed by an
analytical solution for linear poro-elasticity. Results for the deformation and di-
latation are then described and discussed.

2 Poro-Elastic Theory
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FIGURE 1. Schematic diagram of a cylinder with inner radiusα and outer radius
β deforming due to an applied pressure differencep = p0. (a) The cylinder is con-
strained by rigid, permeable outer mesh. (b) The outer boundary of the cylinder
can expand and has zero contact stress.
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The aim of this section is to briefly derive the equations governing poro-elasticity
using mixture theory (see for example [7, 8, 23, 4]).

The volume occupied by theγ = s, f (solid,fluid) phase is denotedV γ with
massmγ . The apparent densityργ , intrinsic densityργ

T , and volume fractionφγ

are defined as

ργ = lim
dV →0

dmγ

dV
, ργ

T = lim
dV γ→0

dmγ

dV γ
, φγ = lim

dV →0

dV γ

dV
. (1)

The intrinsic density is a constant by the assumption of incompressibility while
the apparent density and volume fraction may change as the proportion of solid
and fluid change.

A continuity equation,
∇ · v = 0 , (2)

can be derived [23] wherev = φfvf + φsvs is a volume averaged velocity. The
velocities of the fluid,vf , and solid,vs, represent velocities relative to an external
reference frame.

The momentum equation for each phase is

∇ · Tγ = −πγ, (3)

whereπγ is a drag force on theγ = s, f phase andTγ the total stress on each
phase. Here we assume no external body forces and neglect inertial terms.
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The stress tensors are modelled as

Tf = −φfpI ,

Ts = −φspI + σ, (4)

whereσ represents a solid contact stress, a function of the strain,p is the fluid
pressure andI the identity tensor. Here we assume that there is no viscous shearing
stress in the fluid.

Newton’s third law impliesπs = −πf : the force on the solid by the fluid is
opposite to the force on the fluid by the solid. The friction drag terms are modelled
as

− πs = πf = K(vs − vf) − p∇φs, (5)

whereK is the drag coefficient of relative motion. This is essentially Darcy’s law.

The basic relationships between pressure, displacement and velocity are found
by substituting (4) into (3) and adding both phase equations to eliminateπγ. Sub-
stituting the interaction term (5) into (3) and making use ofφs = 1 − φf leads
to

∇p = ∇ · σ =
1

k

{
∂u
∂t

− v

}
, (6)

wherek = (φf)2/K is the permeability [18], u is the displacement of the solid
and∂u/∂t = vs.
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Equation (6) is easily explained in physical terms. Darcy’s law expressed
relative to the movement of the solid is∇p = 1/k(∂u/∂t − v). If the stress
in the solid matrix is governed by the standard equilibrium equation of elasticity
then∇·σ = ∇p where the gradient of pressure is acting as an internal body force
on the solid matrix.

As a porous medium is compressed the resulting decrease in porosity will lead
to a reduction in the permeabilityk. The simplest model that allows for this is if
k = k(φ) whereφ = ∇ · u = (φf − φf

0)/φ
s
0 is the dilatation of the medium and

φγ
0 are the initial volume fractions of the solid and fluid phases. Various forms for

this functional dependence have been considered [8, 3] and it seems that the most
versatile is an exponential dependence given byk = k0e

mφ wherek0 andm are
constants.

3 Developing the Governing Equations

The stress tensor is related to the strain tensor by the standard linear relationship

σ = λekkI + 2µe, e =
1

2

(
∇u + (∇u)T

)
(7)

wheree is the strain tensor andλ andµ are the Lam´e stress constants.

Assuming a purely radial displacement(u(r), 0, 0) in cylindrical coordinates
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(r, θ, z), the only non zero stress components are:

σrr = (λ + 2µ)
∂u

∂r
+ λ

u

r
, σθθ = (λ + 2µ)

u

r
+ λ

∂u

∂r
, (8)

and

(∇ · σ)r =
∂σrr

∂r
+

σrr − σθθ

r
. (9)

It can also be shown, with a little algebra, that substitution of (8) into (9) gives

(∇ · σ)r = Ha
∂φ

∂r
, (10)

where

φ =
1

r

∂

∂r
(ru) , (11)

is the dilatation andHa = λ + 2µ is the aggregate elastic modulus.

Integration of the continuity equation (2) leads to the velocity component in
the radial direction

vr =
v(t)

r
, (12)

for some functionv(t). Equation (6) then becomes

∂p

∂r
= Ha

∂

∂r

{
1

r

∂

∂r
(ru)

}
=

1

k(φ)

{
∂u

∂t
− v(t)

r

}
. (13)

By applying the operator

L[w] =
1

r

∂

∂r
(rw) (14)
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to both sides of (13) we obtain

Ha
1

r

∂

∂r

{
k(φ)r

∂φ

∂r

}
=

∂φ

∂t
(15)

which is a diffusion equation independent of the velocity and the displacement.

It will be shown in the next section that the boundary conditions for equation
(15) can also be expressed independent of the velocity. This is a more useful form
of the governing equations than (13) since experimentally the internal pressure is
often applied with the fluid velocity only inferred.

4 Boundary Conditions

We now consider the boundary conditions shown in Figure1(b), the unconstrained
cylinder. The linearised boundary conditions for the constrained cylindrical shell
are discussed in Barry and Aldis [4].

Since both the inner and outer boundaries have no contact stress [6] then

σrr(α, t) = 0 , σrr(β, t) = 0 . (16)

This can be written as [
∂u

∂r
+ (1 − λ2)

u

r

]
r=α,β

= 0 , (17)
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whereλ2 = 2µ/(λ + 2µ). In terms ofφ this is
[
φ(r, t) − λ2

u(r, t)

r

]
r=α,β

= 0 . (18)

To express this entirely in terms ofφ we must find an expression foru in term of
φ.

By integrating (11), the displacement can be written as

u(r, t) = −1

r

∫ β

r
rφ(r, t) dr +

φ(β, t)β2

λ2r
(19)

where the boundary condition atr = β, equation (17), has been used.

Integrating the relation between pressure and stress, equation (13), the bound-
ary condition at the constrained boundary,r = β, is

φ(β, t) = φ(α, t) − p0(t)

Ha
. (20)

Using (19) and (20) in (18) we obtain

φ(α, t) =
λ2

β2 − α2

∫ β

α
rφ(r, t) dr +

p0

Ha

β2

β2 − α2
. (21)

Hence (21) and (20) are the boundary conditions to be used in conjunction with
equation (15).
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5 Non-Dimensionalisation

To simplify the equations we non-dimensionalise all variables using the relation-
ships:

p = Hap̂ , r = β0r̂ , k = k0k̂ , u = β0û , α = β0a , β = β0b (22)

and

t =
β2

0

Hak0
t̂ ,

whereβ0 is the initial position of the outer boundary.

For ease of notation we will now drop the hat notation denoting non-dimensional
quantities and all variables will now be considered non-dimensional. The only pa-
rameters in the system are the scaled initial inner radius,a0, the elastic parameters,
λ2 = 2µ/(λ + 2µ), and the scaled applied pressure,p0.

In non-dimensional form, the governing equations for this system become:

1

r

∂

∂r

{
k(φ)r

∂φ

∂r

}
=

∂φ

∂t
(23)

φ(a, t) =
λ2

b2 − a2

∫ b

a
αφ(α, t) dα + p0

b2

b2 − a2
(24)

φ(b, t) = φ(a, t) − p0(t) (25)

with inner radiusa(t) and outer radiusb(t). Initially

φ(r, 0) = 0 , a(0) = a0 , b(0) = 1 . (26)
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Since the distances have been scaled with respect to the initial position of the outer
boundary,b0, thenb(0) = 1.

The positions of the boundariesa, b are unknowns. They are related toφ by
the implicit relationships:

a(t) = a0 + u(a(t), t) , b(t) = b0 + u(b(t), t) , (27)

and

u(r, t) = −1

r

∫ b

r
αφ(α, t) dα +

φ(b, t)b2

λ2r
. (28)

The equations (23–26) represent a nonlinear diffusion equation forφ with un-
usual integral boundary conditions. The unknown position of the boundaries are
represented by equations (27) and (28). A full analytical solution is not possi-
ble for this nonlinear coupled system, however numerical solutions will be found.
Analytical solutions for the linearised problem, wherea = a0, b = 1 andk = 1,
will also be found using Laplace transforms.

The approach used in Barry and Aldis [3]—conversion to a Lagrangian (ma-
terial) reference frame—will be ineffective for this set of equations. Relating the
Lagrangian coordinate,R, to the Eulerian,r, by the displacement relationship,
r = U(R, t) + R, implies that the Lagrangian displacement,U , would thus occur
nonlinearly in equation (23). These equations would then be a mixture of variables
U andφ which would be difficult to solve.
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6 Numerical Solution

The numerical method employed to solve the equations (23–26) with the mov-
ing boundary conditions, equations (27–28), is an explicit finite difference Euler
scheme with centred space derivatives. At each time step, the region(a(t), b(t))
is discretised intoN equal intervals. The value ofφ at the internal mesh points
is easily calculated from (23) for the next time step. By using Simpson’s rule to
calculate the nonlinear integral in the boundary condition, it is possible to deter-
mine the value ofφ at the boundaries (r = a, b) in terms ofφ at the internal mesh
points. Once theseφ values have been determined over the entire domain, the
displacements are determined using (28). The boundaries are then incremented
and the procedure repeated.

This method is only first order accurate in time. Hence a small time step
is required to ensure accuracy and stability of the solutions. Notwithstanding
this, the method is fast, simple and agrees with the small time asymptotic results
outlined in the next section for the case of constant permeabilityk. This numerical
method can be used with any nonlinear permeabilityk(φ).

7 Small Time Solution

In this section we find solutions to equations (23–26) for an unconstrained cylin-
der. We assume a linearised problem wherek = 1 and, rather than equation (27),
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we seta = a0 andb = 1. The boundary conditions are hence applied at the orig-
inal position of the boundaries with the conventional infinitesimal assumption. A
Laplace transform technique will be used and an asymptotic solution for small
times calculated. We will show, however, that this small time solution is valid
almost up to the time when a steady state equilibrium is reached. This solution is
also used to check the numerical scheme discussed in the previous section.

Taking the Laplace transform,L{φ(r, t)} = φ(r, s) , of (23) gives

η2φ
′′

+ nηφ
′ − η2φ = 0 , (29)

whereη = r
√

s. This has general solution

φ(η, s) = A1(s)I0(η) + A2(s)K0(η) , (30)

whereI0, K0 are modified Bessel functions of order zero. The functionsA1, A2

are found from application of the transformed boundary conditions:

φ(a, s) =
λ2

b2 − a2

∫ b

a
rφ(r, s) dr + p0

b2

b2 − a2
, (31)

φ(b, s) = φ(a, s) − p0 , (32)

wherep0 = L{p0}. We note that because of the infinitesimal assumption,b = 1
in these equations. The resulting solution is clearer, however, if we do not make
this substitution.

The applied pressure we use isp0 = 1 for t > 0 and p0 = 0 for t ≤ 0.
This implies thatp0 = 1/s. More complicated functions for the applied pressure
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can be analysed but this simple form mimics many experimental procedures and
illustrates the mechanics of the poro-elastic system clearly.

Substitution of (30) into the transformed boundary conditions (31–32) gives
the system of equations:

[
a11 a12

a21 a22

] [
A1

A2

]
= p0

[ −1
1

]
(33)

with the coefficients:

a11 = I0(ηb) − I0(ηa) ,

a12 = K0(ηb) − K0(ηa) ,

a21 = âI0(ηb) − λ2

s
(ηbI1(ηb) − ηaI1(ηa)) ,

a22 = âK0(ηa) +
λ2

s
(ηbK1(ηb) − ηaK1(ηa)) , (34)

whereηb = b
√

s, ηa = a
√

s and â = b2 − a2. This system is easily inverted to
find the coefficientsA1 andA2.

The Laplace transform inversion ofφ(r, s) cannot be done analytically due to
the complexity of the result. However, a solution, for small times can be found by
inverting the asymptotic form ofφ(r, s) ass → ∞.

The asymptotic expressions forIν(z), Kν(z) asz → ∞ are ([1] equations:
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9.7.1, 9.7.2):

Iν(z) ∼ ez

√
2πz

{
1 − µ − 1

8z
+

(µ − 1)(µ − 9)

2(8z)2
+ · · ·

}
,

Kν(z) ∼
√

π

2z
e−z

{
1 +

µ − 1

8z
+

(µ − 1)(µ − 9)

2(8z)2
+ · · ·

}
, (35)

whereµ = 4ν2. Equation (30) is then expressed as a sum of three series

∑
ijk

αijk
1

sk/2+1
e(±r+ia−jb)

√
s , (36)

wherei, j, k are integers denoting the individual series andαijk is the appropriate
coefficient. The±r term arises from use of eitherI0(η) or K0(η) in equation
(30). The algebraic manipulation package Maple was used to find this series. For
example, the first few non-zero terms ofφ(r, s) ass → ∞ are:

φ(r, s) ≈ e−(b−r)
√

s

{
α010

s
+

α011

s
√

s

}
+ e−(r−a)

√
s

{
α100

s
+

α101

s
√

s

}
(37)

+e−(2b−a−r)
√

s

{
α120

s
+

α121

s
√

s

}
+ e−(r+b−2a)

√
s

{
α210

s
+

α221

s
√

s

}

where each of termsαijk represent the appropriate coefficient calculated by Maple
(but too long to list here). The solution,φ(r, t), is easily obtained using the inver-
sion:

L−1

{
e−x

√
s

s1+k/2

}
= (4t)k/2 ikerfc

{
x

2
√

t

}
, x > 0. (38)
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A more complete description of the method including Maple code is given in the
appendix.

8 Steady State Solution

The steady state solution, when the system has reached equilibrium, is found by
setting∂φ/∂t = 0 in equation (23). The resulting solution is:

φ = A + B log r , (39)

where
B =

p0

log(a/b)
, (40)

A =
1

1 + λ2

[
B(1 − λ2)

b2 − a2
(b2 log b − a2 log a) − B(1 − λ2)

2
+

2p0b
2

b2 − a2

]
. (41)

This solution is useful in checking the numerical code and for comparing when
the small time asymptotic solution, determined in the previous section, is valid.

9 Results and Discussion

Figure2 illustrates the comparison of numerical with analytical techniques when
a0 = 0.5, λ2 = 0.4, b = 1, k = 1 andp0 = 0.1. The dilatation,φ, is plotted
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FIGURE 2. Dilatation,φ, versus nondimensional time whena0 = 0.5, k = 1.0,
p0 = 0.1, andλ2 = 0.4 for an unconstrained cylinder. The small time asymptotic
solution to the linearised form of equations (23–25) are shown as dashed lines.
The solid line indicated the numerical solution to the nonlinear set of equations
(23–28). Note that the small time solution is in excellent agreement with the
numerical solution almost until equilibrium.
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versus time for 6 different radii,r = 0.5, 0.6, . . . , 1.0. The solid line indicates
the numerical solution and the dashed line the small time asymptotic solution.
The numerical method also illustrates that the steady state solution is reached at
approximatelyt = 0.1. There is excellent agreement between the two methods for
t < 0.05. Surprisingly, the small time asymptotic solution predicts the solution up
to t ≈ 0.05 when the material has almost reached equilibrium. Importantly, the
analytical solution markedly diverges at this time, clearly illustrating the limits
of the asymptotic analysis. Thus, a combination of the steady state solution with
small time asymptotic solution, can give most of the information necessary in an
analysis of the linearised poro-elastic equations.

The effect of the moving boundary conditions are not, however, illustrated by
the linearised analysis. Figure3 illustrates the dilatation (solid lines) found using
the numerical method with a moving boundary condition (27). The parameters
area0 = 0.5, λ2 = 0.4, k = 1 andp0 = 0.05. Also shown is the comparable
solution (dashed lines) using the linearised boundary conditions. Five different
times are indicated for both solutions,t = 0.02, 0.04, . . . , 0.1 wheret = 0.02 is
the lower curve andt = 0.1 is the upper curve in each set of curves. It should be
noted thatφ is shown in its deformed (spatial) position in each plot. For this case
of the unconstrained geometry the effect of using the correct moving boundary
condition is to increase the overall deformation of the cylinder and therefore to
also increase the porosity. Irrespective of which boundary condition is used, the
general trend in the deformation is similar. The radial deformations are larger
at the inner boundary than the outer boundary. Hence, the change in porosity is
larger at the inner boundary than the outer boundary. The time evolution occurs
over a similar time scale for both linearised and nonlinear solution.
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FIGURE 3. Dilatation,φ, versus radial distancer for an unconstrained cylinder
whena0 = 0.5, k = 1.0, p0 = 0.05, andλ2 = 0.4. The solution is shown for
t = 0.02, 0.04, . . . , 0.1. The solid lines indicate the solution when the moving
boundary nonlinearities are included. The dashed line represents the linearised
solution.



§9: Results and Discussion 651

 

0.5 0.6 0.7 0.8 0.9 1.0
-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

FIGURE 4. Dilatation, φ, versus radial distancer for a constrained cylinder
whena0 = 0.5, k = 1.0, p0 = 0.5, andλ2 = 0.4. The solution is shown for
t = 0.008, 0.016, . . . , 0.04. The solid lines indicate the solution when the moving
boundary nonlinearities are included. The dashed line represents the linearised
solution.
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In contrast to the unconstrained geometry, the constrained geometry shown in
Figure4, has a significant region where the medium is compressed,φ < 0. This
figure has the same parameters as Figure3 exceptp0 = 0.5 and the dilatation is
shown at timest = 0.008, 0.16, . . . , 0.04 with the upper curve of each set being
t = 0.008 and the lower curvet = 0.04. For both the linearised solution (dashed
lines) and the nonlinear moving boundary solution (solid lines) there is only a
small region near the inner boundary where the material is expanded. Notably,
this region is smaller when the correct moving boundary is included. Note that
to obtain similar deformations at the inner boundary, comparable to the uncon-
strained deformation in Figure3, a substantially larger applied pressure is needed.
This is highlighted in Figure5.

We illustrate, in Figure5, the difference in the displacement at the inner
boundary,u(a), at steady state, for a variety of pressures withλ2 = 0.4 and
a0 = 0.5. Both the constrained and unconstrained systems are illustrated. The
solid lines indicate the displacement whenk = 1 and incorporating the moving
boundary. The long dash line represents the solution whenk = exp(4φ) also with
the moving boundary effect included. The fully linearised solution, without the
moving boundary being considered, is shown by the short dashed line. Naturally
there is a linear relationship between pressure and displacement in this latter case.
Note that for the unconstrained geometry the solid and long dash lines are indistin-
guishable, indicating that the effect of the nonlinear permeability is negligible in
comparison to the effect of the moving boundary nonlinearity. For the constrained
geometry, however, the effect of the moving boundary nonlinearity is comparable
to that due to the nonlinear permeability. This effect is examined in Figure6.
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FIGURE 5. The displacement of the inner boundary at equilibrium as a function
of the applied pressure whena0 = 0.5 andλ2 = 0.4. Both the constrained and
unconstrained geometry are represented with the short dashed line being the lin-
earised solution, the solid line the moving boundary solution withk = 1, and
the long dash line the solution with moving boundary solution andk = exp(4φ).
Note that for the unconstrained cylinder the latter two solutions (solid and long
dashed lines) are indistinguishable.
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FIGURE 6. Equilibrium dilatation versus radial distancer for a constrained cylin-
der whena0 = 0.5, k = exp(mφ), p0 = 0.5, andλ2 = 0.4. The solid lines
indicate solutions for (a)m = 0, (b) m = 2, (c) m = 4, (d) m = 6 when the mov-
ing boundary is considered. The dashed line indicates the fully linearised solution
whenk = 1 and the boundary conditions are applied at the original position of
the boundaries.
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The dilation, for the constrained geometry with moving boundary, is shown
in Figure6 with four different exponential permeabilities,k = exp(mφ), with
m = 0, 2, 4, 6. As a reference, the linearised solution is also shown as a dashed
line. The effect of the nonlinearity clearly gives solutions that are fundamentally
different to the linear problem. Note the resemblance of Figure6 to Figure4. It
is apparent that when nonlinear permeabilities are included in the analysis, the
solution progresses to a steady state that is qualitatively similar to the small time
solutions of the linearised problem.

Figures2–6 illustrate that inclusion of the boundary position, as an unknown
moving boundary, has a significant effect on the dilatation and displacement. This
effect is comparable in magnitude to the effect of including a nonlinear perme-
ability. Hence any analysis of deformation in poro-elastic materials should be
restricted to either a fully linearised system with very small displacements or a
nonlinear analysis with both the position of the boundaries and the permeability
being considered. In particular, a standard model of artery deformation with an
unconstrained outer boundary, is effected more by the large movements of the
boundaries than by the relatively small change in dilatation. We note, however,
that we have not included any finite deformation effect due to a nonlinear stress-
strain relationship. There have been a few studies of finite deformation of artic-
ular cartilage and intervertebral disks using a nonlinear stress strain relationship.
These have been either simple one-dimensional studies or finite element analyses.
A study of artery deformation, using realistic nonlinear stress-strain relationships
and permeability, is hence desirable for a more complete understanding of the role
of deformation in atherogenesis.
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10 Conclusion

The radial fluid flow through a porous deformable cyclinder can be modelled using
poro-elasticity with the inclusion of many different nonlinearities depending on
the application. Usually a nonlinear dependence of the permeability with strain
is included and less often nonlinear finite deformation stress-strain relations. We
have considered here the nonlinearity due to the time dependent movement of the
boundaries which is not included in most poro-elastic models. We have derived
the poro-elastic equations as a nonlinear diffusion equation for the dilatation with
unusual integral boundary conditions and a moving boundary. These we solve
numerically and show that the effect of the moving boundary is comparable to, and
often larger than, the effect of including a nonlinear permeability. In particular,
for an unconstrained cylinder the effect of including the nonlinear permeability is
negligible compared with the effect of including the moving boundary.

Our numerical solutions show that the inclusion of a moving boundary in-
creases the overall dilatation in an unconstrained cylinder, but decreases the di-
latation when a cylinder constrained by an outer mesh is considered. In both cases
the solutions including the moving boundary are qualitatively the same shape as
when the moving boundary is not included despite the respective decrease and
increase in dilation.

We also demonstrate how the algebraic manipulation package Maple can be
used to find very accurate asymptotic solutions, for small times, for the linearised
equations and that these solutions are remarkably accurate even for large times
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when the steady state solution is almost obtained.

The steady state solutions for nonlinear permeability are easily found and were
shown, rather curiously, to bear a remarkable resemblance to the time dependent
behaviour of the fully nonlinear moving boundary problem. Along with the quali-
tative similarity between solutions including and not including the moving bound-
ary this could indicate some sort of symmetry in the governing differential equa-
tions that could be exploited in future work. A future project could be to find a
simple approximation that can be used to transform the solution assuming a fixed
boundary to the full moving boundary problem.

Apart from the interesting similarities between some of the solutions, our main
conclusion is simple. The effect on the deformation of including the moving
boundary is comparable to that of including the nonlinear permeability. Although
we have studied only the cylindrical geometry, we believe that any future studies
of poro-elastic behaviour that include a nonlinear permeability should also include
the affect of the moving boundary.

A Appendix

We define here a methodology for using the algebraic manipulation package,
Maple, to find the small time asymptotic solution to equations (23–26) with the
boundary conditions applied ata = a0, b = 1 and withk = 1.
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We first define the asymptotic expansions, equation (35), for the Bessel func-
tions,I0, K0:

I0 := z-> exp(z)/sqrt(2*Pi*z)*Ia0(z);
I1 := z-> exp(z)/sqrt(2*Pi*z)*Ia1(z);
K0 := z-> exp(-z)*sqrt(Pi/2/z)*Ka0(z);
K1 := z-> exp(-z)*sqrt(Pi/2/z)*Ka1(z);

The coefficients of the matrix[aij ], equation (34), are then defined:

a11:= I0(nb) - I0(na);
a12:= K0(nb)- K0(na);
a21:= ahat*I0(na) - lam2/s*(nb*I1(nb)-na*I1(na) );
a22:= ahat*K0(na) + lam2/s*(nb*K1(nb)-na*K1(na) );
# determinant of the matrix
deta:= expand(a11*a22 - a12*a21);

The notation ‘ahat’= â, ‘lam2’ = λ2, ‘nb’ = ηb = b
√

s and ‘deta’ is the determi-
nant of the matrix[aij ]. The determinant can be written as:

deta = cabe
ηa−ηb + cbae

ηb−na + c1 (42)

= cbae
ηb−na (1 + ε) , (43)

where
ε = α1e

−(ηb−ηa) + α2e
−2(ηb−ηa) , (44)
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with
α1 =

c1

cba

, α2 =
cab

cba

. (45)

To find the coefficientsc1, cab andcba we calculate:

s2:=coeff(deta,exp(na),1);
s3:=coeff(deta,exp(nb),1);
# coeff with no exp(nb) or exp(na);
c1:=simplify(deta-s2*exp(na)-s3*exp(nb));
# coeff of exp(na-nb) in deta
cab:=simplify(expand(s2*exp(nb)));
cba:=simplify(expand(s3*exp(na)));
# coeff of exp(nb-na) in deta
eps:= alpha1*exp(na-nb) + alpha2*exp(-2*(nb-na) ):

Expanding
1

1 + ε
≈ 1 − ε + ε2 ,

we can write:

A1 = − p0

cba
e−(ηb−ηa)(a22 + a12)(1 − ε + ε2) , (46)

A2 =
p0

cba

e−(ηb−ηa)(a21 + a11)(1 − ε + ε2) . (47)

We now establish a series of powers ofeηa ande−ηb .
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n:=2: # the highest term in the series of
# exponentials exp(ia-jb).

m:=1: # the highest term in the series 1/sˆ(k/2).
# part of A_1
top1:= expand(exp(na-nb)*(a22+a12)*(1-eps+epsˆ2));
# part of A_2
top2:= expand(exp(na-nb)*(a21+a11)*(1-eps+epsˆ2));
# defining new variables for
# evaluating a series expansion.
h1:= subs({exp(na)=xx, exp(nb) = 1/yy},top1);
h2:= subs({exp(na)=xx, exp(nb) = 1/yy},top2);
for i from 0 to n do

for j from 0 to n do
# coeff of exp(i*na-j*nb) in top1

a[i,j]:= coeff( coeff(h1,xx,i),yy,j);
# coeff of exp(i*na-j*nb) in top2

b[i,j]:= coeff( coeff(h2,xx,i),yy,j);
od; od;

For each of these termseiηa−jηb we must find the coefficient as a series in terms of
powers of 1√

s
= ‘oss’. We now define a few terms:

alpha1:= c1/cba: alpha2:= cab/cba:
na:= a/oss; nb:=b/oss; nr:=r/oss;
s:=1/(ossˆ2);
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# The series expansions of the Bessel functions.
Ia0 := z-> (1+1/8/z+9/z/(8*z)ˆ2 + 3*25/2/(8*z)ˆ3);
Ia1 := z-> (1-3/8/z-15/z/(8*z)ˆ2 - 5*21/2/(8*z)ˆ3);
Ka0 := z-> (1-1/8/z+9/z/(8*z)ˆ2 - 3*25/2/(8*z)ˆ3);
Ka1 := z-> (1+3/8/z-15/z/(8*z)ˆ2 + 5*21/2/(8*z)ˆ3);

The solution, equation (30), is separated into two componentsA1I0(ηr)e
−ηr and

A2K0(ηr)e
ηr using the asymptotic expansions (35). This can be inverted since the

solution is expressed as:

φ(r, s) =
∑
ijk

(
er+ia−jb 1

s1+k/2
B1(i, j, k) + e−r+ia−jb 1

s1+k/2
B2(i, j, k)

)

where most of the coefficientsB1, B2 are zero.

F:= (n,x)-> (4*t)ˆ(n/2)*erfc(n,-x/2/sqrt(t));
soln:=0:
for i from 0 to n do

for j from 0 to n do
cc1[i,j]:= series( -a[i,j]/cba/sqrt(2*Pi*nr)

*Ia0(nr),oss);
cc2[i,j]:= series( b[i,j]/cba*sqrt(Pi/2/nr)

*Ka0(nr),oss);
for k from 0 to m do

B1[i,j,k]:= coeff(cc1[i,j],oss,k);
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B2[i,j,k]:= coeff(cc2[i,j],oss,k);
soln:= soln+po*B1[i,j,k]*F(k,r+i*a-j*b)+

po*B2[i,j,k]*F(k,-r+i*a-j*b);
od; od; od;
# defining the solution phi(r,t)
phi:=unapply(soln,r,t);

The steady state solution is also easily evaluated using Maple.

phiss:= r-> A1+B1*ln(r);
bc1:= phiss(a) - (lam2/ahat)*int(r*phiss(r),r=a..1)

- po/ahat;
bc2:= phiss(1)-phiss(a) +po;
ss1:=solve({bc1=0,bc2=0},{A1,B1});
assign(ss1);

The solutions can then be plotted when the remaining parameters are defined:

a:=0.5: b:=1: ahat:=1-aˆ2: lam2:=0.4:
po:=0.1: # the scaled pressure.
plot({phi(r,0.0125),phi(r,0.0375),phi(r,0.0625),

phiss(r)}, r=a..b);
# plotting the solultion at times
# t=0.0125,0.0375,0.0625
# and at steady state.
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