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Similarity, attraction and initial conditions
In an example of nonlinear diffusion

S.A. Susloy A.J. Roberts

(Received 25 February 1998)

Abstract

Similarity solutions play an important role in many fields of science. The
recent book of BarenblatP] discusses many examples. Often, outstanding
unresolved issues are whether a similarity solution is dynamically attractive,
and if it is, to what particular solution does the system evolve. By recast-
ing the dynamic problem in a form to which centre manifold theory may
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be applied, based upon a transformation by Way#, [we may resolve
these issues in many cases. For definiteness we illustrate the principles by
discussing the application of centre manifold theory to a particular nonlin-
ear diffusion problem arising in filtration. Theory constructs the similarity
solution, confirms its relevance, and determines the correct solution for any
compact initial condition. The techniques and results we discuss are appli-
cable to a wide range of similarity problems.
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§1: Introduction E3
1 Introduction

Consider the nonlinear diffusion problem with a step in the diffusivity discussed
by Barenblatt 2, §3.2] which in nondimensional form is

o 0:13:1:; 01520
9f‘{(1+e)em, 0, <0 @)

whered(z, t) is the evolving concentration of some spatially distributed substance.
Such a problem, with its nonlinear step in the diffusivity, arises in theory of filtra-
tion of an elastic fluid in an elasto-plastic porous media (see the discussi@n in [
§3.2.1]). It describes the diffusion in one spatial dimensiomhich is assumed
here to be effectively of infinite extent.

We write and analyself as a perturbation of the basic linear diffusion prob-
lem, namely

et = exx + f(97 6) ) (2)
where, sincé, has the same sign és,,
0, 0 =>0
The termf (0, ¢) acts as a nonlinear perturbation to the basic diffusion of

on an infinite domain. Of courseneed not be small but we shall treat it so.
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We apply centre manifold theory to help understand and solve this problem.
But on the infinite spatial domain there is no clear cut centre eigenspac$.for (
However, following Wayne 10, 9] we transform the problem to one of seeking

(&, 7) where

T 1

—, 0=—0(7,§). 5

7 \/gcb(f §) ()
Then the dependence upon the scaled space vatighleses the Gaussian spread
from a point release,

T=logt, &=

a 2
f — —xz/(4t) 6
2\/ﬁe ) ( )
to correspond to a fixed point of the dynamics fomamely
_ O -ea
Ou Qﬁe . (7)

Also, the algebraic decay infrom any compact release to the Gaussgrrans-
forms to an exponentially quick decayto the fixed point 7). Centre manifold
theory is applied in Sectiof to justify the self-similar Gaussiarb) as a valid
approximation to the long-term dynamics of the non-constant diffusivity prob-
lem (1). Then the centre manifold analysis, as extended in Se8fidetermines
that the amplitude of the decaying Gaussian evolves like

a ~ agt =V ®)

in accordance with the result reported by Barenblatt f@gr0. In addition to this
confirmation of earlier results, centre manifold the@lilnmediately guarantees

the attraction of the similarity solution. That is, this approach easily establishes
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the relevance of the similarity solution to the long-term dynamics of this nonlin-
ear diffusion and we expect it to be able to analogously justify the relevance of
similarity solutions for other problems.

The amplitude of the spreading Gaussian not only decays in time, it also is
a function of the initial distributiord(x, 1) of the substance (note that the initial
release is assumed to occut at 1 corresponding to the transformed time-= 0).
Qualitatively, the long term behaviour is similar for all initially compact releases.
However, the specific evolution of the model does depend on the specific initial
conditions. In other words, we need to determige (8). Naively we may expect
that the total amount of substance in the model, givea iny(6), will be the same
as that at the instant of release and so use

o = /_O:O 0(z,1) dz 9)

However, this is only a leading order approximation and needs correction depend-
ing upon other details of the release distributigm, 1). The corrections cannot

be determined by scaling law arguments, but require a knowledge of the dynamics
of approach to the similarity solution. Recently developed thedy]is used

in Sectiond to determine the proper choice of the initial conditions for the model
amplitudea.

For any given release of substance, the assumed origin of space-time may not
be the best location for the origin of the similarity solution. In Sectove show
how the translational degrees of freedom in the coordinate system can be incorpo-
rated into the model for it to represent better the solution of the original diffusion
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problem. Numerical solutions reported in Sect®oonfirm the effectiveness of
the correct choice afy as well as of time and space origins of the model.

Finally we comment that the example discussed in detail here is just one of
a wide class of nonlinear advection-reaction-diffusion problems. Centre mani-
fold theory may be successfully applied to many of these problems and not only
create the similarity solution, but also justify its relevance as an attractive mani-
fold, and determine the correct initial amplitude for the similarity solutions. One
class of nonlinear reaction-diffusion problems was similarly analysed by Gene
Wayne [LO]. Some of the similarity solutions of the nonlinear advection diffusion
problems discussed by Doyle and Engleféfidre also amenable to this centre
manifold approach.

2 Similarity solutions form a centre manifold

Now investigate the centre manifold analysis in more detail. The transforma-
tion (5) changes?) to
¢r =L+ f(¢.€), (10)

where the linear operator

1 1
Lo = dee + §§¢§+ §¢- (11)

Adjoin the trivial equation
e =0. (12)
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Then observe that far = 0 the Gaussian7]) describes a fixed point oi.0)—(12)
for all amplitudesa. Thus the centre manifold we construct will be globakin
and local only ire. Now the linear operatof has a spectrum of

A=-n/2, n=0,1,2,.... (13)
This is straightforwardly shown by looking for eigensolutions in the form
6)\”7——62/4[{”(5) ’

whereH,, are Hermite polynomialsl]. With two zero eigenvalues, one frorh3)
and one trivially from {2), and the rest strictly negative, centre manifold theory
asserts there exists a two dimensional centre manifoldlfgy~(12), M., which

Is exponentially attractive to nearby trajectories.

Thus by Theorem 2 in3, p.4], centre manifold theory immediately proves
the attraction to the asymptotic similarity solution, albeit only for small eneugh
(Contrast the ease of obtaining this result with Barenblatt's stability anasis [
§8.3.2].) In agreement with Barenblatt’'s equation (8.67), from the spectt@mn (
we immediately deduce that the longest-lasting transient in the approach to the
similarity solution will be of relative magnitude approximatety /2 = 1/+/%.

We now approximaté .., parameterized by ande, and the evolution thereon
by

¢ = a(7) [@/10(5) + e (€) + Ea(§) + O (63)} . where 1= et/
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st. a=ag=a [egl + g2+ O (63)} (15)

(v is normalised such thgt™_ v d¢ = 1 and the overdot denotégdr). Substi-
tuting (14) and (5) into (10) and equating all terms @ (¢) we need to solve

Lap1 = 1Pog1 — Deyibo, (16)
where for anys
0 ) 5 ¢ [_57 S]
D, = 2 : 17
{ 36_62 ) 5 € [_Sv S] ( )

Here&, = /2 is such that)oee (—&0) = Yoee(€o) = 0. But L is singular as it
has a zero eigenvalue; so we chogséo put the remaining terms in the range of
L—this is the solvability condition. In order to do this we take the inner product
of equation 16) with the solutionz of the adjoint problem

1
,CTZ = Zge — 552& = O, (18)
where the adjoint is obtained using the obvious inner product

(u,v) = / ww dE (19)
For a reason discussed later in the paper we normalise the adjoint eigenvector
such that(z, o) = 1. It is straightforward to check that the adjoint eigenvector
satisfying this normalisation is= 1.
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Finally, applying the solvability condition we find that
1
V2re

(As usual, we do not need to fingh to determine the leading order evolution.)
The leading order centre manifold modek —ca/+v/27e then has solution

2
a = ape” "V = qot™/?, where a=e|/—, (21)
e

in agreement with Barenblat[ppl175—6]. The constant is determined by the
initial conditions for the full original problem and will be determined in Sectdon

91 = 2toe(§o0) = — (20)

3 The next-order correction matches earlier results

Before proceeding to the next order approximation for the evolution on the centre
manifold we need to find;.

Since the operatof is singular the solution is not unique and we are free to
impose one additional condition on the solution to fix it. It is convenient to require
that

/_O:ozpldg:o. (22)

Physically this implies that the total amount of the diffused substance is given
completely by the leading order approximation of the solution, arfd:as/ d¢ =
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1, the total amount is simply. Under this condition the continuous, up to the sec-
ond derivative, solution tol@) becomes

e i €] il¢]
P = et/ {cs+2\/%<erf(2) )erf( )
1 ¢ iy —y2/4
—2\/% ; erf(5>e /dy
£ -2 i i€ i
+[8ﬁ+2\/_<erf< )—erf(E»]
X (H(E +60) ~ HE- &) @3)

whereH denotes the Heaviside function and

c3 = 727“1/% [1 + i erf (\%) erf (%) — /T <11+Iz — ]Tﬂ (24)
~ —0.1076980691 .

The integrals entering the definition @f are:

& 2 ;
I = / "ot (S erf () de ~ 02262196880 (25)
0 2 2

L /oo . lerf (g) _ 1] erf (%) d¢ ~ —0.1358229603i,  (26)

&o

2

0o 2 13 y 1
I = / e / e erf(%) dy d¢ ~ 0.6931471806i . @27)
0 0



§3: The next-order correction matches earlier results E1l1l

FIGURE 1. Solutionsy(&) (solid line) showing the Gaussian shape of the basic
similarity solution, and); (¢) (dashed line) showing that the Gaussian is flattened
and broadened by the nonlinear diffusion.
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As expected the first order correctian, is an even function of, see Figurd.
Let ec(&) = 0. Then = & + e€1 + O (€) where, as is deduced frorid)
and @3,
Ve (o)

= ——2227 ~ ().5665706981 . 28
& Yoeee (6o) (29)

Collecting terms ofD (62) we obtain

Ly = Y191 + Yog2 — (Degree, — Dey) o — Degthn - (29)

Similarly to the previous section, the application of the solvability condition, upon
making use of22), leads to

92 = 2 (Y1e(§o + €§1) + toe(§o + €§1) — voe (o))
= 2¢1¢(&0) + O (e) (30)
~ 0.06354624322 + O (e) ,

where the even symmetry afy and ), is taken into account. The numerical
results given inZ8) and B0) coincide with the ones reported by Cole and Wagner
in their paper 4, p.167] though our values are given with more significant digits.
Consequently, the next order centre manifold model is

a =~ alegy + €go) (31)

with solution

a=agt™®/?, where o =2¢ ( (32)

1
—€ .
V2me gz>
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4 The correctinitial condition ensures fidelity of the
model

The correct projection of initial conditions onto a centre manifold, first developed
in [7] and recently refined ing], should approximately determine the “functional
of the initial conditions” mentioned by Barenblatt near the top of p.Z)2Hut

not previously found. Here we follow the procedure outlined8htp give the
proper initial conditionsi for the centre manifold modeB®) when the initial
conditions for the original problem are given by= 6y(x) att = 1 corresponding
tor = 0. We expect that|.—o = [ 6o dx, but this is only a first approximation.
The more careful analysis corrects this approximation.

As used in previous sections, the special formid) (mplies that its solution
is to be found in the separable form

O(1,8¢) = a(T)y(&e), where a=a(r)g(e) . (33)
Then “vectors” locally tangent to the centre manifold are found to be
e = (ady/de, 1) and e, = (1,0).

According to B] we need to find “vectorsz; andz, satisfying

2
Dz; - > (Dzj,€)z, =0, j=1,2 (34)
k=1
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and normalisationiz;, ;) = d,, where the dual operatd? is defined as

D= 9 + 7', (35)
or
the adjoint
T t
and

D= De+2(s(E+ 8 36— ) & g rIErd -9, @D

in which § andd’ denote the Dirac delta function and its derivative, respectively.
The normalisation conditions give that

(1) (1) (1) (1)
EIRI R TR B
[ ryde =0, [ %rﬁl’%f (2)3 dé =

[ rPpde =1, [ (rP% 40P de = o

(39)

We look for the solution 0f34) satisfyingDz; = 0, i.e.

_ 9,1 L(rt 4 eDs) r®
R e 5 B
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Hence we immediately deduce th&? = 0. Consequently, the second of normal-
isation conditions39) is transformed tg rf)dg = 1. Then from the projection
of initial conditions

L <7“§-1), 0o — a|7-=077/}> + (Eo — E) <7“§_2), 1> -0 (41)

a|T=0

and we deduce that= ¢,. This result, that the parameteremains unchanged
between the model and the original problem, is expected at the outset, but we have
just demonstrated how it is obtained in the context of the developed theory for the
projection of initial conditions.

Thus the proper initial condition for the amplitudg - is given by

<T‘§1), 90 — a|7-=077/J> =0 s (42)

or, equivalently, since the problem is linear in amplitudend the normalisation
conditions 89) are used, by

a|T=O = <T§1)a 90> : (43)

Thus the problem of finding the proper initial condition is reduced to solving for
Y which satisfies the following equation deduced frad)(

(£t +eDh) r$? = (£ + eDE) v, ) ). (44)

Performing integration by parts in the right-hand side4) (and using the nor-
malisation 89) we obtain

(ET + EDE—) 7’51) — grgl) =0, <7’§1), > =1. (45)
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We solve #5) assuming s = po(&) + epa(§) + O (62) and recollecting that
g~ —€e/\2me+ O ( ) andy = 1o + ey + O (62). At O (eo) we obtain

Lipo=10, (po,tho) =1 (46)
with solutionpy = z = 1. Thus at leading ordet|,-o = [ 00(&)dE.

At O (el) we obtain

Llp1+ (& + &) = 0'(§ — o) + \/2;% =0, (pn,v0)=0.  (47)

The solution, presented in FiguPehas the following algebraic form
pﬂ@=:c¢+@+w Zerf(Z)) (H(E - &) — H(E + &)
o S ert () emv/dy (48)
+i \/21 (1+erf(5) — H(E+ &) — H(E — &) erf(%)
where

= p=(a—Vale+ 1)+ (1+i/F et (7)) erf(F5) (49)
~ 0.0589390531 .

Finally we then have that the proper initial condition for the centre manifold
model @1) is given by

o= [ (1+em() + O (&) bo (&) d (50)

—00
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FIGURE 2. O (e) initial condition projection functiom,(&).
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Note thatp; ~ [2/(me)]¥?log(|¢]) as|¢| — oo and, consequently, the integraB]
converges only for a sufficiently compact initial distributi@n This emphasises
that the projection of the initial conditions is local in its nature and it is applicable
only if the initial conditions for the original problem are, in some sense, close to
the centre manifold.

5 Choose an optimal origin in time and space

It follows from the transformation of space and time variabigt{at the diffusion

from a localised initial release of arbitrary form occurring in the original problem
att = 1 is modelled by the evolution from the initial state of a point release, a
delta function, att = ¢ = 0. On the other hand the original partial differential
equation {) is invariant with respect to translations in time and space. Thus there
is freedom to choose the time and space origins for the model to suit best the
actual distribution of the initiad. To account for these inherit degrees of freedom

in the original problem we generalise the coordinate transformahiaio (

T — o ¢(Tv 5)
=log (t+1¢ = 0= 51
T 0g ( + 0) 3 f m ) m ) ( )
wheret, > 0. Now the localised releagig(z) occurring in the original problem at
timet = 0 (not att = 1 as assumed in the previous sections) is modelled by some
Gaussian centred at, rather than by the delta function at= 0. The width of
the model Gaussian at the moment of the actual release is determined by,
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which also determines the location of the virtual origin in time for the model. Gen-
eralisation $1) does not affect the analysis of the previous sections. In particular,
the model dynamics3() is unchanged because the general long-term dynamics
are independent of the space-time origin. However, the generalisation provides a
two-parameter family of model solutions to the original problenréther than

just the unique model described earlier. Thus here the general projection of initial
condition 60) becomes

ap = tg’/z/

—00

NS

One is free to choose parametegsandty entering 62) in such a way that the
model possess certain additional properties. For instance, we clycaseh that

the contribution of the-dependent terms irbR) is zero—this choice should en-
sure that the model most closely matches the solutiéfor the original problem

in the short-term as well as the long-term evolution. In essence this is equivalent
to considering all the centre manifolds (imnde) parameterized by andzq, and
choosing that centre manifold whose isochrons are linearly “vertical” and hence
make the definition ofi match the projection. It is always possible to make this
choice since physical initial distributiortlg are non-negative functions while the
mean ofp; is zero. Thus require

[:/_o:opl (x\;g(]) Oo(x)dz =0, (53)

which we view as implicitly defining, as a function oft,.

1+ eps (:v - xo> +0O (62)] Oo(x) dx . (52)
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The value ofxg is then fixed to minimisé,. We feel this is desirable since it
minimises the spread of the model’'s Gaussian at the initial instant of release and so
maximises the information content of the model. (It is also the only distinguished
xo.) Differentiating 63) with respect taco we obtain

dl 1 o fx—x T — xg dtg

— = —— — | 0 1 —| dx = 54

dl‘o \/EO /—oopl < \/% ) 0(‘1") [ + 2t0 d$0‘| L 07 ( )
where prime denotes differentiation with respect to the argument. At the point of
extremuntty/dxo = 0 and the second term in the brackets5d)(vanishes. Thus

we solve
o0 , aj J— :L'O .
/_Oo | <7\/% ) Oo(x)dx =0. (55)

in conjunction with b3) to definexy andty. As an aside it follows from the above
discussion that such chosepandt, guarantee that = 0 is a minimum contri-
bution to thee-correction of initial conditions for the model. ¢ is symmetric,
say aboutr = ¢, then, owing to the even symmetry pf, the choice ofty = ¢
guarantees thabp) is satisfied. Thus for symmetriy the best choice for the
centre of the Gaussian spread of the model is the point of symmetry.

Finally, the initial amplitude is then given by
ap = 37 / Oo() dx (56)

and the model solution written in the original variables becomes

g [ (V) o (V) o) e
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whereto andzq satisfy 63) and £5).

6 Numerical results demonstrate the accuracy of the
model

We illustrate the correctness of the derived initial conditions by comparing the
model predictions with the direct numerical integration of equatijn et the
initial distribution of substance for the original problem:at 0 be in the form of

the Gaussian
1
6o =1/ ?0 exp(—1022) . (58)

Numerical integration ofX) with initial distribution G8) was performed us-
ing IMSL routine bMOLCH [6] with the accuracy ofil0~8. Since the long term
behaviour of the numerical solution was found to depend on the size of the com-
putational domain, the preliminary test of the numerical solution was performed
for e = 0 for which the analytic solution comes fror)( It was found that the
non-reflecting boundary conditiods(L)/0(L) = x/(2t) imposed atL. = 22.5
eliminated such an influence for the time interval considered.

The resulting time evolution of the direct numerical solution fo£ 0.1 at
x = 0 is shown by a solid line in Figur8. Because of the symmetry of initial
distribution 68) with respect to the line = 0, (55) gives the value:; = 0 for
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4 ro 1
-2.0
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log(6(0,t))
log(6(0,t))
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log(t) log(t)

FIGURE 3. Numerical (solid line) solutions of equatioh) (evaluated atr = 0
for e = 0.1 compared with the modeb{) that uses the correct initial conditions
(stars) and the previous modélj (diamonds).
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model 67). Numerical evaluation shows that conditiosB) is satisfied ford,
given by 68) for to ~ 0.0250. As seen from Figur&(a) the model dynamics
shown by star symbols virtually coincides with the one obtained from numerical
integration for all time. In Figur&(b) we compare the numerical and the proper
model 67) solutions with the earlier proposed mod2| 4]

o= St () v () o)

which uses naive initial conditiorBf—shown by diamond symbols—for larger
times. While the present model and numerical solution are virtually indistinguish-
able in their evolution, the modeb9) based solely on scaling arguments is able

to predict just a slope. The actual values of the distribution maximum it provides
lies apart from the numerical curve for all time. Thus the correct initial conditions
for the model are essential to avoid a permanent finite phase difference between
the model and the actual full solutions.

In Figure4 we show the differenc#,, — 6,,,| between the numericad,() and
model @,,) solutions as a function of space and time (the error is symmetric about
x = 0). See that our modeb{) agrees with a numerical solution much better
than the previouss9): the the maximum discrepancy between our model and the
numerical solution does not exceed the value of 0.4 while for the previous model
it reaches the values up to 1.6. Our model deviates most from the numerical
solution in the vicinity of the inflection point (the location of the discontinuity of
the diffusion coefficient) shown by the red line in Figdrevhile for the previous
model the largest error is in the over-prediction of the solution amplitude during
the initial stages of evolution (lower left corner of the right plot in Figd)e
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log(t)
log(t)

FIGURE 4. The difference between the numerical solution with the initial condi-

tion (58) and (left) our model%7) and (right) the previous modeé39). The colour
scale blue-red corresponds to the range of values from 0 to 0.8 and larger. The

red line shows the location of the inflection points for the solutions.
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The provision of correct initial conditions for the model are essential for accurate
forecasts.

7 Conclusions

We have demonstrated that the centre manifold theory provides a straightforward
and rigorous way of deriving not only the functional form of similarity solutions

of nonlinear diffusion, but also the appropriate initial conditions for the model in
terms of the initial distributions of the substance. This cannot be done using other
modelling approaches such as, for example, scaling laws or the method of multi-
ple scales. The correct provision of initial conditions also enables us to determine
an optimal location for the virtual space-time origin for the model. The present
technigue may be successfully used for modelling a wide class of nonlinear filtra-
tion/diffusion problems.
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