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The Euler-Maclaurin formula revisited

David Elliott*

(Received 17 February, 1998)

Abstract

The Euler-Maclaurin summation formula for the approximate evaluation
of I = [§ £ (x) dz comprises a sum of the fortd/m) 275" £ (( +t.) /m),
where 0< t, < 1, a second sum whose terms involve the difference be-
tween the derivatives of at the end-points 0 and 1 and a truncation error
term expressed as an integral. By introducing an appropriate change of vari-
able of integration using a sigmoidal transformation of onder 1, (other
authors call it a periodizing transformation) it is possible to expiess
a sum ofm terms involving the new integrand with the second sum being
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zero. We show that for all functions in a certain weighted Sobolev space, the

truncation error is of orde® (1/m™*), for some integen, which depends

onr. In principle we may choose; to be arbitrarily large thereby giving a

good rate of convergence to zero of the truncation error.

This analysis is then extended to Cauchy principal value and certain
Hadamard finite-part integrals over, ). In each case, the truncation er-
rorisO (1/m™). This result should prove particularly useful in the context
of the approximate solution of integral equations although such discussion

is beyond the scope of this paper.
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1 Introduction

The purpose of this paper is to review the Euler-Maclaurin formula and its appli-
cation to the evaluation of ordinary, Cauchy principal value and certain Hadamard
finite-part integrals over a finite interval which we shall take throughout to be
(0,1). Firstly, we shall, in§2, consider the Euler-Maclaurin formula for the so-
called offset trapezoidal rule, particular cases of which give the well known trape-
zoidal and mid-point rules. Although Theore?ril is well known we shall give

the proof here and to that end we have gathered together at the end of this section
some results on Bernoulli polynomials and periodic Bernoulli function§3wwe
introduce the sigmoidal transformations which are so necessary for the approx-
imate evaluation of these integrals and introduce a normed space of functions,
denoted byK, in which we are able to do all our error analysis. Finallyi

we consider the evaluation of ordinary integralgl is concerned with Cauchy
principal value integrals and i§b we consider certain Hadamard finite-part in-
tegrals. In each case we show that the error, forrapoint rule, converges to
zero likeO (1/m™) for some integer, depending on the order of the sigmoidal
transformation. This turns out to be a very satisfactory result.

The notation that we have adopted in this paper, owes a lot to that given by
Lyness B]; indeed, much of the work has been inspired by that paper. A full
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discussion on sigmoidal transformation is to be found in Ell@jtehdasymptotic
estimates of the errors have been discussed in Elliott and Ventd&jino [

Throughout this papel will denote the set of all natural numbers .=
{1,2,3,...}, No will denote {0} U N andZ will denote the set of all integers,
positive, negative and zero.

The Bernoulli numbers and Bernoulli polynomials play an important role in
this analysis and because there are minor differences in the way these are defined
by various authors we shall, for the sake of completeness, gather together some
results here. For the record, we use the notation as given in Abramowitz and
Stegun 1], Gradshteyn and Ryzhilg], Olver [9] and Steffensenl0].

The Bernoulli polynomials3; (x) of degreej, j € Ny, are defined via a gen-
erating function as

(1)

for [t| < 2m. In particular, we findBy (z) = 1, By (z) = = — 1/2, By (x) =
2? — x4 1/6, B3 (z) = 2® — 322/2 4+ x/2 etc. The Bernoulli numbers; are
defined simply byB; = B; (0) so thatBy = 1, By = —1/2, B, = 1/6, B3 = 0
etc. We find for all; € N that By;»1 = 0. Finally, we introduce the periodic
Bernoulli functionsB; (x). These are defined by

BJ(ZL') = B](.CC), f0r0§I<1,
Bj(xr+1) = Bj(x), foralzeR; (2)
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see Steffenserlp, §144]. In other wordsj; (z) takes the values aB; (x) on
[0,1) and is a periodic function with periotl Except whenj = 1, B; () is
continuous for alle € R. The functionB; (z) is a ‘saw tooth’ function with a
finite jump discontinuity of magnitudée at each integer. We note that

Bi(z) = Bi(x), for0<z<1 sothat (3)
Bi(1) = B1(0) =By =-1/2.

The Fourier expansions of the periodic Bernoulli functions are well known, see,
for example 1, §23.1.16]. We have

By 1 (2) o 2sin (2kmx)
e = (=1 ————~ 4
TRV I PRt @
forall z € Rwhenj > 2 and forz € R\Z whenj = 1. Also
By (x 1= 2cos (2kmx
2j (') _ (_1)] 12 ( 5 ) (5)
(2)! o (27k)
for all z € R and for allj € N. Finally, we note that
d - . S
2 B (@) = (7 +1) B (2) (6)

for all x € Rwhenj > 2 and for allz € R\Z whenj = 1.
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2 The off-set trapezoidal rule

Our aim initially is to find approximations to the integiaf where

1
]f::/o F(x)da. (7)
Following Lyness 8], we define
t,=w+1)/2 for —1<v <1, (8)

The quadrature rul®!” f is defined by

m—1
LS Gt fm) s <<l
Qup={ "R ©)
EZ f(]/m)v v=1.
7=0

HereY_” denotes a sum whose first and last terms are halved. We are interested
in determining the errof f — Q) f under various conditions ofi. Lyness 8]
guotes the following theorem, describing it as ‘classical’.

Theorem 2.1 Supposef is such that for some € N, f®Y ¢ C[0,1] and
f™ € Ly (0,1). Then, for everyn € N,

" B. G-1) — fG-1

mJ

J=1

+i/01f(n)<x)3”(t”_m)dx. (10)

mn n!
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Proof. For0 < t, <1, we define, on the intervé, 1] the functionP; by

r—t,+1/2, 0<z<t,,

Pl(x)::{x—tl,—l/Q, t,<a<l. (11)

This function has a finite jump discontinuity of magnitude 1 at the pgint
If Z denotes the set of all integers then we can extend the definitidn, b
R\ (t, + Z) by writing

Pi(z) = Pi(z), z€l[0,1\t, (12)
Pi(x+1) = P(x), 2€R\(t,+2).
ThusP; is defined almost everywhere Bas a piecewise linear function of period

1 with a finite jump discontinuity of magnitudeat the points, + Z. From (1)
we find that the Fourier series expansionffis given by

>, 2sin (27k (t, — x))
2rk ’

P (x) = forallz € [0,1]\¢, . (13)

kol

=1

We can use the Fourier series expansion to défiranR\ (¢, + Z) and, from @),
we see that

Py (z) = - 2sin (27;;5;” —9) _ g (t, — ), (14)

k=1

for all z € R\ (t, +Z). As we shall see below, we shall require functidns
for all s € N such that whers > 2, P/, (x) = P, (x) for all z € R. When
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s = 1, we require this to be satisfied for all € R\ (¢, + Z). From the well
known properties of the periodic Bernoulli functions we see that we can do this
by choosing

P,(x) = (=1 Bs(t, —z)/s!, seN. (15)

With these preliminaries established let us consider the prool@f (On
choosing anyn € N, from the definition ofP, we have

Py (ma) = mz — (k+t,)+1/2, fork/m<z<(k+t,)/m,
V= ma — (k+t,) —1/2, for (k+t,)/m<z<(k+1)/m,
(16)
forall k € Z. On integrating the functioif’ (z) P (mx) by parts over the interval
[k/m, (k+ 1) /m], we find using 15) and (16) that

/k(/:l)/mf(x)dﬂc _ %f (l{:;tV) B Blﬂgtu) lf (k;l) iy (%)1
1 pk+D/m _
_ P (mx) f/ (x) dz . (17)

m Jk/m

On summing fromk = 0 to (m — 1) we find that

1

flx)de =

1
0 m

Py (mz) f' (z)dz . (18)
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If n > 2, we can again integrate by parts the integral on the right hand side of
(18). Recalling thatP’; (z) = P; (x) forall z € R\ (¢, + Z) we find that

_Bt) SO-FO 1

21 m m

1
/ Py (mz) f' (v) dx /0 Py (mz) f" (z)dz,

) (19)
sinceP, (m) = P (0) by periodicity andP; (0) = B, (t,) /2! by (15). Repeating
this process an appropriate number of times and udiBy (e recover 10) and
the theorem is proveds

Corollary 2.2 Under the conditions of Theorepnl,
SB(t) 9 () - fU0(0)

If = Qlf - ]Xi i —
Lo, B, (t,) — B, (t, — mx)
_ W/o £ () < - >d:z:. (20)

Proof.  This follows immediately fromX0) since

m" Jo n! m" Jo n!
B (t,)

mnn!

(fo 2 (1) = f9(0)) . (21)

Substituting 21) into (10) gives Q0). &
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Note that equation2Q) is often quoted in the context of numerical analysis
since one can readily apply the mean value theorem to the integral on the right
hand side.

There are two choices of which are worthy of special note. When = 1,
althoughB; (1) = —1/2, we haveBa..1 (1) = Baey (0) = 0 for all s € N. Again,
whent, = 1/2, we have thaf3,,_; (1/2) = 0 for all s € N. These observations
give rise to the following corollary.

Corollary 2.3 Suppose thaf® Y ¢ (C'[0,1] and f@” € L;(0,1) for some
n € N. Then, for everyn € N,

(@) whenv =1, so thatt,, = 1,

m, nop, @1 (1) _ f@i-1
S WATOED Src TR e
Jj=0 J=
1 L @) (1) By, (mzx
mzn/o : <()2n)2' ( )dx; (22)
(b) whenv = 0, so thatt, = 1/2,
Lt " By (1/2) (@Y ()= /@D (0)
m J=o ((J+1/2) /m) — le (2))! ’ mai

1 f® (x) By (1/2 — max)
/0 : d | (23)

m2n 2n)!
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Proof.  This follows immediately by substitution into equatidio). &

Note that, equally well, we could have pyt= 1/2 and1 into equation 20).
The first summation on the right hand side of equati#) (s known as the ‘trape-
zoidal rule’; that for equation2@) is known as the ‘mid-point’ rule.

All the above results are well known. We note from equatibd),(for exam-
ple, that if fU=1 (1) — fG-D(0) = 0 for j = 1(1)n then the errod f — Q1 f
is of orderO (1/m"™). The larger we can choose the faster will be the rate of
convergence to zero of the error. Thus if we have some degree of periodicity of
the functionf we could have a good rate of convergence to zero of the error. We
shall exploit this idea in the subsequent sections. To do this we shall introduce,
in the next section, a suitable space of functions and also the so-called ‘sigmoidal
transformations’ which can impose some degree of periodicity on to our original
(non-periodic) function.

3 A space of functions and sigmoidal transforma-
tions

To consider the error term in Theore2rl, it is convenient to introduce a space
of functions similar to that previously considered by Kregsdnd Elliott and
Prossdorf B]. Essentially we consider functions which are ‘smooth enough’ on
the open interval0, 1) and have singularities only at the end poititand1. In



§3: A space of functions and sigmoidal transformations E38

Definition 3.1 we shall letC” [0, 1] denote the space of functions which are con-
tinuous on the compact intervl, 1] and vanish at both end-points.

Definition 3.1 Suppose is a positive non-integer such that< o < n + 1 for
somen € Ng. AssuméV is such thalN > N > «a. A functionf is said to be in
the space’? if

(i) fec®™(0,1);

(i) f9 e C[0,1],forj=0(1)(n—1);
(ii)) Jo (¢ (1 =)~ |f9 (¢)| dt < o0, for j = 0(1) N.

In addition, a norm oK"Y will be denoted and defined by

Flloy = s [ (1= 07219 (1) a. (24)

J=0(LN

Comments on the definition. It simplifies, a little, some of the subsequent re-
sults and does not affect the generality of the analysis, if we assume ihat
an integer. The choice @f ‘much larger’ thanv is included so thaf will be ‘suf-
ficiently smooth’ on the open intervél, 1) for all the subsequent analysis. The
context will always make it clear how largeé needs to be. Suppose we define a
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function f say, onR such that it takes the value gfon the open interval0, 1)
and satlsflesf (1+2)=f(z ). As a consequence of (ii), we see thaf it K
thenf e C» 1 (R) so thatf and all its derivatives up to ordén — 1) will be
continuous and periodic (of periad on R. This will be important in the con-
text of Theoren2.1 Again, since the Euler-Maclaurin formula (equatidd)]
involves f0—1 (1) — fG=1(0) for j = 1 (1) n, we treat the two end-points in the
same way. That is, there appears to be no point in replacing (iii) in Defir8tibn
by, for example,

1
/tﬂ—a(l ]ﬁ’fm ‘dt<oo forj=0(1)N,
0

for someg different froma.

As an immediate consequence of Definitidd, we have the following theo-
rem.

Theorem 3.2 Suppose € K~ wherea € (n,n + 1) andn € No. Then

(i) fYisintegrable on0, 1) for j = 0(1)n, andf; ‘f(j) (t)’ dt < c||fl|4,y for
some positive constant

(ii) there exists a positive constansuch that

@] < et -4 for j=0(1)(N-1). (25)
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Note: Throughout the paperwill be used to denote a generic constant whose
value may change from time to time. The context should make it clear what
parameters does not depend upon. Thus &5 ¢ will be independent of andt

but will depend on.

Proof.
(i) We have, forj =0(1)n
/01 FOw]de = /01 (=0 |fD @) - (e (=) dt

c/01<t<1—t))f—a\f(j)(t)]dt, sincea —j > 0,
cllfllon - by (24,

.

AN VAN VAN

(il) Suppose firstthai = 0 (1) (n — 1). From (ii) of Definition3.1we have
1w = [ " 0D () ds . sincefP (0) = 0,
= [ (=9 D ) (5 (1= )" s,

Now on 0, 1/2] sincej = 0(1) (n — 1) andn < o < n + 1, the function
(s (1 — s))*"Y*Yis monotonic increasing so that

FOW] < =00 [ (s (-9 1 (5)] ds
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< (1 =) f]l,y, onusinge4).

Again, on[1/2, 1] we have, sincg® (1) = 0,

O] < [ =9y D) (a1 )V

Since(s (1 — s))*Y*? is monotonic decreasing dh/2, 1] we can again argue as
above and establis2§) on [0, 1] for j =0(1) (n — 1).

Suppose now thgt=n (1) (N — 1). From
1O = F0 02+ [ FO (s) ds
we have fort € [0,1/2] that
. 4 /2,
7O @] <0 am|+ [0 )] ds. (26)

Since(t (1 — t))’**~* is monotonic increasing o}, 1/2] and bounded above by
2720*1-9) on that interval we have

(t(1— t))j+1—04 ‘f(j) (t)’ < 9-2*1-a) ’f(j) (1/2)

+/ ]+1 a ‘f(ﬁl) )‘ds
< 9o ]f‘” 1/2)! 1l -
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Consequently ofp, 1/2] we can find a positive constantindependent of, such
that,
’f(j) (t)‘ <c (t (1 _ t))a—(ﬁl) .

One may argue in a similar fashion ¢ty2, 1] but the details will not be given.
This establishes the theoreds.

It is appropriate here to consider how the Euler-Maclaurin formula applies to
a function inK’Y.

Theorem 3.3 Supposef € K wheren < a < n + 1 for somen € N. Then, for
allm e N,
If=QWf+EXYf (27)
where .
B < — 1l (28)
m

for some positive constantindependent ofy.

Proof.  From the assumption thgtc K2 we have immediately that?) (0) =

f91) = 0forj = 0(1)(n—1). Certainly Y ¢ C]0,1] and by Theo-
rem 3.2() we havef™ < L;(0,1). Since the conditions of Theorethl are
satisfied we have

dz .

[f:Q[mV]f+ 1 /1f(")(x)£_3n(ty—mx)

mn™ Jo n!
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But from (4) and 6) we have
By (t, — ma) /nl| < 2¢ (n) / (2)" ,

where( denotes the Riemann zeta function, so that

297 < < [ w]ar< )
m ~ mn Jo = mn a,N
from TheorenB.2(i), and the theorem is established.

The question now arises as to how, given a functfomve may transform it
so that a reasonable number of derivatives of the transformed function vanish at
the end-points. We introduce a sigmoidal transformatigrsay, of order- > 1,
which is a one-to-one mapping of the compact intejval] onto itself. Following
Elliott [ 3], we introduce the following Definition.

Definition 3.4 A real-valued function, is said to be asigmoidal transformation
of orderr > 1 if the following conditions are satisfied:

(i) v- € CH[0,1] N C*>(0,1) with v, (0) = 0;
(i) v (@) +vA—-—2)=1,0<z<1;
(iii) -, is strictly increasing ono, 1];

(iv) ~/ is strictly increasing ono, 1 /2] with /. (0) = 0;
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(V) 79 (x) = O (2"7) nearz = 0, j € N.

Let us recall that our aim is to find approximate values of the intefjfak
J3 f (z) dz. If we make the change of variahte= ~, (t) then we have immedi-
ately that

1f = [ g.(t)dr say, wherey, (1) = f (3 (1)) 7, (1) (29)

It is to the functiong, that we shall apply Theore@i1and in particular we shall
suppose that

If =Quif+ Enlf (30)
say, where
m—1
% Yo (G+t)/m)f (v (G +t)/m), —1<v<l,
QU f = T
m 1 "oy )
EZO v (G /m) f (v (G/m)) v=1.

(31)
We note thatfor-1 < v <1

QU = Qg and Ef = By, 2

Our aim is to choose such thay, € Kév say where3 is large enough so that we
may apply Theorem8.3to g, and obtain a good rate of convergencef' f to
zero asn — oo. Let us now be more precise.
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Theorem 3.5 Supposef € K., for some non-integesr > 0 and let, be a
sigmoidal transformation of order > 1. Let

gr (t) =f (’Yr (t)) %lﬂ (t) ) (33)

and suppose
B:=ar with [S¢&N. (34)

If we assume < N then

i N
(|) g, € Kﬁ y
(ii) there exists a positive constansuch that

||9r||ﬁ,N <c ||f||aN : (35)

Proof. Let us suppose that; < 3 < ny + 1 for somen; € N. Firstly we shall
show thatg? (0) = ¢ (1) = 0 for j = 0(1) (ny — 1). By Leibnitz’ theorem
applied to the definition o, as given in 83) we have

69 (1) = 3 (2) (4 ()9 (F (e ()

s=0

Let us rewrite this as

99 (1) = S, () FO (3 (1) | (36)

s=0
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say. On differentiating36) again with respect towe find that the functions, ;
must satisfy

o j+1 (t) = ug (1)
Us o1 (1) = us—1,5 (1) 7, () +u; (1), s=1(1)7, (37)
Uj+1,5+1 (t) = .

In particular, we see that
o (8) =AU (1) w (8) = (3 ()" (38)

Let us consider what happens in a neighbourhootl-ef0. We haveug; (t) =
O (t=7=1) andu, ; () = O (t=H0*Y). If we conjecture that, near= 0,

ug; () = O (£7177)  for s =0(1)] (39)

we see that this satisfies the special cased) ands = j as well as the recurrence
relations 87). Consequently we shall take the behaviour.@f neart = 0 to be
given by @B9). If we recall £5), we see that near= 0 we have

fO) =0 () for j=0(1)(N—1). (40)
Since, (t) = O (t") neart = 0 we have, from 36), (39) and @0), that
g? (1) =0 (1) for j=0(1)(N-1). (41)

In particular we havg;¥) (0) = 0 for all j such thatj < ar — 1. Recalling
thatny < ar < ng + 1, we have thay?) (0) = 0 for j = 0(1) (ny —1). We
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may argue similarly at the end point= 1 so that we haveg® e(i‘ [0, 1] for
j =0(1) (ny — 1). This shows that (ii) of Definitio®.1is satisfied; we must now
show that

/Ol(t(l—t))j‘ﬁ g,(,j)(t)‘dt<oo, for j=0(1)N,

and in so doing we shall prove both (i) and (ii).

From (36),

1
[ -0y~ @ dt<Z/ Y gy ()] 19 (3 (1)) .
(42)
Firstly, from @39), and a similar result valid near= 1, we can write

ey () = (£ (1 =) Uy (8) (43)

say, wherd’, ; is continuous orf0, 1] and does not vanish at the end-points. In a
similar vein we write

Y (8) = (t (1 =) Tha (1) (44)

and

Yo (6) (L= (1) = (t(1 = 1)) T'ho(?) (45)
say, where the functioris. o andl’, ; are continuous and strictly positive @ 1].
From @2)—(45) we find

[aa—ny

g9 (1) dt
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scz/ (1= )51 (3, (1))t

(1= )"

O (. (1)) dt

IN IN
o o
5= 50~
o\ \,

$

)~ ’f(s) (x)’ dr, onwriting~, (t) =z,
< e+ fllay <oo, for j=0(1)N. (46)

Hence condition (iii) of Definitior8.1is satisfied so thaf, € Kév and furthermore
we see from46) that there exists a constansuch that|g. || 5 v < c||f||, > and
the theorem is proveds

We are now in a position to put an upper bound on the error tBfi f,
see B2).

Theorem 3.6 Supposef € KX for some non-integetr > 0. Let~, be a sig-
moidal transformation of order > 1 such thatn; < ar < ns + 1, for some
n1 € N. Then with

If = QS + BRI

there exists a positive constanindependent ofz such that

(47)

a,N *

EXE
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Proof. From 32), TheorenB3.3and Theoren8.5we have

c

EYf| = [EXg] < —llgrlln € —— [ Fllay (48)

mn
[ )

This is the principal result of this section from which we see that with the
introduction of a sigmoidal transformation, the application of the trapezoidal rule
to the transformed integrand gives a higher rate of convergence than without the
transformation.

Although we have assumed so far in this section thit sufficiently smooth
on (0,1) (i.e. f™ € C(0,1)) nevertheless we will now show that the quadra-
ture rule as defined by equatior0f and @1) is convergent wherf is merely
continuous ono, 1].

Theorem 3.7 Supposef is continuous o0, 1]. Then, with any sigmoidal trans-
formation of orderr wherer > 1, lim,, .., Q"1 f = I'f. i.e. the quadrature sum
converges to the integral.

Proof.  This follows from the Blya-Steckloff theorem see, for example Davis
[2, p.353], which states that if a quadrature r@lg f := Z}”zgl ajmf (Tgm) has
ajm > 0forj =0(1) (m —1), m € N, thenlim,,, ... Q. f = fo f () dx for all

f e C0,1]iff limy, o0 Qm(2¥) = [o 2*dx for all k € No.
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From the quadrature rulgl"1 f defined in 81) we can see that
ajm = (L/m)y ((j+t,)/m), j=0(1)(m—1),

which is strictly positive, see DefinitioB.4. It remains to consider the functions
z* for all k& € No. These functions are iKY for anya € (0,1). Thus ifr > 1
we can choose an € (1/r,1) such thatl < ar < 2 and consequently; = 1.
By Theorem3.6

‘E}Z’T]xk‘ < (¢/m) ka

ar,N

for all & € No. Hence lim Elvrgk = 0 for all k € Ng and the theorem follows
atonce. &

4 Cauchy principal value integrals

Although the Euler-Maclaurin sum is mostly associated with the evaluation of

ordinary integrals, nevertheless it can be used very effectively for the approximate
evaluation of Cauchy principal value and certain Hadamard finite-part integrals.
In this section we shall consider Cauchy principal value integrals and we shall first
introduce the analysis due to Lyne$ [Let

(If) (x) :== /01 ;E—yidy, where0 <z < 1. (49)
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To apply Theoren2.1we introduce aubtraction function) which is defined by

¢<y;x):={g:’c(x)wt(”(y”))’ z:ﬁg (50)

We now define

(Sg.yr]nf) (z) = { 71f (9([;) cot (m (t, —mzx)) , t,—mx & Z, (51)

"(x) [/m, t,—mx €Z,
and
1 F (G +1) /m) o
(Qm f)( - mZ ((j+t)/m—z)’ v 2z, (52)
L2 (G /) R

m 2 (G +t,) fm—a)

>~ denoting a sum where the quotient is replaced by zero in that term for which
(j+t,)/m—x = 0. We shall now state and prove what is essentially Ly-
ness’ principal resultd] noting that the conditions implied in his Theorem 3.5
are slightly incorrect.

Theorem 4.1 For somen € N, suppose thaf € C~Y [0, 1] with f®™ and f®*+
continuous or{0, 1) and f™ integrable on(0, 1). Then, for) < = < 1,

(L) (@) = (QULF) (@) — (S¥LF) (@)
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S L ()] (1)

+ (ELLf) (@) (53)
where -
(eth) 0= o [ (75 v ) o9

Proof.  This is based on applying Theore2nl to the functionh, defined on
[0,1] by
A TW/y—2) =V (), y#a,

h1<y,$)—{ f/(x) : y=1. (55)
We shall show that, after suitably definir%%1 (x;z) for j = 1(1)n, the condi-
tions onf imply that, for a fixedz € (0,1), hy € C®D[0, 1] andh{” € L; (0, 1).
With this established we can immediately apply Theoto the functionh,
and this will give 63) and 64).

From Abramowitz and Stegurd[4.3.17] fory € [0, 1] \x

e deyi) (56)

cot (m (y — x)) = Py Y

say, where

Z (y—x)? " for|y—=z| <1. (57)

j=1
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We see thaby (-, z) € C* [0, 1]. From 65)—(57) we have that

f(y)—f(ﬂf)Jr
Yy—x

hi(y; @) = f@)do(yiz), y#uw. (58)
If we defineh, (z; z) to beii_r;}c ha (y; ) then from 68) we haveh, (z;x) = f' (x),
which agrees withg5), and the functiom (-; ) will be continuous ono, 1]
since bothf and¢y (- ; ) are continuous ofd, 1]. If we let h{ (- ; ) denote the
jth order partial derivative ok, with respect tay for a givenz € (0,1), we see
from (58) that h$) g ;x) exists on[0, 1] \z for j = 0(1) (n —1). If we define
K (x; x) =lim K9 (y; ) thenhY (- : z) will be continuous at:. Since we are
assuming thaf € ¢~ 0, 1] we shall then havé, (-;z) € =0, 1]. What
is ) (:; )7 A slightly tedious calculation gives

- fUD () /(G +1) j even,
W) (5 2) = . . . . 59
(&) { P9 @)+ o) Byl f(@)] /(G +1) . jodd. O
This will be valid forj = 0(1)n since, whenj = n, we are assuming that
fe*D e € (0,1) and, of coursey € (0,1).

It remains to show thdt{"” (- ; z) is integrable ove(0, 1). From the preceding
paragraph we have tha{” (-;z) € C (0, 1) so that integrability ovef0, 1) will
follow if h{" is ‘well behaved’ at the end points 0 and 1. By Leibnitz’ theorem,
from (58) we have

WY (ysz) = (=1)"nl(f (y) = f (@) / (y — )"
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+Z ~ ) (y) /(y—a2)""

+f(")( )/ (y—x). (60)

Sincef € C™[0,1], x € (0,1) and f™ is integrable on(0,1) we see that
K (y; x) must be integrable in the neighbourhoods of the end-pairatsd 1.
Consequently:, (- ; z) satisfies the conditions of Theore2rl and 63) and 64)
follow from (52) on using the properties of the subtraction functioft ; =) as
givenin Lyness§, §2]. &

Let us now consider this result given thatis in the spacex’)V; cf. Theo-
rem3.3

Theorem 4.2 Suppose € K~ wheren < o < n + 1 for somen € N. Then, for
agivenz € (0,1),

(If) (z) = (Q,f) (x) = (SEL.f) (@) + (ELLS) (@) (61)
and there exists a positive constanindependent of: andz, such that
[,,] ¢ “f”a N
(B @] < =it (62)

Proof. Sincef € K wheren < a < n + 1, it follows from Definition3.1(ii)
that

R0 =21 =0, forj=001)(n-1), (63)
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so thatf € C®~10,1]. From Definition3.1(i) we have that bottf™ and f®+1)
are inC (0,1). Finally, from TheorenB.2i) we have thatf™ < L, (0,1) so
that all the conditions orf in Theorem4.1 are satisfied. From6@) we see that
the summation on the right hand side 68 is zero so that/, f) (z) is of the

form given by equationgl). It remains to put a bound (‘%rﬁEﬂ@f) (:v)’. With
hi (-;z) as defined byg5) and recalling thaltén (t, —my) /n!‘ is bounded above
by 2¢ (n) / (27)" (see proof of Theorer8.3) we have from $4) that

[v] e,
(ELF) @)] < — [ [0 (i) dy. (64)
From the form ofh, (- ; z) as given in §8), since we can write

F@)=F )~ =) [ '+ -0

we may rewrite $8) as

hayio) = o) [ 1 G (= 0) e+ 6o(5) f(0), (65)
where

o1(y;2) =1—(y—a)do(y;2) =m(y —x)cot (r(y—x)).  (66)

We observe that botly (- ; z) andés (- ;) are inC® [0, 1]. By Leibnitz’ theo-
rem

n

1 Gi0) = SO ) [k (-0

s=0
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#6670 (g52) O 1) |- 67)
Now we can find a positive constansuch that
(68)

Ny )’ <¢, fori=0andl.

0<y<1, s O(I)n

Consequently fromg7) and ©8) we find
1 n 1
n) (,,. n (s)
/c)’hl (y;7)|dy < c;(s){/o £ (y)]d
1 r1
s | pls+1) _
—i—/o /Ot f (e + (y x)t)’dtdy}. (69)

By Theorem3.2(i) we have

L 179 @) dy < el (70)
for some positive constant Fors = 0 (1) n, let
1 r1
— s | £(st1) _
I, (z) = /o/ot £ (24 (y — o) t)| dt dy
(71)

— /Olts /()1’f(s+1) (z + (y—x)t)’dydt.

Sinced < z < 1and0 < t,y < 1wehave) < 2+ (y —z)t < 1 so that we shall

have
du <c|fllan (72)

/ ‘f(s+1) (¢ + (y — ) dy</ ‘f(s+l)
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fors =0(1) (n — 1) by TheorenB.2(i). Thus fors =0 (1) (n — 1) we have
1 r1
bk
0 JO
for some positive constant It remains to put an upper bound n(x). From (71),
on puttingu = = + (y — «) t we have

FED (@4 (y — o)1) dtdy < c || fll,n (73)

I, (z) = /0 ' t" 1, (6 ) dt (74)

say, where
t+x(1-t)

Iy (t; ) = /x ‘f("ﬂ) (u)‘ du . (75)

(1-t)
Now we can write

t+a(1-1) +1—a n+ a—(n+
Joga) = [ @) )] (1) d

< Hot (@50 [Flloy (76)
say, where
. L _ a—(n+1)
Hopea (238) o= max - (u(l—u))
1
o min, (@ (i) "
0<v<1 Ui s

sincea < n + 1, where we define

Q vz, t) = (x(l—t)+tv) (1 —z(1l—1t)—tv) . (78)
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To determine the minimum value @f for v € [0, 1] we shall distinguish two
cases. Suppose first thHak = < 1/2. Since0 < ¢t,v < 1 we have

t(v—2z)<v—20<1-2

so that
0<1—-2z(1—t)—ut

or, on multiplying byvt, which is non-negative,
0 <wt(l—2z(1—1t)—v*?. (79)
Combining 78) and (79) we have
Q0;2,t) <Q(0;2,t) +vt (1 =22 (1 —1t)) —v*t2 = Q (v;z,t) . (80)
Hence, for) < x < 1/2

Hypsr (z3) = 1/(Q (052, 1))
= 1 [ = )™ (1= (- )]
< 219" (81)

sincel —z(1—t) > 1/2fort € [0,1]. From (74), (76) and 81) we find for
z € (0,1/2],

Ly (2) < 2" fllon (T () T (@ = n) /T (a)) 2™ (82)
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We may argue similarly forr € [1/2,1). We shall now have) (v;x,t) >
Q(Lz,t) > (1—x)(1—t)/2forallt € [0,1]. Consequently fot /2 < z < 1,

L () <270 | fllon (D () T (@ =) /T () /(1 =) (83)

Combining 82) and 83) we conclude that for any given e (0, 1) there exists a
positive constant such that

Ly (2) < e[ flla / (x (L= 2))"™ " (84)

Returning to 69), recalling ¢0) and (73), together with 84) we conclude that
there exists a positive constanindependent of. andx such that

! (n) n+l—a
LB i) dy < el / (2 (1= ) (85)

for a givenz € (0,1). Combining this with 64) establishesg2) and the theorem
is proved.d

We must now consider the effect of a sigmoidal transformation of order
applied to the integral. On writing = , (¢) then, as with the change of variable
for ordinary integrals, we have

(L) ( / ' %’" ) ar. (86)

If we write
T =" (S) (87)
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then, sincer € (0,1), we shall haves € (0,1). Consequently we shall rewrite

(I.f) (z) as o (1
(W)@ = [ 28

dt (88)
o t—s

say, where
Y- O)(t=3)f(yr (1))
B, (t;5) := SOt o tFS,
f(z), t=s.

(89)

The question now arises as to which spécé- ; s) is in given thatf € K for
somea > 0, and we shall address this in the next theorem.

Theorem 4.3 Supposef € K2 for some non-integerr > 0 and let, be a
sigmoidal transformation of order > 1. Suppos& = ar with 5 ¢ N. Assuming
that3 < N then

(i) @, (-;5) € K7,

(ii) there exists a positive constansuch that

17 (-5 8) g < cllifllan -

Proof. Let us write
D, (t;s) = pr (t:8) g, () (90)
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say, wheregy, is defined in 83) andp, is defined by

.o ) =)/ () =% (s), t#s,

(9= ) t=s. oD
Sinces is fixed in (0, 1) andp, (s; s) :lim pr (t;s) we see thap, (-;s) is con-
tinuous on|0,1]. However, we can say more. |If, for all € N, we define
P (s15) = lim plP) (; 5) then we shall have, (-;s) € C[0,1]. It should
be noted that we can defip€) (- ; s) recursively. From41) we can write

1
pr(t;S)/O V(s + (t—s)n)dn=1 (92)

for 0 < s,t < 1. With fixed s € (0, 1), on differentiating; times with respect to
and puttingg = s we obtain

D (519 1 jf(*j“) W (s:8)798 0 (s) (93)
58) = —F——————— . ) (858) Yy s
& Grome s\ i )7 !

for j € N with p, (s;5) = 1/7.(s). Sincev. (s) # 0 we see thap¥) (s; s) is
defined for allj € N. From Theoren8.5(), g, € K’ so that sincg®) € C (0,1)
for j = 0(1) N, it follows that for a givens € (0,1), ®Y (-;5) € C(0,1) for
j =0(1) N. This is condition (i) of Definitior3.1

Neart = 0, see thap, (t;s) = (s/7-(s)) (1 + O (t)), the constants /v, (s))
being defined and non-zero singec (0, 1). Thus, neat = 0, ¢, (-; s) behaves
like g, and we know from41) thatg") (t) = O (t‘”‘j‘l), forj =0(1)(N —1).
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With a similar result near = 1 we find that ifn; < 5 < nq + 1, forsomen; € N
(recall thats = ar is not an integer) then we shall have

dY) (0;5) = ®V (1;5) =0 forj=0(1)(ng—1). (94)
This satisfies Definitio3.1(ii).

Finally, from (0), for a fixeds € (0, 1) we have, by Leibnitz's theorem, that
forj=0(1)N

.

oY) (t; 5) Z () @ (1) pi=9 (t; ) (95)

=0
so that

| ea—ny~

g9 ()]

Y0 (t:5)] dt . (96)

0 (t;s)‘dt < Zi;(f) /01(15(1—75))
(t(1—1)~

Now, sincep, (-, s) € C* [0, 1] we can find a positive constansuch that

fL) . . -
max ’p (t; 5)‘ <c¢ fori=0(l)jandj =0(1)N.

Again, sincej — 7 > 0 we can find a positive constansuch that from ¢6)

[ea—ny

O ()| dt < cllgrllyn > () <00 (@)
=0
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Thus from DefinitiorB3.1(iii) we see thatb, € Ké" which proves (i). Furthermore,
(97) tells us that there exists a positive constastich that|®,[|; v < c|lg-[| 5 v
which completes the proof of the theored.

We now come to the approximate evaluatior{ ff) (x) from the form given
by (86). To this end we now define the following quantities

’%fv J+t)ﬂm (7 ((j +t,) /m))

(Q¥lr) (2) = 5 O8] /m) =) ms—t, ¢ Z,
l—'7HU+th><%«m+twm» ms—1, €2

mi (G +t)/m)—%(s) ,EZ,

(98)

with >’ denoting, as before, a sum where the term in which the denominator is
zero is replaced by zero. Froi@9) we observe that

(QUf) (@) = (Q¥h2r) (s) - (99)

In addition, we define

i 7w f (x)cot(w (t, —ms)), ms—t, ¢Z
(stts) @ = { @ TS e Es oo
Again, we see that
(SELf) () = (s.@,) (s) - (101)

We now come to the principal result of this section.
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Theorem 4.4 Supposef € KX for some non-integesr > 0. Let~, be a sig-
moidal transformation of order > 1 such thatn, < ar < nq + 1 for some
ny € N. Then, foranyn € Nand0 < z < 1,

(1f) (x) = (QUIf) (x) = (ST f) (@) + (ERf) () (102)

say, where
Il v
))(n1+1—ar)/r )

[v.r]
(BEF) ()] < e (ol = (103)

for some positive constantindependent of» andx.

Proof. From (61), (99) and (L01) we have
(EEDf) @] = | (EEL2,) (5)] (104)
Since by Theorem.3 &, € Kév where( = ar , then on using@2) we have
¢ |9l g v

(5 (1= )" mm

Nl
(372 () (1 =272 ()™ mme
by Theorem4.2 for some positive constant Now nearz = 0, 7,1 (z) =

O (xl/’") and nearr = 1 we havel — 1 (z) = O ((1 — x)l/"). Consequently
we may write

(E2) ()] <

(105)

7 @) (1= @) = (@ (1= 2)"" X, (@) (106)
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say, where the functio, is continuous and strictly positive df, 1]. Combin-
ing (105 with (106) gives (L03) and the theorem is proved.

We see that as in the case of the ordinary integral (see Thed@tie intro-
duction of a sigmoidal transformation or ordeincreases the rate of convergence
fromO (1/m") to O (1/m"™) wheren, is roughlyr timesn. This can be very sat-
isfactory (see Elliott & Venturinoq]). Furthermore it is of interest to know from
the above analysis that the rates of convergence are the same for both ordinary and
Cauchy principal value integral. However, in the latter case the presence of the
factor1/ (z (1 — z))"™* /" indicates that the actual values of the errors will be
larger near the end-points. This is well borne out in practice.

In Elliott & Venturino [5], we considered the use of the Euler-Maclaurin sum-
mation together with sigmoidal transformations to find approximate values of cer-
tain Hadamard finite-part integrals. We shall discuss such integrals in the next
section.

5 Hadamard finite-part integrals

We now turn our attention to the particular Hadamard finite-part intéds#) (x)
which is given by

@) @)= [ 0ty o= [0l o
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for somex € (0, 1). Since it is essentially the derivative of the Cauchy principal
value integrall; f, all our results will follow on differentiation with respect to
From ©8) and (L0OO) we shall define, forns — ¢, ¢ Z,

(@25) -

= m)/m) (o (G + ) Jm)
; (G 8) fm) = (5) (109)

1
m
and

f (9 (s))
Y. (8)

wherez = ~, (s). Thus after sigmoidal transformation we shall write

(Lof) (x) = (Q¥1 f) () = (SYd f) (@) + (EZ;0f) (z) (110

coseé (r (t, —ms)) ,
(109)

(Sl ) = 7 f (4 (s)) cot(m (t, — ms))+a2m

say, where we need to put a bound’@E[" "]f) (x )’ The first two terms on the
right-hand side of 10 give the approximation t¢/,f) (x); we want to bound
the “error term”. We might write the corresponding forms (c@[" i ) () and

(L1 f) () whenms —t, € Z, but the details will be omitted here.

We shall now develop the analysis fde f) (z) in a manner similar to that for
(I1f) (z). In (108 and 09 we shall adopt the convention that wheps- 1 then

71( ) = = so that we shall writd Q%Y f) () as (QY), f) (x) which is equal to
4 (Q[V 1]f) (z), see 62). A similar remark applies t(éSz 1]f) (z).
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Theorem 5.1 For somen € N, suppose thay € C*=10,1], with f, fD
and f®*2 continuous on(0,1). Suppose in addition that™ is integrable on
(0,1). Then for some: € (0, 1)

(I2f) ()

I
/N

)

o ( f ) )
y=1 dy’=* (y_x)z

y—x)
+ (ELLf) (2) (111)
where
1 1 ar 0 z)\ B, (t, —m
R il e B ) B

Proof.  This parallels that of Theoredh.1 Fory # x we defineh, (y; x) to
be a%hl (y; x) (see equation5b)). The value ofh, (z;x) is defined to be lim

ha (y; x). Consequently we define i
FW)/ (y—a) =5 (yix), y#u,

h ; = N Ox 3

2(y,x) {%f//($)_%f($)7 P (113)

It is to the functionh, that we shall apply Theorea.1 We need to show that
after suitably defining%% (z;x) for j = 1(1)n, the conditions ory imply that
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ho € C=D0,1] andh$? € Ly (0,1). If we take the expression fdr, as given
by (65) then we have

holyin) = b (yia)
_ (%1 (y: 2 /f v+ (y —x)t)dt
1

+¢1<y;x>/o (1= 0" (e +(y—a)t)de

+ 20 ) ) (14)

wherego and¢, are defined byX7) and ©6) respectively. A tedious calculation
shows that

(3+2) i+2 )
hg) (z;2) = JJ(rl)z (3) (2m)’ . | B+l (J;(fz))a J even,
) Vhs + )
J+1)(7(2) + (27 )] |B]+1| (Jﬂ) , j odd,

(115)

where we definéy’ (z; z) to be lim hS) (y; ). This will be valid forj = 0 (1) n

since whenj = n we are assuming that bof"*V) and f**? are continuous at
€ (0,1).

For the integrability ofsy” (- ; =) over (0, 1) we argue as for the integrability
of A" (-; z) in the proof of Theorend.1 We haven$” (-;z) € C(0,1) so that
we need only considér, at the end point8 and1. As with 4, in Theoremd.1, we
may consideh$” (y; x) by applying Leibnitz’s theorem to each term irig). The
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behaviour off and its derivatives at the end poirtand1 show that:{" (- ; z) is
integrable or(0, 1). The details are left to the readd.

As in §4, let us now assume thgte K for some non-integer > 0.

Theorem 5.2 Supposef € K wheren < a < n + 1 for somen € N. Then, for
agivenz € (0,1)

(Lof) (z) = (QY0.f) (x) = (S50.f) (@) + (E¥Lf) (@), (116)

and there exists a positive constanindependent of: andz, such that

(( [y] ) ’_ C“fHaN . (117)

)n+2 « mn

Proof.  That the form of(/,f) (x) is as given in {16) follows by the same
arguments as given in the proof of Theordrd From (L12) we have that

‘ ( EY) / ‘ B (y: 2

From the form ofh, as given by 114) we find on recalling §8)

[ 118 )| e < é(’;){/ol/olf

FED @+ (y - 2) )| dt dy
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1 r1
s . (s+2) o
+/0/Ot (1 t)‘f (z+ (v x)t)]dtdy
+ 170 w)ay (118)
0

Now (70) gives a bound on the last term on the right hand sidel&B) The
first term on the right hand side 0118 we have previously denoted by (x)
(see 71)) and is bounded above hy|[f|,  for s = 0(1) (n —1) (see 72).
Whens = n, a bound forl,, (x) is given by 84). Finally let us consider

/Ol/oltS(l—t)\f(s+2)(x+(y—x)t)\dtdy
= /1ts (1—t)/l\f(s+2>(x+(y—x)t)\dydt, (119)
0 0
fors =0(1)n. Fors =0(1) (n — 2) we have simply (cf.12))
K, (z) < (/ (1 —1) dt) (/ £42 (u du) <clflly .  (120)

Now (cf. (74) and (75)) we have

1
K1 (z) = / (L — 1) T, (4 2) dt (121)
0
For0 < z < 1/2 we find from (76)—(81) that
2n+l « a "
K@) < o Wl [ 0720 =0t
< el fllan /2 (122)
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for some positive constant Arguing similarly for1/2 < x < 1 we conclude that
¢l
(z (1= @)™

for 0 < x < 1. Finally, it remains to considek,, (z). By arguing as we have
done forK,,_; (x) we find

K,1(x) < (123)

(124)

Nl
K, (r) < oy
0= Ga—a)

Putting these results together we establishi’f and the theorem is provedh

We must now consider the effect of a sigmoidal transformation on the Hada-
mard finite-part integral. On writing = ~, (), = = . (s) we find from (07)
that we may write
LU, (ts)
I :L/ 2GS g 125
(BN @ = | G (125)

say, where the functiow, is defined by

PO (=9 () = NP s,
¥r (89) {f<%<s>>/v;<s>, =y 129

Theorem 5.3 Supposef € K¢ for some non-integetr > 0 and let~, be a
sigmoidal transformation of order > 1. Supposé = ar with 5 ¢ N. Assuming
£ < N then
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(i) ¥, (-;s) € KY,

(ii) there exists a positive constansuch that
W (5 8)llgn < cllfllan -

Proof. Recalling 83), (90) and ©1) we see that we can write
U, (t;5) = p2 (t;5) gr () = py (t;5) D, (5 5) . (127)

In the proof of Theorem#.3 we showed thap, (-;s) € C©)[0,1]. Just as in
the proof of that theoreny, € Kj implied @, (-;s) € K} so we shall have
¥, (-;s) € K} and furthermore| V.. (-;s)|[; v < cl/fll,  for some positive
constant. The details will be omittecd

We now come to our principal result for these particular Hadamard finite-part
integrals.

Theorem 5.4 Supposef € K2 for some non-integett > 0. Let~, be a sig-
moidal transformation of order > 1 such thatn; < ar < n; + 1 for some
ny € N. Then foranym € Nand0 < =z < 1,

(1of) (2) = (QYIF) (@) = (41 f) (@) + (EEF) (o) (128)

where

‘( [l/r]f) ( )‘ C”f“a,N (129)

~omm(z (1 — x))(n1+2—ar)/7" ’

for some positive constantindependent of and x.



§6: Conclusion E73

Proof. Asin the proof of Theorem.4we have

(BE) @] = |(BELw.) )
eIl by Theorens.2 (130)
T (s(—s)mE Y '
< A by Theorenb.3,

(@) (L= () P s

from which (129 follows, arguing as in the proof of Theorefm.

6 Conclusion

We have considered the application of the Euler-Maclaurin summation formula
together with the use of sigmoidal transformations for ordinary, Cauchy principal
value and certain Hadamard finite-part integrals over the finite intébya). We

have defined a suitable space of functions in which to consider the analysis and,
perhaps surprisingly, one finds that the rate of convergence of the error to zero
is the same in each case. The analysis we have given here looks as if it should
provide a basis for using this particular set of quadrature rules in the approximate
solution of both Fredholm and singular integral equations taken over the finite
interval (0,1). That investigation however will have to wait for another paper;
this one is long enough already.
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A Proof of equation (115)

We observe 96 96
0 0

Z¥0 131

ox * dy 0 (131)
and 96 96
1 1

e i S ) N 132

ox * dy 0 (132)

Now i, := 24 and

Mo OBty oty
bor [ =05t =) di+ T ()
Again,
ahl o a¢1 1/ ! 1"
& = a—y/o [ @t =)ttt o [ L @ (g - )l

+ 90 (4) + 60f' (1)
Y

Therefore on using equations31) and (L32) we have

h h L
%—+%—y — [ S @ (- )t + dof ()
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= (- - aen (FULE g
- LWEEE s @) cotr - )
= hl(y;ff;f/)

say if, from 65), we change the notation tq (y; x; f). Therefore

COhy Ol

ha (y; ) = a—xz—a—erhl(y;:v;f’) :

The result forh¥ (z; 2) now follows from 69).
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