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The Euler-Maclaurin formula revisited

David Elliott∗

(Received 17 February, 1998)

Abstract

The Euler-Maclaurin summation formula for the approximate evaluation
of I =

∫ 1
0 f (x) dx comprises a sum of the form

(
1/m

)∑m−1
j=0 f

(
(j + tν) /m

)
,

where 0< tν ≤ 1, a second sum whose terms involve the difference be-
tween the derivatives off at the end-points 0 and 1 and a truncation error
term expressed as an integral. By introducing an appropriate change of vari-
able of integration using a sigmoidal transformation of orderr > 1, (other
authors call it a periodizing transformation) it is possible to expressI as
a sum ofm terms involving the new integrand with the second sum being
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zero. We show that for all functions in a certain weighted Sobolev space, the
truncation error is of orderO

(
1/mn1

)
, for some integern1 which depends

on r. In principle we may choosen1 to be arbitrarily large thereby giving a
good rate of convergence to zero of the truncation error.

This analysis is then extended to Cauchy principal value and certain
Hadamard finite-part integrals over (0, 1). In each case, the truncation er-
ror isO

(
1/mn1

)
. This result should prove particularly useful in the context

of the approximate solution of integral equations although such discussion
is beyond the scope of this paper.
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1 Introduction

The purpose of this paper is to review the Euler-Maclaurin formula and its appli-
cation to the evaluation of ordinary, Cauchy principal value and certain Hadamard
finite-part integrals over a finite interval which we shall take throughout to be
(0, 1). Firstly, we shall, in§2, consider the Euler-Maclaurin formula for the so-
called offset trapezoidal rule, particular cases of which give the well known trape-
zoidal and mid-point rules. Although Theorem2.1 is well known we shall give
the proof here and to that end we have gathered together at the end of this section
some results on Bernoulli polynomials and periodic Bernoulli functions. In§3 we
introduce the sigmoidal transformations which are so necessary for the approx-
imate evaluation of these integrals and introduce a normed space of functions,
denoted byKN

α , in which we are able to do all our error analysis. Finally in§3
we consider the evaluation of ordinary integrals.§4 is concerned with Cauchy
principal value integrals and in§5 we consider certain Hadamard finite-part in-
tegrals. In each case we show that the error, for anm point rule, converges to
zero likeO (1/mn1) for some integern1 depending on the order of the sigmoidal
transformation. This turns out to be a very satisfactory result.

The notation that we have adopted in this paper, owes a lot to that given by
Lyness [8]; indeed, much of the work has been inspired by that paper. A full
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discussion on sigmoidal transformation is to be found in Elliott [3] andasymptotic
estimates of the errors have been discussed in Elliott and Venturino [5].

Throughout this paper,N will denote the set of all natural numbers i.e.N =
{1, 2, 3, . . .}, N0 will denote{0} ∪ N andZ will denote the set of all integers,
positive, negative and zero.

The Bernoulli numbers and Bernoulli polynomials play an important role in
this analysis and because there are minor differences in the way these are defined
by various authors we shall, for the sake of completeness, gather together some
results here. For the record, we use the notation as given in Abramowitz and
Stegun [1], Gradshteyn and Ryzhik [6], Olver [9] and Steffensen [10].

The Bernoulli polynomialsBj (x) of degreej, j ∈ N0, are defined via a gen-
erating function as

text

et − 1
=

∞∑
j=0

Bj (x)
tj

j!
, (1)

for |t| < 2π. In particular, we findB0 (x) = 1, B1 (x) = x − 1/2, B2 (x) =
x2 − x + 1/6, B3 (x) = x3 − 3x2/2 + x/2 etc. The Bernoulli numbersBj are
defined simply byBj = Bj (0) so thatB0 = 1, B1 = −1/2, B2 = 1/6, B3 = 0
etc. We find for allj ∈ N thatB2j+1 = 0. Finally, we introduce the periodic
Bernoulli functionsB̄j (x). These are defined by

B̄j (x) := Bj (x) , for 0 ≤ x < 1 ,

B̄j (x+ 1) := B̄j (x) , for all x ∈ R ; (2)
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see Steffensen [10, §144]. In other words,B̄j (x) takes the values ofBj (x) on
[0, 1) and is a periodic function with period1. Except whenj = 1, B̄j (x) is
continuous for allx ∈ R. The functionB̄1 (x) is a ‘saw tooth’ function with a
finite jump discontinuity of magnitude1 at each integer. We note that

B̄1 (x) = B1 (x) , for 0 ≤ x < 1 so that (3)

B̄1 (1) = B1 (0) = B1 = −1/2 .

The Fourier expansions of the periodic Bernoulli functions are well known, see,
for example [1, §23.1.16]. We have

B̄2j−1 (x)

(2j − 1)!
= (−1)j

∞∑
k=1

2 sin (2kπx)

(2πk)2j−1 (4)

for all x ∈ R whenj ≥ 2 and forx ∈ R\Z whenj = 1. Also

B̄2j (x)

(2j)!
= (−1)j−1

∞∑
k=1

2 cos (2kπx)

(2πk)2j (5)

for all x ∈ R and for allj ∈ N. Finally, we note that

d

dx
B̄j+1 (x) = (j + 1) B̄j (x) (6)

for all x ∈ R whenj ≥ 2 and for allx ∈ R\Z whenj = 1.
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2 The off-set trapezoidal rule

Our aim initially is to find approximations to the integralIf where

If :=
∫ 1

0
f (x) dx . (7)

Following Lyness [8], we define

tν := (ν + 1) /2 for − 1 < ν ≤ 1 . (8)

The quadrature ruleQ[ν]
m f is defined by

Q[ν]
m f :=




1

m

m−1∑
j=0

f ((j + tν) /m) , −1 < ν < 1 ,

1

m

m∑′′

j=0

f (j/m) , ν = 1 .

(9)

Here
∑′′ denotes a sum whose first and last terms are halved. We are interested

in determining the errorIf − Q[ν]
m f under various conditions onf . Lyness [8]

quotes the following theorem, describing it as ‘classical’.

Theorem 2.1 Supposef is such that for somen ∈ N, f (n−1) ∈ C [0, 1] and
f (n) ∈ L1 (0, 1). Then, for everym ∈ N,

If = Q[ν]
m f −

n∑
j=1

B̄j (tν)

j!
· f

(j−1) (1) − f (j−1) (0)

mj

+
1

mn

∫ 1

0

f (n) (x) B̄n (tν −mx)

n!
dx . (10)
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Proof. For0 < tν ≤ 1, we define, on the interval[0, 1] the functionP1 by

P1 (x) :=

{
x− tν + 1/2 , 0 ≤ x < tν ,
x− tν − 1/2 , tν ≤ x ≤ 1 .

(11)

This function has a finite jump discontinuity of magnitude 1 at the pointtν .
If Z denotes the set of all integers then we can extend the definition ofP1 to
R\ (tν + Z) by writing

P̄1 (x) = P1 (x) , x ∈ [0, 1]\tν , (12)

P̄1 (x+ 1) = P̄1 (x) , x ∈ R\ (tν + Z) .

ThusP̄1 is defined almost everywhere onR as a piecewise linear function of period
1 with a finite jump discontinuity of magnitude1 at the pointstν + Z. From (11)
we find that the Fourier series expansion ofP1 is given by

P1 (x) =
∞∑
k=1

2 sin (2πk (tν − x))

2πk
, for all x ∈ [0, 1] \tν . (13)

We can use the Fourier series expansion to defineP̄1 onR\ (tν + Z) and, from (4),
we see that

P̄1 (x) =
∞∑
k=1

2 sin (2πk (tν − x))

2πk
= −B̄1 (tν − x) , (14)

for all x ∈ R\ (tν + Z). As we shall see below, we shall require functionsP̄s
for all s ∈ N such that whens ≥ 2, P̄ ′

s+1 (x) = P̄s (x) for all x ∈ R. When
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s = 1, we require this to be satisfied for allx ∈ R\ (tν + Z). From the well
known properties of the periodic Bernoulli functions we see that we can do this
by choosing

P̄s (x) = (−1)s B̄s (tν − x) /s! , s ∈ N . (15)

With these preliminaries established let us consider the proof of (10). On
choosing anym ∈ N, from the definition ofP̄1 we have

P̄1 (mx) =

{
mx− (k + tν) + 1/2 , for k/m ≤ x < (k + tν) /m ,
mx− (k + tν) − 1/2 , for (k + tν) /m ≤ x ≤ (k + 1) /m ,

(16)
for all k ∈ Z. On integrating the functionf ′ (x) P̄1 (mx) by parts over the interval
[k/m, (k + 1) /m], we find using (15) and (16) that

∫ (k+1)/m

k/m
f (x) dx =

1

m
f

(
k + tν
m

)
− B̄1 (tv)

m

[
f

(
k + 1

m

)
− f

(
k

m

)]

− 1

m

∫ (k+1)/m

k/m
P̄1 (mx) f ′ (x) dx . (17)

On summing fromk = 0 to (m− 1) we find that

∫ 1

0
f (x) dx =

1

m

m−1∑
k=0

f

(
k + tν
m

)
− B̄1 (tν)

m
[f (1) − f (0)]

− 1

m

∫ 1

0
P̄1 (mx) f ′ (x) dx . (18)
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If n ≥ 2, we can again integrate by parts the integral on the right hand side of
(18). Recalling thatP̄ ′

2 (x) = P̄1 (x) for all x ∈ R\ (tν + Z) we find that

∫ 1

0
P̄1 (mx) f ′ (x) dx =

B̄2 (tν)

2!
· f

′ (1) − f ′ (0)

m
− 1

m

∫ 1

0
P̄2 (mx) f ′′ (x) dx ,

(19)
sinceP̄2 (m) = P̄2 (0) by periodicity andP̄2 (0) = B2 (tν) /2! by (15). Repeating
this process an appropriate number of times and using (15), we recover (10) and
the theorem is proved.♠

Corollary 2.2 Under the conditions of Theorem2.1,

If = Q[ν]
m f −

n−1∑
j=1

B̄j (tν)

j!
· f

(j−1) (1) − f (j−1) (0)

mj

− 1

mn

∫ 1

0
f (n) (x)

(
B̄n (tν) − B̄n (tν −mx)

n!

)
dx . (20)

Proof. This follows immediately from (10) since

1

mn

∫ 1

0

f (n) (x) B̄n (tν −mx)

n!
dx =

1

mn

∫ 1

0

B̄n (tν −mx) − B̄n (tν)

n!
f (n) (x) dx

+
B̄n (tν)

mnn!

(
f (n−1) (1) − f (n−1) (0)

)
. (21)

Substituting (21) into (10) gives (20). ♠
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Note that equation (20) is often quoted in the context of numerical analysis
since one can readily apply the mean value theorem to the integral on the right
hand side.

There are two choices oftν which are worthy of special note. Whentν = 1,
althoughB̄1 (1) = −1/2, we haveB̄2s+1 (1) = B̄2s+1 (0) = 0 for all s ∈ N. Again,
whentν = 1/2, we have thatB2s−1 (1/2) = 0 for all s ∈ N. These observations
give rise to the following corollary.

Corollary 2.3 Suppose thatf (2n−1) ∈ C [0, 1] and f (2n) ∈ L1 (0, 1) for some
n ∈ N. Then, for everym ∈ N,

(a) whenν = 1, so thattν = 1,

If =
1

m

m∑′′

j=0

f (j/m) −
n∑
j=1

B2j

(2j)!
· f

(2j−1) (1) − f (2j−1) (0)

m2j

+
1

m2n

∫ 1

0

f (2n) (x) B̄2n (mx)

(2n)!
dx ; (22)

(b) whenν = 0, so thattν = 1/2,

If =
1

m

m−1∑
j=0

f ((j + 1/2) /m) −
n∑
j=1

B2j (1/2)

(2j)!
· f

(2j−1) (1) − f (2j−1) (0)

m2j

+
1

m2n

∫ 1

0

f (2n) (x) B̄2n (1/2 −mx)

(2n)!
dx . (23)
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Proof. This follows immediately by substitution into equation (10). ♠
Note that, equally well, we could have puttν = 1/2 and1 into equation (20).

The first summation on the right hand side of equation (22) is known as the ‘trape-
zoidal rule’; that for equation (23) is known as the ‘mid-point’ rule.

All the above results are well known. We note from equation (10), for exam-
ple, that iff (j−1) (1) − f (j−1) (0) = 0 for j = 1 (1)n then the errorIf − Q[ν]

m f
is of orderO (1/mn). The larger we can choosen, the faster will be the rate of
convergence to zero of the error. Thus if we have some degree of periodicity of
the functionf we could have a good rate of convergence to zero of the error. We
shall exploit this idea in the subsequent sections. To do this we shall introduce,
in the next section, a suitable space of functions and also the so-called ‘sigmoidal
transformations’ which can impose some degree of periodicity on to our original
(non-periodic) function.

3 A space of functions and sigmoidal transforma-
tions

To consider the error term in Theorem2.1, it is convenient to introduce a space
of functions similar to that previously considered by Kress [7] and Elliott and
Prössdorf [4]. Essentially we consider functions which are ‘smooth enough’ on
the open interval(0, 1) and have singularities only at the end points0 and1. In
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Definition 3.1 we shall let
◦
C [0, 1] denote the space of functions which are con-

tinuous on the compact interval[0, 1] and vanish at both end-points.

Definition 3.1 Supposeα is a positive non-integer such thatn < α < n + 1 for
somen ∈ N0. AssumeN is such thatN 3 N � α. A functionf is said to be in
the spaceKN

α if

(i) f ∈ C (N ) (0, 1);

(ii) f (j) ∈ ◦
C [0, 1], for j = 0 (1) (n− 1);

(iii)
∫ 1

0 (t (1 − t))j−α
∣∣∣f (j) (t)

∣∣∣ dt <∞, for j = 0 (1)N .

In addition, a norm onKN
α will be denoted and defined by

‖f‖α,N := max
j=0(1)N

∫ 1

0
(t (1 − t))j−α

∣∣∣f (j) (t)
∣∣∣ dt . (24)

Comments on the definition. It simplifies, a little, some of the subsequent re-
sults and does not affect the generality of the analysis, if we assume thatα is not
an integer. The choice ofN ‘much larger’ thanα is included so thatf will be ‘suf-
ficiently smooth’ on the open interval(0, 1) for all the subsequent analysis. The
context will always make it clear how largeN needs to be. Suppose we define a
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function f̂ say, onR such that it takes the value off on the open interval(0, 1)
and satisfieŝf (1 + x) = f̂ (x). As a consequence of (ii), we see that iff ∈ KN

α

then f̂ ∈ C (n−1) (R) so thatf̂ and all its derivatives up to order(n− 1) will be
continuous and periodic (of period1) on R. This will be important in the con-
text of Theorem2.1. Again, since the Euler-Maclaurin formula (equation (10))
involvesf (j−1) (1) − f (j−1) (0) for j = 1 (1)n, we treat the two end-points in the
same way. That is, there appears to be no point in replacing (iii) in Definition3.1
by, for example,

∫ 1

0
tj−α (1 − t)j−β

∣∣∣f (j) (t)
∣∣∣ dt <∞ , for j = 0 (1)N ,

for someβ different fromα.

As an immediate consequence of Definition3.1, we have the following theo-
rem.

Theorem 3.2 Supposef ∈ KN
α whereα ∈ (n, n + 1) andn ∈ N0. Then

(i) f (j) is integrable on(0, 1) for j = 0 (1)n, and
∫ 1

0

∣∣∣f (j) (t)
∣∣∣ dt ≤ c ‖f‖α,N for

some positive constantc;

(ii) there exists a positive constantc such that

∣∣∣f (j) (t)
∣∣∣ ≤ c (t (1 − t))α−(j+1) for j = 0 (1) (N − 1) . (25)
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Note: Throughout the paperc will be used to denote a generic constant whose
value may change from time to time. The context should make it clear what
parametersc does not depend upon. Thus in (25) c will be independent ofj andt
but will depend onα.

Proof.

(i) We have, forj = 0 (1)n,∫ 1

0

∣∣∣f (j) (t)
∣∣∣ dt =

∫ 1

0
(t (1 − t))j−α

∣∣∣f (j) (t)
∣∣∣ · (t (1 − t))α−j dt

≤ c
∫ 1

0
(t (1 − t))j−α

∣∣∣f (j) (t)
∣∣∣ dt , sinceα− j > 0 ,

≤ c ‖f‖α,N , by (24),

< ∞ .

(ii) Suppose first thatj = 0 (1) (n− 1). From (ii) of Definition3.1we have

f (j) (t) =
∫ t

0
f (j+1) (s) ds , sincef (j) (0) = 0 ,

=
∫ t

0
(s (1 − s))j+1−α f (j+1) (s) · (s (1 − s))α−(j+1) ds .

Now on [0, 1/2], sincej = 0 (1) (n− 1) andn < α < n + 1, the function
(s (1 − s))α−(j+1) is monotonic increasing so that∣∣∣f (j) (t)

∣∣∣ ≤ (t (1 − t))α−(j+1)
∫ t

0
(s (1 − s))j+1−α ∣∣∣f (j+1) (s)

∣∣∣ ds
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≤ (t (1 − t))α−(j+1) ‖f‖α,N , on using (24).

Again, on[1/2, 1] we have, sincef (j) (1) = 0,

∣∣∣f (j) (t)
∣∣∣ ≤ ∫ 1

t
(s (1 − s))j+1−α ∣∣∣f (j+1) (s)

∣∣∣ · (s (1 − s))α−(j+1) ds .

Since(s (1 − s))α−(j+1) is monotonic decreasing on[1/2, 1] we can again argue as
above and establish (25) on [0, 1] for j = 0 (1) (n− 1).

Suppose now thatj = n (1) (N − 1). From

f (j) (t) = f (j) (1/2) +
∫ t

1/2
f (j+1) (s) ds

we have fort ∈ [0, 1/2] that

∣∣∣f (j) (t)
∣∣∣ ≤ ∣∣∣f (j) (1/2)

∣∣∣+ ∫ 1/2

t

∣∣∣f (j+1) (s)
∣∣∣ ds . (26)

Since(t (1 − t))j+1−α is monotonic increasing on[0, 1/2] and bounded above by
2−2(j+1−α) on that interval we have

(t (1 − t))j+1−α ∣∣∣f (j) (t)
∣∣∣ ≤ 2−2(j+1−α)

∣∣∣f (j) (1/2)
∣∣∣

+
∫ 1/2

t
(s (1 − s))j+1−α ∣∣∣f (j+1) (s)

∣∣∣ ds
≤ 2−2(j+1−α)

∣∣∣f (j) (1/2)
∣∣∣+ ‖f‖α,N .
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Consequently on[0, 1/2] we can find a positive constantc, independent oft, such
that, ∣∣∣f (j) (t)

∣∣∣ ≤ c (t (1 − t))α−(j+1) .

One may argue in a similar fashion on[1/2, 1] but the details will not be given.
This establishes the theorem.♠

It is appropriate here to consider how the Euler-Maclaurin formula applies to
a function inKN

α .

Theorem 3.3 Supposef ∈ KN
α wheren < α < n+ 1 for somen ∈ N. Then, for

all m ∈ N,
If = Q[ν]

m f + E [ν]
m f (27)

where ∣∣∣E [ν]
m f

∣∣∣ ≤ c

mn
‖f‖α,N (28)

for some positive constantc independent ofm.

Proof. From the assumption thatf ∈ KN
α we have immediately thatf (j) (0) =

f (j) (1) = 0 for j = 0 (1) (n− 1). Certainlyf (n−1) ∈ C [0, 1] and by Theo-
rem 3.2(i) we havef (n) ∈ L1 (0, 1). Since the conditions of Theorem2.1 are
satisfied we have

If = Q[ν]
m f +

1

mn

∫ 1

0

f (n) (x) B̄n (tν −mx)

n!
dx .
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But from (4) and (5) we have∣∣∣B̄n (tν −mx) /n!
∣∣∣ ≤ 2ζ (n) / (2π)n ,

whereζ denotes the Riemann zeta function, so that

∣∣∣E [ν]
m f

∣∣∣ ≤ c

mn

∫ 1

0

∣∣∣f (n) (t)
∣∣∣ dt ≤ c

mn
‖f‖α,N ,

from Theorem3.2(i), and the theorem is established.♠
The question now arises as to how, given a functionf , we may transform it

so that a reasonable number of derivatives of the transformed function vanish at
the end-points. We introduce a sigmoidal transformationγr, say, of orderr > 1,
which is a one-to-one mapping of the compact interval[0, 1] onto itself. Following
Elliott [3], we introduce the following Definition.

Definition 3.4 A real-valued functionγr is said to be asigmoidal transformation
of orderr ≥ 1 if the following conditions are satisfied:

(i) γr ∈ C1 [0, 1] ∩ C∞ (0, 1) with γr (0) = 0;

(ii) γr (x) + γr (1 − x) = 1, 0 ≤ x ≤ 1;

(iii) γr is strictly increasing on[0, 1];

(iv) γ′r is strictly increasing on[0, 1/2] with γ′r (0) = 0;
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(v) γ(j)
r (x) = O (xr−j) nearx = 0, j ∈ N0.

Let us recall that our aim is to find approximate values of the integralIf =∫ 1
0 f (x) dx. If we make the change of variablex = γr (t) then we have immedi-

ately that

If =
∫ 1

0
gr (t) dt say, wheregr (t) = f (γr (t)) γ′r (t) . (29)

It is to the functiongr that we shall apply Theorem2.1and in particular we shall
suppose that

If = Q[ν,r]
m f + E [ν,r]

m f (30)

say, where

Q[ν,r]
m f :=




1

m

m−1∑
j=0

γ′r ((j + tν) /m) f (γr ((j + tν) /m)) , −1 < ν < 1 ,

1

m

m∑′′

j=0

γ′r (j/m) f (γr (j/m)) , ν = 1 .

(31)
We note that for−1 < ν ≤ 1

Q[ν,r]
m f = Q[ν]

m gr , and E [ν,r]
m f := E [ν]

m gr . (32)

Our aim is to chooser such thatgr ∈ KN
β say whereβ is large enough so that we

may apply Theorem3.3 to gr and obtain a good rate of convergence ofE [ν,r]
m f to

zero asm→ ∞. Let us now be more precise.
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Theorem 3.5 Supposef ∈ KN
α , for some non-integerα > 0 and letγr be a

sigmoidal transformation of orderr ≥ 1. Let

gr (t) := f (γr (t)) γ′r (t) , (33)

and suppose
β := αr with β /∈ N . (34)

If we assumeβ < N then

(i) gr ∈ KN
β ,

(ii) there exists a positive constantc such that

‖gr‖β,N ≤ c ‖f‖α,N . (35)

Proof. Let us suppose thatn1 < β < n1 + 1 for somen1 ∈ N. Firstly we shall
show thatg(j)

r (0) = g(j)
r (1) = 0 for j = 0 (1) (n1 − 1). By Leibnitz’ theorem

applied to the definition ofgr as given in (33) we have

g(j)
r (t) =

j∑
s=0

(
j
s

)
(γ′r (t))

(j−s)
(f (γr (t)))(s) .

Let us rewrite this as

g(j)
r (t) =

j∑
s=0

us,j (t) f
(s) (γr (t)) , (36)
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say. On differentiating (36) again with respect tot we find that the functionsus,j
must satisfy


u0,j+1 (t) = u′0,j (t) ,
us,j+1 (t) = us−1,j (t) γ

′
r (t) + u′s,j (t) , s = 1 (1) j ,

uj+1,j+1 (t) = γ′r (t)uj,j (t) .
(37)

In particular, we see that

u0,j (t) = γ(j+1) (t) , uj,j (t) = (γ′r (t))
j+1

. (38)

Let us consider what happens in a neighbourhood oft = 0. We haveu0,j (t) =

O
(
tr−j−1

)
anduj,j (t) = O

(
t(r−1)(j+1)

)
. If we conjecture that, neart = 0,

us,j (t) = O
(
tr−1+rs−j) for s = 0(1)j (39)

we see that this satisfies the special casess = 0 ands = j as well as the recurrence
relations (37). Consequently we shall take the behaviour ofus,j neart = 0 to be
given by (39). If we recall (25), we see that neart = 0 we have

f (j) (t) = O
(
tα−j−1

)
for j = 0 (1) (N − 1) . (40)

Sinceγr (t) = O (tr) neart = 0 we have, from (36), (39) and (40), that

g(j)
r (t) = O

(
tαr−j−1

)
for j = 0 (1) (N − 1) . (41)

In particular we haveg(j)
r (0) = 0 for all j such thatj < αr − 1. Recalling

thatn1 < αr < n1 + 1, we have thatg(j)
r (0) = 0 for j = 0 (1) (n1 − 1). We
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may argue similarly at the end pointt = 1 so that we haveg(j) ∈ ◦
C [0, 1] for

j = 0 (1) (n1 − 1). This shows that (ii) of Definition3.1is satisfied; we must now
show that ∫ 1

0
(t (1 − t))j−β

∣∣∣g(j)
r (t)

∣∣∣ dt <∞ , for j = 0 (1)N ,

and in so doing we shall prove both (i) and (ii).

From (36),

∫ 1

0
(t (1 − t))j−β

∣∣∣g(j)
r (t)

∣∣∣ dt ≤ j∑
s=0

∫ 1

0
(t (1 − t))j−β |us,j (t)|

∣∣∣f (s) (γr (t))
∣∣∣ dt .

(42)
Firstly, from (39), and a similar result valid neart = 1, we can write

us,j (t) = (t (1 − t))r−1+rs−j Us,j (t) (43)

say, whereUs,j is continuous on[0, 1] and does not vanish at the end-points. In a
similar vein we write

γ′r (t) = (t (1 − t))r−1 Γr,1 (t) (44)

and
γr (t) (1 − γr (t)) = (t (1 − t))r Γr,0 (t) (45)

say, where the functionsΓr,0 andΓr,1 are continuous and strictly positive on[0, 1].
From (42)–(45) we find∫ 1

0
(t (1 − t))j−β

∣∣∣g(j)
r (t)

∣∣∣ dt
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≤ c
j∑
s=0

∫ 1

0
(t (1 − t))r−1+rs−β ∣∣∣f (s) (γr (t))

∣∣∣ dt
≤ c

j∑
s=0

∫ 1

0
γ′r (t) (γr (t) (1 − γr (t)))s−β/r

∣∣∣f (s) (γr (t))
∣∣∣ dt

≤ c
j∑
s=0

∫ 1

0
(x (1 − x))s−α

∣∣∣f (s) (x)
∣∣∣ dx , on writingγr (t) = x ,

≤ c (j + 1) ‖f‖α,N <∞ , for j = 0 (1)N . (46)

Hence condition (iii) of Definition3.1is satisfied so thatgr ∈ KN
β and furthermore

we see from (46) that there exists a constantc such that‖gr‖β,N ≤ c ‖f‖α,N , and
the theorem is proved.♠

We are now in a position to put an upper bound on the error termE [ν,r]
m f ,

see (32).

Theorem 3.6 Supposef ∈ KN
α for some non-integerα > 0. Let γr be a sig-

moidal transformation of orderr ≥ 1 such thatn1 < αr < n1 + 1, for some
n1 ∈ N. Then with

If = Q[ν,r]
m f + E [ν,r]

m f ,

there exists a positive constantc independent ofm such that

∣∣∣E [ν,r]
m f

∣∣∣ ≤ c

mn1
‖f‖α,N . (47)
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Proof. From (32), Theorem3.3and Theorem3.5we have
∣∣∣E [ν,r]

m f
∣∣∣ = ∣∣∣E [ν]

m gr
∣∣∣ ≤ c

mn1
‖gr‖β,N ≤ c

mn1
‖f‖α,N . (48)

♠
This is the principal result of this section from which we see that with the

introduction of a sigmoidal transformation, the application of the trapezoidal rule
to the transformed integrand gives a higher rate of convergence than without the
transformation.

Although we have assumed so far in this section thatf is sufficiently smooth
on (0, 1) (i.e. f (N ) ∈ C (0, 1)) nevertheless we will now show that the quadra-
ture rule as defined by equations (30) and (31) is convergent whenf is merely
continuous on[0, 1].

Theorem 3.7 Supposef is continuous on[0, 1]. Then, with any sigmoidal trans-
formation of orderr wherer > 1, limm→∞Q[ν,r]

m f = If . i.e. the quadrature sum
converges to the integral.

Proof. This follows from the P´olya-Steckloff theorem see, for example Davis
[2, p.353], which states that if a quadrature ruleQmf :=

∑m−1
j=0 aj,mf (xk,m) has

aj,m > 0 for j = 0(1) (m− 1), m ∈ N, thenlimm→∞Qmf =
∫ 1

0 f (x) dx for all
f ∈ C [0, 1] iff limm→∞Qm(xk) =

∫ 1
0 x

kdx for all k ∈ N0.
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From the quadrature ruleQ[ν,r]
m f defined in (31 ) we can see that

aj,m = (1/m) γ′r ((j + tν) /m) , j = 0 (1) (m− 1) ,

which is strictly positive, see Definition3.4. It remains to consider the functions
xk for all k ∈ N0. These functions are inKN

α for anyα ∈ (0, 1). Thus if r > 1
we can choose anα ∈ (1/r, 1) such that1 < αr < 2 and consequentlyn1 = 1.
By Theorem3.6 ∣∣∣E [ν,r]

m xk
∣∣∣ ≤ (c/m)

∥∥∥xk∥∥∥
αr,N

for all k ∈ N0. Hence lim
m→∞ E [ν,r]

m xk = 0 for all k ∈ N0 and the theorem follows
at once.♠

4 Cauchy principal value integrals

Although the Euler-Maclaurin sum is mostly associated with the evaluation of
ordinary integrals, nevertheless it can be used very effectively for the approximate
evaluation of Cauchy principal value and certain Hadamard finite-part integrals.
In this section we shall consider Cauchy principal value integrals and we shall first
introduce the analysis due to Lyness [8]. Let

(I1f) (x) :=
∫ 1

0

f (y)

y − x
dy , where0 < x < 1 . (49)
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To apply Theorem2.1we introduce asubtraction functionψ which is defined by

ψ (y; x) :=

{
πf (x) cot (π (y − x)) , y − x /∈ Z ,
0 , y − x ∈ Z .

(50)

We now define

(
S [ν]

1,mf
)

(x) :=

{
πf (x) cot (π (tν −mx)) , tν −mx /∈ Z ,
−f ′ (x) /m , tν −mx ∈ Z ,

(51)

and

(
Q[ν]

1,mf
)

(x) :=




1

m

m−1∑
j=0

f ((j + tν) /m)

((j + tν) /m− x)
, tν −mx /∈ Z ,

1

m

m−1∑′

j=0

f ((j + tν) /m)

((j + tν) /m− x)
, tν −mx ∈ Z ,

(52)

∑′ denoting a sum where the quotient is replaced by zero in that term for which
(j + tν) /m − x = 0. We shall now state and prove what is essentially Ly-
ness’ principal result [8] noting that the conditions implied in his Theorem 3.5
are slightly incorrect.

Theorem 4.1 For somen ∈ N, suppose thatf ∈ C (n−1) [0, 1] with f (n) andf (n+1)

continuous on(0, 1) andf (n) integrable on(0, 1). Then, for0 < x < 1,

(I1f) (x) =
(
Q[ν]

1,mf
)

(x) −
(
S [ν]

1,mf
)

(x)
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−
n∑
j=1

B̄j (tν)

j!

1

mj


 dj−1

dyj−1

(
f (y)

y − x

)∣∣∣∣∣
y=1

− dj−1

dyj−1

(
f (y)

y − x

)∣∣∣∣∣
y=0




+
(
E [v]

1,mf
)

(x) (53)

where(
E [ν]

1,mf
)

(x) =
1

mn

∫ 1

0

dn

dyn

(
f (y)

y − x
− ψ (y; x)

)
B̄n (tν −my)

n!
dy . (54)

Proof. This is based on applying Theorem2.1 to the functionh1 defined on
[0, 1] by

h1 (y; x) =

{
f (y) / (y − x) − ψ (y; x) , y 6= x ,
f ′ (x) , y = x .

(55)

We shall show that, after suitably defining∂
jh1
∂yj (x; x) for j = 1 (1)n, the condi-

tions onf imply that, for a fixedx ∈ (0, 1), h1 ∈ C (n−1) [0, 1] andh(n)
1 ∈ L1 (0, 1).

With this established we can immediately apply Theorem2.1 to the functionh1

and this will give (53) and (54).

From Abramowitz and Stegun [1, 4.3.17] fory ∈ [0, 1] \x
cot (π (y − x)) =

1

π (y − x)
− 1

π
φ0 (y; x) (56)

say, where

φ0 (y; x) =
∞∑
j=1

(2π)2j |B2j|
(2j)!

(y − x)2j−1 for |y − x| < 1 . (57)
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We see thatφ0 (· , x) ∈ C∞ [0, 1]. From (55)–(57) we have that

h1 (y; x) =
f (y) − f (x)

y − x
+ f (x)φ0 (y; x) , y 6= x . (58)

If we defineh1 (x; x) to belim
y→x

h1 (y; x) then from (58) we haveh1 (x; x) = f ′ (x),

which agrees with (55), and the functionh1 (· ; x) will be continuous on[0, 1]
since bothf andφ0 (· ; x) are continuous on[0, 1]. If we let h(j)

1 (· ; x) denote the
jth order partial derivative ofh1 with respect toy for a givenx ∈ (0, 1), we see
from (58) that h(j)

1 (· ; x) exists on[0, 1] \x for j = 0 (1) (n− 1). If we define
h(j)

1 (x; x) =lim
y→x

h(j)
1 (y; x) thenh(j)

1 (· ; x) will be continuous atx. Since we are

assuming thatf ∈ C (n−1) [0, 1] we shall then haveh1 (· ; x) ∈ C (n−1) [0, 1]. What
is h(j)

1 (x ; x)? A slightly tedious calculation gives

h(j)
1 (x; x) =

{
f (j+1) (x) / (j + 1) , j even,[
f (j+1) (x) + (2π)j+1 |Bj+1| f (x)

]
/ (j + 1) , j odd.

(59)

This will be valid for j = 0 (1)n since, whenj = n, we are assuming that
f (n+1) ∈ C (0, 1) and, of course,x ∈ (0, 1).

It remains to show thath(n)
1 (· ; x) is integrable over(0, 1). From the preceding

paragraph we have thath(n)
1 (· ; x) ∈ C (0, 1) so that integrability over(0, 1) will

follow if h(n)
1 is ‘well behaved’ at the end points 0 and 1. By Leibnitz’ theorem,

from (58) we have

h(n)
1 (y; x) = (−1)n n! (f (y) − f (x)) / (y − x)n+1
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+
n−1∑
s=1

(ns ) (−1)n−s (n− s)!f (s) (y) / (y − x)n−s+1

+ f (n) (y) / (y − x) . (60)

Sincef ∈ C (n−1) [0, 1], x ∈ (0, 1) andf (n) is integrable on(0, 1) we see that
h(n)

1 (y; x) must be integrable in the neighbourhoods of the end-points0 and1.
Consequentlyh1 (· ; x) satisfies the conditions of Theorem2.1 and (53) and (54)
follow from (52) on using the properties of the subtraction functionψ (· ; x) as
given in Lyness [8, §2]. ♠

Let us now consider this result given thatf is in the spaceKN
α ; cf. Theo-

rem3.3.

Theorem 4.2 Supposef ∈ KN
α wheren < α < n+ 1 for somen ∈ N. Then, for

a givenx ∈ (0, 1),

(I1f) (x) =
(
Q[ν]

1,mf
)

(x) −
(
S [ν]

1,mf
)

(x) +
(
E [ν]

1,mf
)

(x) , (61)

and there exists a positive constantc, independent ofm andx, such that

∣∣∣(E [ν]
1,mf

)
(x)
∣∣∣ ≤ c ‖f‖α,N

(x (1 − x))n+1−αmn
. (62)

Proof. Sincef ∈ KN
α wheren < α < n + 1, it follows from Definition3.1(ii)

that
f (j) (0) = f (j) (1) = 0 , for j = 0 (1) (n− 1) , (63)



§4: Cauchy principal value integrals E55

so thatf ∈ C (n−1) [0, 1]. From Definition3.1(i) we have that bothf (n) andf (n+1)

are inC (0, 1). Finally, from Theorem3.2(i) we have thatf (n) ∈ L1 (0, 1) so
that all the conditions onf in Theorem4.1 are satisfied. From (63) we see that
the summation on the right hand side of (53) is zero so that(I1f) (x) is of the
form given by equation (61). It remains to put a bound on

∣∣∣(E [ν]
1,mf

)
(x)
∣∣∣. With

h1 (· ; x) as defined by (55) and recalling that
∣∣∣B̄n (tν −my) /n!

∣∣∣ is bounded above
by 2ζ (n) / (2π)n (see proof of Theorem3.3) we have from (54) that

∣∣∣(E [ν]
1,mf

)
(x)

∣∣∣ ≤ c

mn

∫ 1

0

∣∣∣h(n)
1 (y; x)

∣∣∣ dy . (64)

From the form ofh1 (· ; x) as given in (58), since we can write

f (x) = f (y) − (y − x)
∫ 1

0
f ′ (x+ (y − x) t) dt ,

we may rewrite (58) as

h1 (y; x) = φ1 (y; x)
∫ 1

0
f ′ (x+ (y − x) t) dt+ φ0 (y; x) f (y) , (65)

where

φ1 (y; x) = 1 − (y − x)φ0 (y; x) = π (y − x) cot (π (y − x)) . (66)

We observe that bothφ0 (· ; x) andφ1 (· ; x) are inC (∞) [0, 1]. By Leibnitz’ theo-
rem

h(n)
1 (y; x) =

n∑
s=0

(ns )

{
φ(n−s)

1 (y; x)
∫ 1

0
tsf (s+1) (x+ (y − x) t) dt
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+φ(n−s)
0 (y; x) f (s) (y)

}
. (67)

Now we can find a positive constantc such that

max
0≤y≤1, s=0(1)n

∣∣∣φ(n−s)
i (y; x)

∣∣∣ ≤ c , for i = 0 and1 . (68)

Consequently from (67) and (68) we find
∫ 1

0

∣∣∣h(n)
1 (y; x)

∣∣∣ dy ≤ c
n∑
s=0

(ns )

{∫ 1

0

∣∣∣f (s) (y)
∣∣∣ dy

+
∫ 1

0

∫ 1

0
ts
∣∣∣f (s+1) (x+ (y − x) t)

∣∣∣ dt dy
}
. (69)

By Theorem3.2(i) we have∫ 1

0

∣∣∣f (s) (y)
∣∣∣ dy ≤ c ‖f‖α,N (70)

for some positive constantc. Fors = 0 (1)n, let

Is (x) :=
∫ 1

0

∫ 1

0
ts
∣∣∣f (s+1) (x+ (y − x) t)

∣∣∣ dt dy
=

∫ 1

0
ts
∫ 1

0

∣∣∣f (s+1) (x+ (y − x) t)
∣∣∣ dy dt . (71)

Since0 < x < 1 and0 ≤ t, y ≤ 1 we have0 ≤ x+ (y − x) t ≤ 1 so that we shall
have ∫ 1

0

∣∣∣f (s+1) (x+ (y − x) t)
∣∣∣ dy ≤

∫ 1

0

∣∣∣f (s+1) (u)
∣∣∣ du ≤ c ‖f‖α,N (72)
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for s = 0 (1) (n− 1) by Theorem3.2(i). Thus fors = 0 (1) (n− 1) we have
∫ 1

0

∫ 1

0
ts
∣∣∣f (s+1) (x+ (y − x) t)

∣∣∣ dt dy ≤ c ‖f‖α,N (73)

for some positive constantc. It remains to put an upper bound onIn (x). From (71),
on puttingu = x+ (y − x) t we have

In (x) =
∫ 1

0
tn−1Jn (t; x) dt (74)

say, where

Jn (t; x) :=
∫ t+x(1−t)

x(1−t)

∣∣∣f (n+1) (u)
∣∣∣ du . (75)

Now we can write

Jn (t; x) =
∫ t+x(1−t)

x(1−t)
(u (1 − u))n+1−α ∣∣∣f (n+1) (u)

∣∣∣ · (u (1 − u))α−(n+1) du

≤ Hα,n+1 (x; t) ‖f‖α,N (76)

say, where

Hα,n+1 (x; t) := max
x(1−t)≤u≤t+x(1−t)

(u (1 − u))α−(n+1)

=
1

min
0≤v≤1

(Q (v; x, t))n+1−α (77)

sinceα < n+ 1, where we define

Q (v; x, t) := (x (1 − t) + tv) (1 − x (1 − t) − tv) . (78)
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To determine the minimum value ofQ for v ∈ [0, 1] we shall distinguish two
cases. Suppose first that0 < x ≤ 1/2. Since0 ≤ t, v ≤ 1 we have

t (v − 2x) ≤ v − 2x ≤ 1 − 2x

so that
0 ≤ 1 − 2x (1 − t) − vt

or, on multiplying byvt, which is non-negative,

0 ≤ vt (1 − 2x (1 − t)) − v2t2 . (79)

Combining (78) and (79) we have

Q (0; x, t) ≤ Q (0; x, t) + vt (1 − 2x (1 − t)) − v2t2 = Q (v; x, t) . (80)

Hence, for0 < x ≤ 1/2

Hα,n+1 (x; t) = 1/ (Q (0; x, t))n+1−α

= 1/
[
(x (1 − t))n+1−α (1 − x (1 − t))n+1−α]

≤ 2n+1−α/ (x (1 − t))n+1−α , (81)

since1 − x (1 − t) ≥ 1/2 for t ∈ [0, 1]. From (74), (76) and (81) we find for
x ∈ (0, 1/2],

In (x) ≤ 2n+1−α ‖f‖α,N (Γ (n) Γ (α− n) /Γ (α)) /xn+1−α . (82)
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We may argue similarly forx ∈ [1/2, 1). We shall now haveQ (v; x, t) ≥
Q (1; x, t) ≥ (1 − x) (1 − t) /2 for all t ∈ [0, 1]. Consequently for1/2 ≤ x < 1,

In (x) ≤ 2n+1−α ‖f‖α,N (Γ (n) Γ (α− n) /Γ (α)) / (1 − x)n+1−α . (83)

Combining (82) and (83) we conclude that for any givenx ∈ (0, 1) there exists a
positive constantc such that

In (x) ≤ c ‖f‖α,N / (x (1 − x))n+1−α . (84)

Returning to (69), recalling (70) and (73), together with (84) we conclude that
there exists a positive constantc independent ofn andx such that

∫ 1

0

∣∣∣h(n)
1 (y; x)

∣∣∣ dy ≤ c ‖f‖α,N / (x (1 − x))n+1−α (85)

for a givenx ∈ (0, 1). Combining this with (64) establishes (62) and the theorem
is proved.♠

We must now consider the effect of a sigmoidal transformation of orderr
applied to the integral. On writingy = γr (t) then, as with the change of variable
for ordinary integrals, we have

(I1f) (x) =
∫ 1

0

γ′r (t) f (γr (t))

γr (t) − x
dt . (86)

If we write
x = γr (s) (87)
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then, sincex ∈ (0, 1), we shall haves ∈ (0, 1). Consequently we shall rewrite
(I1f) (x) as

(I1f) (x) =
∫ 1

0

Φr (t; s)

t− s
dt (88)

say, where

Φr (t; s) :=

{
γ′r(t)(t−s)f (γr(t))
γr(t)−γr(s) , t 6= s ,

f (x) , t = s .
(89)

The question now arises as to which spaceΦr (· ; s) is in given thatf ∈ KN
α for

someα > 0, and we shall address this in the next theorem.

Theorem 4.3 Supposef ∈ KN
α for some non-integerα > 0 and let γr be a

sigmoidal transformation of orderr ≥ 1. Supposeβ = αr with β /∈ N. Assuming
thatβ < N then

(i) Φr (· ; s) ∈ KN
β ,

(ii) there exists a positive constantc such that

‖Φr (· ; s)‖β,N ≤ c ‖f‖α,N .

Proof. Let us write
Φr (t; s) = ρr (t; s) gr (t) (90)
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say, wheregr is defined in (33) andρr is defined by

ρr (t; s) :=

{
(t− s) / (γr (t) − γr (s)) , t 6= s ,
1/γ′r (s) , t = s .

(91)

Sinces is fixed in (0, 1) andρr (s; s) =lim
t→s

ρr (t; s) we see thatρr (· ; s) is con-

tinuous on[0, 1]. However, we can say more. If, for allj ∈ N, we define
ρ(j)
r (s; s) := lim

t→s
ρ(j)
r (t; s) then we shall haveρr (· ; s) ∈ C (∞) [0, 1]. It should

be noted that we can defineρ(j)
r (· ; s) recursively. From (91) we can write

ρr (t; s)
∫ 1

0
γ′r (s+ (t− s) η) dη = 1 (92)

for 0 ≤ s, t ≤ 1. With fixeds ∈ (0, 1), on differentiatingj times with respect tot
and puttingt = s we obtain

ρ(j)
r (s; s) = − 1

(j + 1) γ′r (s)

j−1∑
i=0

(
j + 1
i

)
ρ(i)
r (s; s) γ(j+1−i)

r (s) (93)

for j ∈ N with ρr (s; s) = 1/γ′r (s). Sinceγ′r (s) 6= 0 we see thatρ(j)
r (s; s) is

defined for allj ∈ N. From Theorem3.5(i), gr ∈ KN
β so that sinceg(j)

r ∈ C (0, 1)
for j = 0 (1)N , it follows that for a givens ∈ (0, 1), Φ(j)

r (· ; s) ∈ C (0, 1) for
j = 0 (1)N . This is condition (i) of Definition3.1.

Neart = 0, see thatρr (t; s) = (s/γr (s)) (1 +O (t)), the constant(s/γr (s))
being defined and non-zero sinces ∈ (0, 1). Thus, neart = 0, Φr (· ; s) behaves
like gr and we know from (41) thatg(j)

r (t) = O
(
tαr−j−1

)
, for j = 0 (1) (N − 1).
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With a similar result neart = 1 we find that ifn1 < β < n1 + 1, for somen1 ∈ N
(recall thatβ = αr is not an integer) then we shall have

Φ(j)
r (0; s) = Φ(j)

r (1; s) = 0 for j = 0 (1) (n1 − 1) . (94)

This satisfies Definition3.1(ii).

Finally, from (90), for a fixeds ∈ (0, 1) we have, by Leibnitz’s theorem, that
for j = 0 (1)N

Φ(j)
r (t; s) =

j∑
i=0

(
j
i

)
g(i)
r (t) ρ(j−i)

r (t; s) (95)

so that

∫ 1

0
(t (1 − t))j−β

∣∣∣Φ(j)
r (t; s)

∣∣∣ dt ≤
j∑
i=0

(
j
i

) ∫ 1

0
(t (1 − t))i−β

∣∣∣g(i)
r (t)

∣∣∣×
(t (1 − t))j−i

∣∣∣ρ(j−i)
r (t; s)

∣∣∣ dt . (96)

Now, sinceρr (· , s) ∈ C∞ [0, 1] we can find a positive constantc such that

max
0≤t≤1

∣∣∣ρ(j−i)
r (t; s)

∣∣∣ ≤ c for i = 0 (1) j andj = 0 (1)N .

Again, sincej − i ≥ 0 we can find a positive constantc such that from (96)

∫ 1

0
(t (1 − t))j−β

∣∣∣Φ(j)
r (t; s)

∣∣∣ dt ≤ c ‖gr‖β,N
j∑
i=0

(
j
i

)
<∞ . (97)
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Thus from Definition3.1(iii) we see thatΦr ∈ KN
β which proves (i). Furthermore,

(97) tells us that there exists a positive constantc such that‖Φr‖β,N ≤ c ‖gr‖β,N
which completes the proof of the theorem.♠

We now come to the approximate evaluation of(I1f) (x) from the form given
by (86). To this end we now define the following quantities

(
Q[ν,r]

1,m f
)

(x) :=




1

m

m−1∑
j=0

γ′r ((j + tν)/m) f (γr((j + tν) /m))

(γr ((j + tν) /m) − γr (s))
, ms− tν /∈ Z ,

1

m

m−1∑′

j=0

γ′r ((j + tν)/m) f (γr((j + tν) /m))

(γr ((j + tν) /m) − γr (s))
, ms− tν ∈ Z ,

(98)
with

∑′ denoting, as before, a sum where the term in which the denominator is
zero is replaced by zero. From (89) we observe that(

Q[ν,r]
1,m f

)
(x) =

(
Q[ν]

1,mΦr

)
(s) . (99)

In addition, we define

(
S [ν,r]

1,m f
)

(x) :=

{
πf (x) cot(π (tν −ms)) , ms− tν /∈ Z
−γ′′r (s)f (x)

2mγ′r (s) + γ′r (s) f ′ (x) , ms− tν ∈ Z .
(100)

Again, we see that (
S [ν,r]

1,m f
)

(x) =
(
S [ν]

1,mΦr

)
(s) . (101)

We now come to the principal result of this section.
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Theorem 4.4 Supposef ∈ KN
α for some non-integerα > 0. Let γr be a sig-

moidal transformation of orderr ≥ 1 such thatn1 < αr < n1 + 1 for some
n1 ∈ N. Then, for anym ∈ N and0 < x < 1,

(I1f) (x) =
(
Q[ν,r]

1,m f
)

(x) −
(
S [ν,r]

1,m f
)

(x) +
(
E [ν,r]

1,m f
)

(x) (102)

say, where ∣∣∣(E [ν,r]
1,m f

)
(x)
∣∣∣ ≤ c ‖f‖α,N

mn1 (x (1 − x))(n1+1−αr)/r , (103)

for some positive constantc independent ofm andx.

Proof. From (61), (99) and (101) we have∣∣∣(E [ν,r]
1,m f

)
(x)
∣∣∣ = ∣∣∣(E [ν]

1,mΦr

)
(s)
∣∣∣ . (104)

Since by Theorem4.3, Φr ∈ KN
β whereβ = αr , then on using (62) we have

∣∣∣(E [ν]
1,mΦr

)
(s)
∣∣∣ ≤ c ‖Φr‖β,N

(s (1 − s))n1+1−βmn1

≤ c ‖f‖α,N
(γ−1
r (x) (1 − γ−1

r (x)))n1+1−βmn1
, (105)

by Theorem4.2 for some positive constantc. Now nearx = 0, γ−1
r (x) =

O
(
x1/r

)
and nearx = 1 we have1 − γ−1

r (x) = O
(
(1 − x)1/r

)
. Consequently

we may write

γ−1
r (x)

(
1 − γ−1

r (x)
)

= (x (1 − x))1/rXr (x) (106)
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say, where the functionXr is continuous and strictly positive on[0, 1]. Combin-
ing (105) with (106) gives (103) and the theorem is proved.♠

We see that as in the case of the ordinary integral (see Theorem3.6) the intro-
duction of a sigmoidal transformation or orderr increases the rate of convergence
fromO (1/mn) toO (1/mn1) wheren1 is roughlyr timesn. This can be very sat-
isfactory (see Elliott & Venturino [5]). Furthermore it is of interest to know from
the above analysis that the rates of convergence are the same for both ordinary and
Cauchy principal value integral. However, in the latter case the presence of the
factor1/ (x (1 − x))(n1+1−αr)/r indicates that the actual values of the errors will be
larger near the end-points. This is well borne out in practice.

In Elliott & Venturino [5], we considered the use of the Euler-Maclaurin sum-
mation together with sigmoidal transformations to find approximate values of cer-
tain Hadamard finite-part integrals. We shall discuss such integrals in the next
section.

5 Hadamard finite-part integrals

We now turn our attention to the particular Hadamard finite-part integral(I2f) (x)
which is given by

(I2f) (x) :=
∫ 1

0

f (y)

(y − x)2 dy :=
d

dx

{∫ 1

0

f (y)

(y − x)
dy

}
, (107)
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for somex ∈ (0, 1). Since it is essentially the derivative of the Cauchy principal
value integralI1f , all our results will follow on differentiation with respect tox.
From (98) and (100) we shall define, forms− tν /∈ Z,

(
Q[ν,r]

2,m f
)

(x) =
1

m

m−1∑
j=0

γ′r ((j + tν) /m) f (γr ((j + tν) /m))

(γr ((j + tν) /m) − γr (s))2 (108)

and

(
S [ν,r]

2,m f
)

= πf ′ (γr (s)) cot(π (tν −ms))+π2m
f (γr (s))

γ′r (s)
cosec2 (π (tν −ms)) ,

(109)
wherex = γr (s). Thus after sigmoidal transformation we shall write

(I2f) (x) =
(
Q[ν,r]

2,m f
)

(x) −
(
S [ν,r]

2,m f
)

(x) +
(
E [ν,r]

2,m f
)

(x) (110)

say, where we need to put a bound on
∣∣∣(E [ν,r]

2,m f
)

(x)
∣∣∣. The first two terms on the

right-hand side of (110) give the approximation to(I2f) (x); we want to bound
the “error term”. We might write the corresponding forms for

(
Q[ν,r]

2,m f
)

(x) and(
S [ν,r]

2,m f
)

(x) whenms− tν ∈ Z, but the details will be omitted here.

We shall now develop the analysis for(I2f) (x) in a manner similar to that for
(I1f) (x). In (108) and (109) we shall adopt the convention that whenr = 1 then
γ1 (x) = x so that we shall write

(
Q[ν,1]

2,m f
)

(x) as
(
Q[ν]

2,mf
)

(x) which is equal to
d
dx

(
Q[ν,1]

1,m f
)

(x), see (52). A similar remark applies to
(
S [ν,1]

2,m f
)

(x).
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Theorem 5.1 For somen ∈ N, suppose thatf ∈ C (n−1) [0, 1], with f (n), f (n+1)

and f (n+2) continuous on(0, 1). Suppose in addition thatf (n) is integrable on
(0, 1). Then for somex ∈ (0, 1)

(I2f) (x)

=
(
Q[ν]

2,mf
)

(x) −
(
S [ν]

2,mf
)

(x)

−
n∑
j=1

B̄j (tν)

j!

1

mj


 dj−1

dyj−1

(
f (y)

(y − x)2

)∣∣∣∣∣
y=1

− dj−1

dyj−1

(
f (y)

(y − x)2

)∣∣∣∣∣
y=0




+
(
E [ν]

2,mf
)

(x) (111)

where

(
E [ν]

2,mf
)

(x) =
1

mn

∫ 1

0

dn

dyn

(
f (y)

(y − x)2 − ∂ψ (y; x)

∂x

)
B̄n (tν −my)

n!
dy . (112)

Proof. This parallels that of Theorem4.1. For y 6= x we defineh2 (y; x) to
be ∂

∂x
h1 (y; x) (see equation (55)). The value ofh2 (x; x) is defined to be lim

y→x

h2 (y; x). Consequently we define

h2 (y; x) :=

{
f (y) / (y − x)2 − ∂ψ

∂x
(y; x) , y 6= x ,

1
2f

′′ (x) − π2

3 f (x) , y = x .
(113)

It is to the functionh2 that we shall apply Theorem2.1. We need to show that
after suitably defining∂

jh2
∂yj (x; x) for j = 1 (1)n, the conditions onf imply that
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h2 ∈ C (n−1) [0, 1] andh(n)
2 ∈ L1 (0, 1). If we take the expression forh1 as given

by (65) then we have

h2 (y; x) =
∂

∂x
h1 (y; x)

=
∂φ1

∂x
(y; x)

∫ 1

0
f ′ (x+ (y − x) t) dt

+ φ1 (y; x)
∫ 1

0
(1 − t) f ′′ (x+ (y − x) t) dt

+
∂φ0

∂x
(y; x) f (y) , (114)

whereφ0 andφ1 are defined by (57) and (66) respectively. A tedious calculation
shows that

h(j)
2 (x; x) =




f (j+2)(x)
(j+1)(j+2) − (2π)j+2 |Bj+2| f (x)

(j+2) , j even,
f (j+2)(x)

(j+1)(j+2) + (2π)j+1 |Bj+1| f ′(x)
(j+1) , j odd,

(115)

where we defineh(j)
2 (x; x) to be lim

y→x
h(j)

2 (y; x). This will be valid forj = 0 (1)n

since whenj = n we are assuming that bothf (n+1) andf (n+2) are continuous at
x ∈ (0, 1).

For the integrability ofh(n)
2 (· ; x) over(0, 1) we argue as for the integrability

of h(n)
1 (· ; x) in the proof of Theorem4.1. We haveh(n)

2 (· ; x) ∈ C (0, 1) so that
we need only considerh2 at the end points0 and1. As withh1 in Theorem4.1, we
may considerh(n)

2 (y; x) by applying Leibnitz’s theorem to each term in (114). The
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behaviour off and its derivatives at the end points0 and1 show thath(n)
2 (· ; x) is

integrable on(0, 1). The details are left to the reader.♠
As in §4, let us now assume thatf ∈ KN

α for some non-integerα > 0.

Theorem 5.2 Supposef ∈ KN
α wheren < α < n+ 1 for somen ∈ N. Then, for

a givenx ∈ (0, 1)

(I2f) (x) =
(
Q[ν]

2,mf
)

(x) −
(
S [ν]

2,mf
)

(x) +
(
E [ν]

2,mf
)

(x) , (116)

and there exists a positive constantc, independent ofm andx, such that

∣∣∣(E [ν]
2,mf

)
(x)
∣∣∣ ≤ c ‖f‖α,N

(x (1 − x))n+2−αmn
. (117)

Proof. That the form of(I2f) (x) is as given in (116) follows by the same
arguments as given in the proof of Theorem4.2. From (112) we have that

∣∣∣(E [ν]
2,mf

)
(x)
∣∣∣ < c

mn

∫ 1

0

∣∣∣h(n)
2 (y; x)

∣∣∣ dy .
From the form ofh2 as given by (114) we find on recalling (68)

∫ 1

0

∣∣∣h(n)
2 (y; x)

∣∣∣ dx ≤ c
n∑
s=0

(ns )

{∫ 1

0

∫ 1

0
ts
∣∣∣f (s+1) (x+ (y − x) t)

∣∣∣ dt dy
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+
∫ 1

0

∫ 1

0
ts (1 − t)

∣∣∣f (s+2) (x+ (y − x) t)
∣∣∣ dt dy

+
∫ 1

0

∣∣∣f (s) (y)
∣∣∣ dy

}
. (118)

Now (70) gives a bound on the last term on the right hand side of (118). The
first term on the right hand side of (118) we have previously denoted byIs (x)
(see (71)) and is bounded above byc ‖f‖α,N for s = 0 (1) (n− 1) (see (72)).
Whens = n, a bound forIn (x) is given by (84). Finally let us consider

Ks (x) :=
∫ 1

0

∫ 1

0
ts (1 − t)

∣∣∣f (s+2) (x+ (y − x) t)
∣∣∣ dt dy

=
∫ 1

0
ts (1 − t)

∫ 1

0

∣∣∣f (s+2) (x+ (y − x) t)
∣∣∣ dy dt , (119)

for s = 0 (1)n. Fors = 0 (1) (n− 2) we have simply (cf. (72))

Ks (x) ≤
(∫ 1

0
ts (1 − t) dt

)(∫ 1

0

∣∣∣f (s+2) (u)
∣∣∣ du

)
≤ c ‖f‖α,N . (120)

Now (cf. (74) and (75)) we have

Kn−1 (x) =
∫ 1

0
tn−1 (1 − t)Jn (t; x) dt . (121)

For0 < x ≤ 1/2 we find from (76)–(81) that

Kn−1 (x) ≤ 2n+1−α

xn+1−α ‖f‖α,N
∫ 1

0
tn−1 (1 − t)α−n dt

≤ c ‖f‖α,N /xn+1−α , (122)
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for some positive constantc. Arguing similarly for1/2 ≤ x < 1 we conclude that

Kn−1 (x) ≤ c ‖f‖α,N
(x (1 − x))n+1−α , (123)

for 0 < x < 1. Finally, it remains to considerKn (x). By arguing as we have
done forKn−1 (x) we find

Kn (x) ≤ c ‖f‖α,N
(x (1 − x))n+2−α . (124)

Putting these results together we establish (117) and the theorem is proved.♠
We must now consider the effect of a sigmoidal transformation on the Hada-

mard finite-part integral. On writingy = γr (t), x = γr (s) we find from (107)
that we may write

(I2f) (x) =
∫ 1

0

Ψr (t; s)

(t− s)2 dt (125)

say, where the functionΨr is defined by

Ψr (t; s) =

{
f (γr (t)) γ′r (t) ((t− s) / (γr (t) − γr (s)))2 , t 6= s ,
f (γr (s)) /γ′r (s) , t = s .

(126)

Theorem 5.3 Supposef ∈ Kα
N for some non-integerα > 0 and let γr be a

sigmoidal transformation of orderr ≥ 1. Supposeβ = αr with β /∈ N. Assuming
β < N then
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(i) Ψr (· ; s) ∈ KN
β ,

(ii) there exists a positive constantc such that

‖Ψr (· ; s)‖β,N ≤ c ‖f‖α,N .

Proof. Recalling (33), (90) and (91) we see that we can write

Ψr (t; s) = ρ2
r (t; s) gr (t) = ρr (t; s)Φr (t; s) . (127)

In the proof of Theorem4.3 we showed thatρr (· ; s) ∈ C (∞) [0, 1]. Just as in
the proof of that theorem,gr ∈ KN

β implied Φr (· ; s) ∈ KN
β so we shall have

Ψr (· ; s) ∈ KN
β and furthermore‖Ψr (· ; s)‖β,N ≤ c ‖f‖α,N for some positive

constantc. The details will be omitted.♠
We now come to our principal result for these particular Hadamard finite-part

integrals.

Theorem 5.4 Supposef ∈ KN
α for some non-integerα > 0. Let γr be a sig-

moidal transformation of orderr ≥ 1 such thatn1 < αr < n1 + 1 for some
n1 ∈ N. Then for anym ∈ N and0 < x < 1,

(I2f) (x) =
(
Q[ν,r]

2,m f
)

(x) −
(
S [ν,r]

2,m f
)

(x) +
(
E [ν,r]

2,m f
)

(x) (128)

where ∣∣∣(E [ν,r]
2,m f

)
(x)
∣∣∣ ≤ c ‖f‖α,N

mn1 (x (1 − x))(n1+2−αr)/r , (129)

for some positive constantc independent ofm andx.
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Proof. As in the proof of Theorem4.4we have
∣∣∣(E [ν,r]

2,m f
)

(x)
∣∣∣ =

∣∣∣(E [ν]
2,mΨr

)
(s)
∣∣∣

≤ c ‖Ψr‖β,N
(s (1 − s))n1+2−β ·mn1

, by Theorem5.2, (130)

≤ c ‖f‖α,N
(γ−1
r (x) (1 − γ−1

r (x)))n1+2−βmn1
, by Theorem5.3,

from which (129) follows, arguing as in the proof of Theorem4.4.

6 Conclusion

We have considered the application of the Euler-Maclaurin summation formula
together with the use of sigmoidal transformations for ordinary, Cauchy principal
value and certain Hadamard finite-part integrals over the finite interval(0, 1). We
have defined a suitable space of functions in which to consider the analysis and,
perhaps surprisingly, one finds that the rate of convergence of the error to zero
is the same in each case. The analysis we have given here looks as if it should
provide a basis for using this particular set of quadrature rules in the approximate
solution of both Fredholm and singular integral equations taken over the finite
interval (0, 1). That investigation however will have to wait for another paper;
this one is long enough already.
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A Proof of equation (115)

We observe
∂φ0

∂x
+
∂φ0

∂y
= 0 (131)

and
∂φ1

∂x
+
∂φ1

∂y
= 0 . (132)

Now h2 := ∂h1
∂x

and

∂h1

∂x
=

∂φ1

∂x

∫ 1

0
f ′ (x+ (y − x) t) dt

+ φ1

∫ 1

0
(1 − t) f ′′ (x+ (y − x) t) dt+

∂φ0

∂x
f (y) .

Again,

∂h1

∂y
=

∂φ1

∂y

∫ 1

0
f ′ (x+ (y − x) t) dt+ φ1

∫ 1

0
t f ′′ (x+ (y − x) t) dt

+
∂φ0

∂y
f (y) + φ0f

′ (y) .

Therefore on using equations (131) and (132) we have

∂h1

∂x
+
∂h1

∂y
= φ1

∫ 1

0
f ′′ (x+ (y − x) t) dt+ φ0f

′ (y)
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= (1 − (y − x)φ0)

(
f ′ (y) − f ′ (x)

y − x

)
+ φ0f

′ (y)

=
f ′ (y) − f ′ (x)

y − x
− πf ′ (x) cot(π (y − x))

= h1 (y; x; f ′)

say if, from (55), we change the notation toh1 (y; x; f). Therefore

h2 (y; x) =
∂h1

∂x
= −∂h1

∂y
+ h1 (y; x; f ′) .

The result forh(j)
2 (x; x) now follows from (59).
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