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Sparse inverse and characteristic
polynomial of generalized arrow matrix
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Abstract

A generalized arrow matrix of ordern with m non-zero rows and columns
is presented. If a simple condition holds, the inverse of this matrix is also an
arrow matrix of the same form. We then derive a simple expression for its
characteristic polynomial.
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1 Introduction

When testing numerical routines, a library of matrices with known inverses or
other properties is useful. Most matrices with known inverses have none or at
most two parameters that can be varied to provide a family of tests [3, 8]. More
complex examples can be generated with the Sherman-Morrison formula or by
Schur complements [2], but there appear to be very few simple test matrices of
general size with many parameters. Notable exceptions to this are the Vander-
monde and some tri-diagonal matrices [1, 3]. The arrow matrix [4, 6, 7] is another
example; it is not hard to derive simple expressions for the inverse, determinant
and characteristic polynomial of the arrow matrix which has the last row and col-
umn non-zero, and a non-zero diagonal [9].

We give a generalization of the arrow matrix, with an arbitrary number of
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non-zero columns and rows, whose inverse is also an arrow matrix, and we also
give a simple expression for its characteristic polynomial. Such matrices and
methods are also of interest as pre-conditioners for iterative processes, because
of the sparsity of either the matrix or the inverse, and the freedom in choosing
many of the elements.

2 Inverse of an arrow matrix

Definition 1 LetM be the arrow matrix of ordern

M =

[
D e′

f A

]
(1)

whereD is a diagonal matrix ordern − m, A is square of orderm, e andf are
m× (n−m) with constant rows, i.e.

e =




e1 e1 · · · e1

e2 e2 · · · e2
...

...
...

em em · · · em


 , f =




f1 f1 · · · f1

f2 f2 · · · f2
...

...
...

fm fm · · · fm


 .

In general the inverse ofM will be dense, however providedD is diagonal
and a simple condition is satisfied,M−1 will be sparse, and indeed will be another
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arrow matrix. Let the inverse ofM be

M−1 =

[
C p′

q B

]
.

Then using the usual formulae we obtain (see [5]) C = (D− e′A−1f)−1. Now for
M−1 to be an arrow matrix, we require thatC be diagonal. This implies thatD be
diagonal and thate′A−1f = 0.

Theorem 1 Assuming thatA−1 exists, the inverse of the arrow matrixM is given
by

M−1 =

[
D−1 p′

q B

]
,

where
q = −A−1fD−1 ,

p′ = −D−1e′A−1 ,

B = A−1 + qDp′ ,

provided
e′A−1f = 0 . (2)

Writing the inverse as a matrix of cofactors, this condition can be transformed
into ∣∣∣∣∣ 0 e′

f A

∣∣∣∣∣ = 0 ,
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where|D| denotes a determinant and byf we mean the first column off , similarly
for e:

e =




e1

e2
...

em


 , f =




f1

f2
...

fm


 .

Matricesp andq have the same size and structure ase, that is constant rows.
These matrices generate strikingly simple results, and have many pleasing prop-
erties, for example the orthogonality conditions hold:

e′(BA− I) = 0 , p′(B−1 − A) = 0 .

Example 1 Here|M | = −1, D unit diagonal:

M−1 =




1 0 0 0 0 1 2 −1
0 1 0 0 0 1 2 −1
0 0 1 0 0 1 2 −1
0 0 0 1 0 1 2 −1
0 0 0 0 1 1 2 −1
1 1 1 1 1 1 1 1
2 2 2 2 2 1 0 0

−2 −2 −2 −2 −2 0 2 3




−1
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=




1 0 0 0 0 −8 7 3
0 1 0 0 0 −8 7 3
0 0 1 0 0 −8 7 3
0 0 0 1 0 −8 7 3
0 0 0 0 1 −8 7 3

−2 −2 −2 −2 −2 80 −69 −30
1 1 1 1 1 −37 32 14
0 0 0 0 0 −2 2 1




. (3)

Irrespective of the sizen of matrixM , if (2) is satisfied, its inverse will be an
arrow matrix. The size ofD−1, p andq will depend onn but their elements will
not change, and only the elements ofB will depend onn.

3 Characteristic Polynomial

First, to find the determinant ofM , we need a lemma. Note that in the remainder
of this paper it is not necessary that (2) holds.
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Lemma 1 Define the matricesQn,m andQ as

Qn−m,m =




0 e′

d2
...

...
dn−m

f . . . A




, Q =

[
0 e′

f A

]
,

and putQm+1,m = Q. Then

|Qn,m| =
n−m∏
i=2

di |Q| , n > m .

Proof. Expand|Qm+i,m| along the rowi.

|Qm+i,m| = di

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 e′

d2
...

...
di−1

f . . . A

∣∣∣∣∣∣∣∣∣∣∣∣∣
− e1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 ẽ′

0 d2
...

...

0
... 0

0 di−1 0

f . . . Ã

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+
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+ e2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 ẽ′

0 d2
...

...

0
... 0

0 di−1 0

f . . . Ã

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+ e3 · · · ,

whereÃ indicates one column has been deleted from a matrixA.

Becausef has constant rows, all the determinants are zero except the first,
giving |Qm+i,m| = di |Qm+i−1,m|, and the lemma follows.

Theorem 2 The determinant of the arrow matrix (1) is given by

|M | = |A|
n−m∏
j=1

dj + |Q|
n−m∑
i=1

n−m∏
j=1,j 6=i

dj , n ≥ m .

If D has a constant diagonald, this simplifies to

|M | = |A|dn−m + |Q|(n−m)dn−m−1 ,

with Q as above.
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Proof. Expand determinant along top row:

|M | = d1

∣∣∣∣∣∣∣∣∣∣∣∣∣

d2 e′

d3
...

...
dn−m

f . . . A

∣∣∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 e′

d2
...

...
dn−m

f . . . A

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Using the notationF (n, m, d1 : dn−m) = |M |, then

|M | = F (n, m, d1 : dn−m)

= d1 F (n− 1, m, d2 : dn−m) + Qn,m

= d1 (d2 F (n− 2, m, d3 : dn−m) + Qn−1,m) + Qn,m

=
n−m∏
j=1

djF (m, m, 0) +
n−m−1∏

j=1

djQm+1,m + · · ·+ d1Qn−1,m + Qn,m .

Applying the above lemma and the identityF (m, m, 0) = |A| the result follows.

We can now write out the characteristic polynomial ofM .

Theorem 3 The characteristic polynomial of the matrixM defined as above is
given by

|A− λI|
n−m∏
j=1

(dj − λ) + |Qλ|
n−m∑
i=1

n−m∏
j=1,j 6=i

(dj − λ) ,
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where

Qλ =

[
0 e′

f A− λI

]
.

If D has a constant diagonal d, the characteristic polynomial is

|A− λI| (d− λ)n−m + |Qλ| (n−m) (d− λ)n−m−1 , n ≥ m .

For example, the eigenvalues ofM in Example1 (for anyn) are the roots of

(1− λ)n−4
(
(1− λ) (−1− 2 λ + 4 λ2 − λ3) + (n− 3) (23 λ− 7 λ2)

)
= 0

with n = 8 in this case. Numerically the roots are−5.09395, 0.00879162, 1, 1, 1,
1, 3.2824, 6.80275.
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