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Sigmoidal Transformations and the
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Abstract

A sigmoidal transformation is a one-to-one mapping of the compact in-
terval [0 1] onto itself whose graph iS-shaped. After giving a formal def-
inition, various mappings already given in the literature are reviewed in the
light of the definition. At least one new transformation is introduced and cri-
teria given for generating transformations having special properties. The use
of these transformations in using the trapezoidal rule to evaljgafe(x) dx

*Dept of Mathematics, University of Tasmania, GPO Box 252-37, Hobart, Tasmania 7001,
Australia. mailto:elliott@hilbert.maths.utas.edu.au
See http://jamsb.austms.org.au/V40/E006/home.html for this paper and
ancillary services(© Austral. Mathematical Soc. 1998. Published 12 November 1998, last cor-
rected November 23, 1998.


mailto:elliott@hilbert.maths.utas.edu.au
http://jamsb.austms.org.au/V40/E006/home.html
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is then considered and asymptotic estimates of the truncation errors are ob-
tained under different conditions. The paper concludes with some numerical

examples.

Contents

1 Introduction E78
2 Examples of “algebraic” sigmoidal transformations E85
3 Examples of “integral” sigmoidal transformations E94
4 The Offset Trapezoidal Rule E107
5 Some numerical results E127
6 Conclusion E132
References E135

1 Introduction

We shall start by giving a formal definition of what we mean by a sigmoidal trans-
formation (see Definitiod.1). We shall then show how all the sigmoidal transfor-
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mations we shall consider in this paper are generated from a simple formula (see
equation 1)) involving a suitably chosen functiof After stating conditions to be
satisfied byf we consider in some detail many of the sigmoidal transformations
already to be found in the literature. $2 we shall consider what | have called
“algebraic” transformations of which that due to Kre8kif an example. These,

in turn, lead on to transformations involving exponential functions and associated
with the names of Sag & SzekeresA], Mori [11], Jeon B]. In §3 we consider
“integral” transformations which are associated with the names of Kordfjev |

Iri, Moriguti & Takasawa p], Laurie [9] and Sidi [L5]. In each of§2 and§3 we
introduce a new transformation and consider its properties. All these transforma-
tions are associated with the evaluation of integrals of the ffjrif(z)dz using

the general offset trapezoidal rule.

It is well known that the truncation error is given by the Euler-Maclaurin ex-
pansion which involves a knowledge of the integrand and its derivatives at the
end-pointd) and1. As we shall see, a suitably chosen sigmoidal transformation
of the variable of integration will allow, in general, an arbitrary number of these
derivatives to be zero thereby improving the rate of convergence of the quadra-
ture sum to the integral. For some well known sigmoidal transformations, all the
derivatives will be zero and we shall then have a rate of convergence which is
exponential.

Our aim, in Sectiorg4, is to obtain asymptotic forms for the truncation error
and this we have been able to do making use of the well known Abel-Plana for-
mula which, however, does require that the definitiorf @an be extended from
[0, 1] into a stripS of the complex plane based @h 1]; see {4). For many exam-
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ples this is not a limitation. Two asymptotic estimates are given. In the first, see
§4.2, we assume thgtis holomorphic orj0, 1]; in the second, se@&.3, we shall
assume thaf is holomorphic at all points af0, 1) and has algebraic singularities

at the point$) and1. In §5 we give the results of some numerical experiments.

Let us now consider the definition of a sigmoidal transformation and, in par-
ticular, a sigmoidal transformation of order

Definition 1.1  (a) A real-valued function is said to be a sigmoidal transfor-
mation if the following conditions are satisfied:

(i) v € CH0,1]NC>(0,1) with~ (0) = 0;
(i) v(@)+y(1—-—2)=1,0<z <1,
(iii) -~ is strictly increasing ono, 1J;
(iv) +/is strictly increasing ono, 1/2] with+' (0) = 0.

(b) If, in addition to (a), either

(i) Y9 (z) = O (x"~7) nearz = 0, forall j € NowhereNy = {0,1,2, ...}
andr > 1, then~ is said to be a sigmoidal transformation of order
or

(i) v92(0) = 0 for all j € No, then~ is said to be a sigmoidal transfor-
mation of infinite order.
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Examples of these transformations will be giverfthand§3 but let us first
consider some general properties arising from this definition.

1. From (a)(i) and (a)(ii) we have that(1) = 1. From (a)(iii) we see thaf is
a one-to-one mapping of the compact interfgall ] onto itself.

2. From (a)(i), (a)(ii) and (a)(iv) we have that(x) = +'(1 — z) so that
7' (1) = 0, also. The functiony’ is symmetric about the line = 1/2.
Since, from (a)(iv),y is strictly increasing ono, 1/2], it will be strictly
decreasing onl/2,1]. Thus the function is “bell-shaped” and has a
global maximum atr = 1/2. Again, from (a)(i) and (a)(ii), we have
thaty” (z) ++” (1 —x) = 0on (0, 1) so that, in particulary” (1/2) = 0
as one would expect. Because the graph a$ like an elongated we
have elected to call such transformatiosgmoidaltransformations (see
the New Collins Concise English Dictionary, 1982). They are also known
asperiodizingtransformations (see Laurig]).

3. From (a)(ii) and (b)(i) we see thatifis a sigmoidal transformation of order
r then, near: = 1, for all j € No,

A9 (z) = doj + O ((1 — :U)T_j) ,

wheredy ; is Kronecker’s delta. Again, from (a)(ii) and (b)(ii), if is a
sigmoidal transformation of infinite order then althoughl) = 1, never-
theless we haveV) (1) = 0 for all j € N, whereN := {1,2,3, ...}.
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We need a way of generating sigmoidal transformations and, from an inspec-
tion of the particular sigmoidal transformations to be found in the literature (see
§§2,3), the following theorem appears to be particularly useful.

Theorem 1.2 Suppose a real-valued functigi defined orj0, 1], has the follow-
ing properties:

(i) feC0,1]nC*>(0,1)with f(0) = f(0) =0andf (x) > 0 for
0<ax <1,

(i) L84+ L=t > ofor0 <o < 1;

L @) f(ea) F@-f ) (@) |, flx)
() Foy — Foo > 2( F@+0—2) ) (f(x) + f(l—x)) for0 < <1/2.

Then the functiory, defined o0, 1| by

v(x) = f(x)/(f @)+ f(1—x), (1)

Is sigmoidal.

Proof.  From (i), sincef (z) > 0for0 <z < 1thenf (z)+ f(1—x) > 0for
0 < z < 1 so thaty is defined o0, 1]. For allz € [0, 1] we see from I) that
v (x)+~ (1 —z) = 1sothat, in particular, sincg(0) = 0 we havey (0) = 0 and
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v (1) = 1. From the conditions placed ghin (i) we see that conditions (a)(i) and
(ii) of Definition 1.1 are satisfied.

From (1) we have

V(@)= (' (@) f(L=2)+ f(L—a) f @)/ (f@)+f1-2))° (2

From (i) and (ii), the numerator is positive ¢f, 1) and since the denominator is
strictly positive we have that’ > 0 on (0,1). Hencev is strictly increasing on
[0, 1] so that condition (a)(iii) of Definitiori.1is satisfied.

To prove (a)(iv) of DefinitiorlL.1we need to show that’ > 0 on(0,1/2). On
differentiating @) with respect tar we find, after a little algebra, that condition
(iii) implies that~” is positive on(0,1/2). Hence~' is strictly increasing on
[0,1/2] and, again fromZ2), v/ (0) = 0.

Hence, as defined by equatiod); is a sigmoidal transformatior#

Corollary 1.3 Supposef satisfies conditions (i) to (iii) of Theorem2 and~ is
defined by equatiorij.

(@) If, forall j € No, f9(2) = O(z"7) nearz = 0, r > 1, thenvy is a
sigmoidal transformation of order,

(b) If f and all its derivatives vanish at = 0 then~ is a sigmoidal transfor-
mation of infinite order.
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Proof.  The proofs of both parts (a) and (b) follow at once from the definition
of v as given in equatiornlj. &

As we shall see below, for a given functigh it is sometimes difficult to
check out all the conditions of Theorehi2, in particular condition (iii) can be
troublesome. However, if we use Theorér2to definey from a givenf then we
know thaty” should have a local maximum at= 1/2.

Theorem 1.4 Supposef satisfies condition (i) of Theorefn2. If

3f1(1/2) 7 (1/2) = £(1/2) £ (1/2) > 0, ®3)

then~, as defined by equatiod), satisfies conditions (a)(i) and (a)(ii) of Defini-
tion 1.1and~’ has a local maximum at = 1/2.

Proof. Thefirst part has already been proved in TheotePnOn differentiating
equation ) twice with respect ta: then we find, after some tedious algebra, that
~"(1/2) < 0 gives inequality 8). &

In the next section we shall consider some of the existing sigmoidal transfor-
mations in the light of the analysis given in this section and we shall introduce
some new transformations.



§2: Examples of “algebraic” sigmoidal transformations E85
2 Examples of “algebraic” sigmoidal transformations

Many sigmoidal transformation, although not called by that name, have already
appeared in the literature and we shall look at them again following the discussion
of §1. In addition we shall consider two new transformations and also some of the
connections between them.

Transformation 2.1 Perhaps the algebraically simplest and most widely used of
these transformations is that obtained by choosing

flxy=2a", r>1. (4)

This has been used, for example, bys$ddorf and RathsfeldlB], Elliott and
Prossdorf P] and Duduchava, Elliott and Wendlant] [

Itis immediately obvious thaf satisfies conditions (i) and (ii) of Theoreh2
For condition (iii) we require

(r ;z(i ;)za:) > 9 <(1$—T i)(; _—5:_ ) on (0,1/2). (5)

Sincer > 1 and0 < = < 1/2 we see that the left hand side &) (s always pos-
itive whereas the right hand side is negative. Thus condition (iii) of Thedr@m
is satisfied so that

(@) =a"/ (" + (1 —-2z)) (6)
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Is a sigmoidal transformation and, from Corollays, it is obvious that it is of
orderr. From equation) we have that

0=~ (1/2)=r, (7)

which obviously increases with It is readily verified from equatiortj that, for
any positive real numbegsandr, this transformation has the beautiful property

Yo (3 (7)) = 70 (7 (%)) = Ypr () - (8)

From this itimmediately follows that the inversegfis v, ,,., although for- > 1 it
is obvious thaty, , is not a sigmoidal transformation according to Definitiot

Transformation 2.2 We shall now look at a variant of Transformati®drl which
has the virtue that = ~ (1/2) is independent of. We shall write

f(x) = (x—cEa(x)", r>1, 9)

wherec is a constant to be determined afd denotes the Euler polynomial of
degree2 defined by
By (x) =2 —x, (10)

(see, for example Gradshteyn & Ryzhik §9.6]). Now
fla)=0+c) 2" (1= (¢/(1+c))x)
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so that ify is to be of order- we must have + ¢ > 0 orc¢ > —1. In this case
condition (i) of Theoreni.2is satisfied. Condition (ii) of Theoremh.2 requires
that

1+f+2c( —1>2>0 (11)
> T3
on (0, 1) and again this is true if > —1.
Sincel := v/ (1/2) we find, with f defined by equatiorgj, that
c=2(r/t—1). (12)
Now ¢ > —1 implies thatr > ¢/2 and since we have already assumed 1 we
shall henceforth assume that

r>max (1, £/2) . (13)

Condition (iii) of Theoreml.2 appears intractable in this case and if we replace it
by the weaker condition given by inequality) (we find, after some algebra, that
we must have

(#=3)r?+3tr—12>0, (14)
This will certainly be satisfied if we assume
¢>+/3 and r > max (1, ¢/2). (15)

Thus choosing andr satisfying (L5), with ¢ given by equationX2) and f defined
by equation 9), we claim that they defined by equationlj will be a sigmoidal
transformation. In particular, with = 2 and» > 1, ¢ = r — 2 will given a
sigmoidal transformation, or orderr such thaty, (1/2) = 2. Itis of interest to
investigate what happens to this transformation as oc.
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Transformation 2.3 From Transformatio2.2we can write, from equatiori,

(@) =1/ (1+ F (),

where

Foz) = f(—x)/f(x)

on using equation®j, (10) and (L2). On lettingr — oo we obtain a limit function

F,. say, where
Fy (z) = exp F (l - >] : (16)

2\z 1—=x

This gives rise to a sigmoidal transformation, which we shall denotg’Byde-
fined by

1 1 1 l 1 1
SS _ — 4t h—(—— —) 17
W= e 3t [4 Lo L (17)
This transformation turns out to be the one introduced by Sag and Szekdfes |
in the context of evaluating multi-dimensional integrals over the unit hypercube.
We might note in passing that'® can be obtained by choosing either

F (@) = exp (-%) or f(z) = exp E (—1+ﬁ)]. (18)

X
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Using the first of these representations it is readily shown fhsatisfies con-
ditions (i) and (ii) of Theoreni.2 for any ¢ > 0 but the weaker inequality3]
requires, not surprisingly, thét> /3 in order thaty5® have a local maximum at
1/2.

At this point we have the choice of two directions open to us. Either we con-
tinue with sigmoidal transformations of infinite order (and there are quite a few
of these) or we return to the spirit of Transformat@2 where we look for sig-
moidal transformations of orderwith a bounded value of (1/2). We consider
the latter first.

Transformation 2.4 This transformation was first considered by Kre§js Trans-
forming what he has defined over the interf@l2r] to the interval(0, 1] we
choose

f(z)=(x+cBs(x)) (19)

wherer > 1, cis a constant to be determined aBglis the Bernoulli polynomial
of degree 3 defined by

Bs(z):=x(x—1/2)(x — 1), (20)
see Gradshteyn & Ryzhik [49.62].
Now since we want to be of order we have, near: = 0, that

f@)y=>04+¢/2)" 2" (1+0 (x))
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so that we must have> —2. Again, from condition (ii) of Theorem.2we find
that this reduces to requiring

14 c¢Bg(x) >0 on (0,1)

which in turn requires: < 4. Thus we have-2 < ¢ < 4. But again, with
¢ =+'(1/2) we find that
c=4(1—1/r) (21)

and, since-2 < ¢ < 4, we must have
0</l/r<3/2. (22)

Since/ > 0 andr > 1 the left hand inequality is readily satisfied but the right
hand inequality requires that> 2¢/3. Again condition (iii) of Theorenl.2is
too difficult to apply directly but the weaker conditioB) (implies, after a little
algebra, that

(P =1) (t/r)*>3(1—1/r). (23)

This inequality essentially gives us an upper limitrofor a given value of. In
Table 2.1 we have recorded for= 2 (0.5) 4 the maximum value of allowed by
equation 23).
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O rmin=20/3  Tmax

2 1.333 4.537
2.5 1.667 7.619
3 2.000 11.937
3.5 2.333 17.746
4 2.667 25.300

Table 2.1: Range of for a given/

Thus our analysis indicates that for a given value¢ dfwe chooser in the
interval (rmin, rmax) then we expect the transformation defined by equati@ps (
(19) and 1) to be sigmoidal of order.

There are a few transformations to be found in the literature which are of a

similar nature to that given by Sag and Szekeres. We consider briefly just two of
them.

Transformation 2.5 Mori [11] has given a transformation mappifgl, 1] onto
itself. Transforming this to a mapping @f, 1| onto itself and using the notation
of this paper, Mori's transformation corresponds to choosing

. 1 1
f (z) = exp |¢sinh (m — E)] (24)
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so that the transformation!! say, is of infinite order and is given by

AM () = % + %tanh [E sinh (ﬁ — ﬁ)] : (25)

which should be compared with equatidtv). Again, we havey (1/2) = /.
From inequality 8), the requirement that’’’ has a local maximum 4dt/2 gives,

after some tedious algebra, tat |/7/2 = 1.870829 to 6D.

Transformation 2.6 Jeon p] has introduced a transformation which has over-
tones of both the Sag and Szekeres and Mori transformations as well as the Kress
transformation.

If , 3 > 0 and ifp is defined by

p=a2’(1+ Blog2), (26)
then, with
v(z) =2+ (4-8/p)Bs(z), (27)
Jeon’s transformation is obtained by choosing the funcfiom be
(@) = exp [a(v(x))"log v (2)]. (28)

With this choice ofp and for any values oft and 3 we find that Jeon’s transfor-
mation,y’. say, has the property thaf’ (1/2) = 2. As with Transformationg.3
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and2.5all derivatives ofy’, of all orders vanish at bothhand1. Now 7 is not
sigmoidal, according to Definitioh.1, for all values ofa, 5 > 0. In fact requir-
ing the derivative to have a local maximumla® (see B8)) requires thatv and
satisfy the inequality

0 (1 + flog2)® (14 — 30.2° (1 + Blog2) ) > (29)
22727 [(1 + Blog2) (8% + 33 +2) + 3 (28+3)| .

This appears to be too complicated to take any further but it is readily checked for
given values ofx and (.

Jeon’s transformation seems to be unnecessarily complicated involving, as it
does, two parameteks and 5 and introducing the cubie in order to have a
bounded derivative ofd, 1]. A similar result in the spirit of Jeon’s transformation
is obtained by choosing

f(x)=exp[llogz/(2(1+log2)z)]. (30)

It is readily verified that/ (1/2) = ¢. Obviously, all derivatives of the correspond-
ing y vanish at both zero and one and we haye) = 0, v (1) = 1. On applying
inequality @) we find thaty has a local maximum at = 1/2 provided that

0> ((11+6log2) /(2 + 2log2))"? = 2.115874, (31)

to 6D. We do not propose to proceed any further in this paper with this transfor-
mation; it is merely noted in passing.
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3 Examples of “integral” sigmoidal transformations

We now consider transformations in which the functjois given as the integral

of some functiorm. To be more explicit, let

— [T he)ae.
fl@)= [ ni)ds
If the functionh satisfies the condition
h(=h(1-¢, 0<{<1,
then we have simply from equatioh)(that
(@) = (1/Q) [ h(©ds, 0<w<1,

where

Q= h@dc.

In other words, from equation8%) and @3) we have that

fl)+f1-2)=Q,

a constant. We now need conditions/ofor - to be sigmoidal.

Theorem 3.1 Supposé is such that

(32)

(33)

(34)

(35)
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(i) heC0,1]NnC>(0,1)withh (0) =0andh(z) >0for0 <z <1,
(i) hiz)=h(l—2), 0<z<l,
(iii)y A/ (z) >00n(0,1/2],

(iv) h9 (z) =0 (;ﬂ‘l‘j) nearz = 0, for all j € No.

Then~, as defined by equation84) and 35), is a sigmoidal transformation of
orderr.

Proof.  We check this against the requirements of Definitlobh From (i) and
(ii) we have that

F@)+f0-a)= [ h©d=g>0.

Thus~ is defined or|0, 1] and furthermore, from (ii) again, we have thatz) +
v(1—x)=1for0 <z < 1. Now~' (z) = h(z) /Q which is positive on0, 1)

so thaty is increasing or0, 1]. Furthermorey’ (0) = 0. Now~" () = ' (z) /Q
and from (iii) we have that’ is strictly increasing or0, 1/2]. Thus conditions
(a)(i) to (a)(iv) of Definition1.1 are satisfied. Finally as a consequence of (iv)
and from the definition off we have thaty") (z) = O (2"~7) nearx = 0, for all

j € No, so thaty is a sigmoidal transformation of order &
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We note that the conditions of this theorem are considerably simpler than those
of Theoreml1.2which we used in the previous section for “algebraic” sigmoidal
transformations. Let us now consider some examples.

Transformation 3.2 Korobev [7] chooses
hz)=(z(1—x)"" withr>1. (36)
It is readily verified that thig satisfies conditions (i)—(iv) of Theoregil Now
Q= / (1— ) Ydz = (T (r)? /T (2r), (37)
see Gradshteyn and Ryzhik [{8.191(3)].
Forr > 1 we have that) ~ 7%/?/ (227"—174/2). Consequently
v (1/2) ~ (2/x2) 72 forr > 1,

which increases asincreases.

Transformation 3.3 In the spirit of the Sag, Szekeres transformation (see Trans-
formation2.3) Iri, Moriguti and Takasawa] have chosen

h(z)=exp|—(1/z+1/(1—2x))]. (38)
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Again, it is readily verified that satisfies conditions (i)—(iii) of Theoren3.1so
thaty as defined in 34) is a sigmoidal transformation. In this case it is obvi-
ous thaty®) vanishes at both 0 and 1 for dll € N so that this is a sigmoidal
transformation of infinite order.

In this case) = 0.00702986 to 6 significant digits (see [5, equation (1.3)])
and we find that’ (1/2) = 2.605406, correct to 6 decimal places.

Transformation 3.4 An important transformation has been given by Sith][
who chooses
h(x) = (sin(rz))*, N>3r>2 (39)

Again we see that satisfies conditions (i) to (iv) of Theore&lso that the corre-
sponding transformatiof,., is sigmoidal and of order. We have, see Gradshteyn
and Ryzhik [4,83.621], that

Q= /01 (sin (7)) tde =T (r/2)/ (7T1/2F (r/2+ 1/2)) (40)
so that, in particular,
V(1)2) ~ (mr2)Y? forr > 1, (41)
which is unbounded asincreases.

Onintegration by parts we find, after a little algebra, thatfor 1, ~, satisfies
the recurrence relation

Y1 () = Yo (2) — 27T1/2I1:‘(Ear//221_ 1/2) (sin (WI))T_l cos (1) (42)



§3: Examples of “integral” sigmoidal transformations E98

if we defineyo(z) := 1/2 andy, := x. We have, in particular, that

Y2 () = (1 — cos (mx)) /2, and
(43)

1
B=T o sin(27z) .

More generally, on using the expression fein (wg))zm as given in Gradshteyn
and Ryzhik [4,51.320(1)] and integrating term by term, we find

i —1)* (m!)?
Yoms1 (T) = o + 2 Z (m<— 3| ((m |—)i- ST <271Ts) sin (27wsz) , (44)

for all m € N. We shall consider the importance of this particular odd order
sigmoidal transformation later when we consider the Euler-Maclaurin summation
formula (se&4.2).

Transformation 3.5 Laurie [9] looks for an integral sigmoidal transformation of
orderr wherer is an odd integer greater than or equa3 teuch that the function
h, in addition to satisfying33), also satisfies

{ R (0) =0 fori=0(1)((r—3)/2),
(45)

e (0) =0 fori=1(1)(r—1).
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We see that33) and @5) together imply that: also satisfies the same homoge-
neous conditions as given id%) but at the end-point. Thus there is a total of

3 (r — 1) homogeneous conditions to be satisfied and Laurie looks for a polyno-
mial solution of degre8 (r — 1). To this end recall that the Bernoulli polynomials
By;, j € No, of even order satisfy

sz (.1)) = sz (1 — x) . (46)
(see, for example, Gradshteyn & Ryzhik §9,.623(4)]) and write
3(r—1)/2
hiz)= Y ¢ (By(x) = By), (47)
=1

where cz;,_1)2 = 1, and By; denotes the Bernoulli number which is equal to
By, (0). This is a polynomial of exact degred(r — 1) and it satisfied: (z) =
h (1 — z) together withi (0) = 0. Recall that

(27)!

@ () — o
B3/ () 07— Z4)!192]_1 (x) (48)
so that from the second o4%) we have
’ 3(r—1)/2 21
0=nr@"0) = Y (2))! Baj_2i+1 - (49)

Y2 —2it 1)

If we recall that all odd order Bernoulli numbers are zero excepBfowhich is
equal to—1/2 we see that equatiod®) imply that

¢g=0fori=1(1)(r—1). (50)
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Consequently we may rewritd?) as

3(—1)/2
hz)= Y ¢;(By(z)— By), (51)

J=r

with cz—1y2 = 1. It now remains to satisf®) (0) = 0 fori =1 (1) ((r — 3) /2)
sinceh (0) = 0 is satisfied automatically. Again, usingg) we find

3(r—1)/2 (2])' sz_Zi

3 o =0 fori=1(1)((r—3)/2), (52)
j=r '
which we can rewrite as
& 9/2 (25)1Byy_i o (Br=3)!Bs 12 (53)
S -t Br-n-2)

fori = 1(1) ((r —3) /2), giving us(r — 3) /2 equations for thér — 3) /2 un-

knownsc,, ¢+, ..., ¢@a—s)2. The author has been unable to determine whether

this system of equations has a unique solution for all odd integdf®wever,

Laurie [9] quotes Schneider (private communication) who claims that this is true.

With h given by 61) we find from 34) and 35) that

3(—1)/2
S (e 25+ 1)) Baa (2)
e (2) = w0 = —= 3(r—1)/2 : (54)

Y By

J=r
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Let us now consider the three examples discussed by Ld&jrie [

(i) » =3 From (1) we see immediately that

h (x) = Be (ZL‘) - Be
and, from 64),

V3(x) = x—06B7(x)
= 72— 212° + 212° — 627, (55)
which isO (:c3) as expected. Alsoy (1/2) = 63/32.
(i) » =5From (63) we findcs = 10/3 and withcg = 1 we have from %4) that

210

= (30032° — 17160 2" + 85085 2 — 150 150 2*°
+ 117390 21 — 45 045 22 + 6 930 213) /53 . (56)

Again, as expected; (z) = O (:c5) and we have
V6 (1/2) = 285, 285/108, 544 = 2.628 289

correct to 6D.
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(i) = =7 From equationg3) we find

o= 312 10 e — 1

T 269 BT 1076 ST
With these values,

56 488 824 8295210 768 264
v7(z) = 15—?45315 (x)—WBl7 (z)— 599 Big(z) (57)
and it can be verified that
112404 , .
71(2) = =o' +0 ().

Finally we note that/ (1/2) = 23686 236/7 503 872 = 3.156 535, correct
to 6D. Thus it appears thaf (1/2) is increasing with- but whethery (1/2)
is bounded above is not known.

Sidi’s Transformatior8.4 has the property that. (1/2) diverges as — oc.
We now consider a transformation which is similar to the Sidi odd order trans-
formation but for whichys,,..; (1/2) is bounded for alin € N. In place of equa-
tion (32) let us now write

fa)= [ @-on©ac, (58)

for someh. This is essentially a repeated integral of equati®?).( We shall
assume now thdt satisfies the condition

h(§)+h(1-§=0, 0<E<1. (59)
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Then, from equationi),

@)= [ n©de/ [ - h©de. (60

The denominator in equatioB(@) appears at first sight to depend erut, from
equation §9), we see thafy i (¢) d¢ = 0. Thus we can rewrite equatiofi@) as

@)= [ on©de/ [ 1-onde (61

With these preliminary comments we need further conditions @m order
that~ be a sigmoidal transformation of order

Theorem 3.6 Supposeé is such that

(i) heC[0,1]NC*>(0,1)withh (z) > 0forz € (0,1/2),
(i) h(z)+h(l—z)=0for0 <z <1,

(iiiy AV (z)=0 (:cr—z—j), nearz = 0, for all j € Ng andr > 1.

Then~, as defined by equatioB ), is a sigmoidal transformation of ordet
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Proof.  First we observe, on using (i) and (ii), that
1 1/2 1/2
La-on©a = [Ta-on©d+ [Tena-ga
1/2
= [Ta-20n©d>0

sincel — 2§ > 0 on (0,1/2) and, from (i),~ > 0 on (0,1/2). Thus~ in
equation 61) is defined, withy (0) = 0 and~ (1) = 1.  Again, using (ii),
y(@)+y(1l—z)=1for0 <z <1.

From 61), .
V@)= [ h©de/ [Ta-onEde. (62)

We shall now show thafy i () d¢ > 0for 0 < x < 1. Sinceh > 0 on(0,1/2)
we have that the result is true for< = < 1/2. For1/2 < z < 1 we have, on

using (ii),
[nde = ([ [ )niea

_ /xlh(l—g)dfz/ol_xh(g)d§>0

since0 <1—x<1/2,ie.1/2 <z < 1. Thusy’ > 0 on(0,1) and~ is strictly
increasing or{0, 1) with ~ (0) = 0 and~(1) = 1.

Again,y" (z) = h(z) / J3 (1 — &) h (€) d€ which by (i), is> 0 on (0,1/2) so
that~’ is strictly increasing o0, 1/2) with, from equation§2), ' (0) = 0.
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Finally from (i) and (iii) we see that (z) = O (z") nearx = 0 andy €
C1[0,1] N C> (0, 1) so thaty is a sigmoidal transformation of order &

Transformation 3.7 Suppose we choose

h(€) =sin®™t(27€), meN. (63)

This function satisfies the conditions of theor8tf6to give a sigmoidal transfor-
mation

x 1
Yo (1) = [ (@ = €)sin® (2n¢) de/ [ (1 - ©)sin® L 2me) g, (64)
of order2m + 1. It is convenient to define

Nn(z) =z
and then equatior6@) gives, whenn =1,
v (z) =2 — gy sin (27x) |
which is identical to the third order Sidi transformation, s&8.(In fact, judicious
integration of equationsd) by parts gives the recurrence relation

Pon=1/2)
— (2 f N.
272 2m = T () sin (2rx), form e

(65)

Yom+1 (T) = Yom—1 ()
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From Gradshteyn and Ryzhik [43.821(2)] we find

! - om— I'(m)
o 2m—1 —
/0 (1= €)sin®"= (2n€) dé = e s (66)
Then, from equation$@) and 66), we find
, ATY20 (m+1/2) (Y2 5
Yom+1 (1/2) - I (m) /0 S (27?'5) df :
Again from Gradshteyn and Ryzhik [43.621(1)] we obtain
Yomsy (1/2) =2, forallm e N, (67)

which, of course, is independentof

From equationg4) we may writey,,,+1 as a finite sum. Making use of Grad-
shteyn and Ryzhik [451.320(3)] we find, after some algebra, that

Yom+1 (x) =+ 2 (F <m + 1/2))2 i (_1)5 sin [271' (25 — 1) l‘]

2 “ZT(m—s+1T (m+s)(2s—1)% (68)

forall m € N.

Finally, let us consider the explicit behaviouref,.; () nearz = 0. Forz
close to0 we have from equatior6@), on replacingin (27¢) by (27¢), that
472 (m 4+ 1/2)

['(m)

| (@ =) eme g,

Y2m+1 (I) -
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approximately. Integrating gives

22m=1p2m=1/21" (1, 4-1/2)
(m+1/2)T (m+1)

S ($) _ I2m+1 +0 (I2m+3) : (69)

for m € N. We observe that near = 0 the expansion ofy,,,+; is of the form
w2y apz®, for some coefficients,. That is, the expansion of,,.; near
the origin involves only every second powerxfan observation which will be
important later (seg4.2).

4 The Offset Trapezoidal Rule

One of the most important application of sigmoidal transformations is in the ap-
proximate evaluation of integrals of the forfi f (z) dz by means of the offset
trapezoidal rule. The aim of this section is to gagymptoticestimates of the
truncation error. In order to do this, we introduce the Abel-Plana formula for
the truncation error which, although dating back to the early nineteenth century,
proves to be particularly useful in this context. We give asymptotic errors for two
distinct cases. In the first, sg4.2, we assume thétis holomorphic orj0, 1]; for

the second, se¢t.3, we assume thgtis holomorphic only on0, 1) with alge-

braic singularities at the end-poiriteand1. Numerical examples of the estimates
we obtain are given ig5.
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4.1 The Offset Trapezoidal Rule and the Abel-Plana formula

We use notation introduced by Lyned$)]. Suppose that
t,=w+1)/2 for —1<v<1, (70)

so that0 < ¢, < 1 with, in particularty = 1/2 andt; = 1. The offset trapezoidal
ruleQMf neN, -1 <v < 1isdefined by

1 n—1
S fGHt) ), —l<v<l,
Af=1 (71)
- ”f(j/n)’ v=1,
wherey_” denotes a sum whose first and last terms are halved. If
1
If = / £ () dt (72)
0
then we want an expression for the truncation efft f where
ENf=1f-Qbf. (73)

Although we shall assume throughout tlfais a real function ono, 1}, we shall
assume that the definition gfmay be continued into the strip of the complex
z-plane defined by

S={2:0<z=R2<1, —oco<y=S2z<0}. (74)

We can now give the Abel-Plana formula (see, for example, OLZ).[



§4: The Offset Trapezoidal Rule E109

Theorem 4.1 (Abel-Plana). Suppose that

(i) fis continuous inS and holomorphic irint (S);

(i) f(z) =o0(exp(2mn|J2|)) asSz — tooin S,

uniformly with respect té -.

Then

Ae aa ) f+iy) — f(iy)
B _‘“{/o {exp[%(nymu)]—l}dy}' (75)

Proof. LetC; = ABCD be a contourinS N (S z < 0) wherez = —iy, 0 <
y<YalongAB; z=xz—1Y,0<x <lalongBC;andz=1—1iy, Y >y >0
alongCD. Similarly in SN (Yz > 0) we letC, = EFGH be the contour where
z=1+4iy, 0 <y <YalongEF; z=x+iY, 1 > x > 0 alongFG; and finally
z=1y, Y >y >0alongGH.

If ¢, = 1, then we modify these contours by semicircular indentations in the
neighbourhoods of the pointsand1. Sincef is holomorphic inS we have, by
Cauchy’s theorem,

/;ﬂx)dﬂﬁ:%/clf(ﬁ)dx—%/czf(x)dx. (76)
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Again, by Cauchy’s residue theorem,

2; it
—Zf((k:+t,,)/n), —-1l<v<l,
n =0

/Cl+cz f(z)cot(m(nz—t,))dz =

R
I
—_

S )
k=0

(77)
From equationsql), (73), (76) and (/7) we have
EVf = %/f (2) (1 +icot (m(nz—t,)))dz
C1

_ %/sz(z) (1= icot (r (nz —1,))) d
B f(z)dz
~ Je, {exp [-27i (nz — t,)] — 1}

B f(z)dz (78)

o {exp[2mi(nz —t,)] — 1}

From condition (ii) we see that the contributions to the integrals 6yemdC,
from BC' and F'G respectively tend to zero as — oo. If we let Eibfof denote the
contribution toE f from the integrals oveA B andG H then we find that

s _ogl [ [ (iy) dy
Enof =23 {/0 exp [2m (ny + it,)] — 1} ' (79)
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Similarly, if B} f denotes the contribution tB) f from integrals over” D and

EF th
o B 95 /Y f(1+41dy)dy (80)
nl =T o exp 27 (ny +it,)| — 1)

From equationsA9) and @0) and lettingY” — oo, equation {5) follows. &

Suppose now that. denotes a sigmoidal transformation of order 1. From
equation 72), on writingt = ~, (), we have

11= [ 16Nl ) dr 1)

Applying the offset trapezoidal rule to the integrafly, (7)) .. (7) gives a quad-
rature sunQ!*"1 f, say, where

FOr(G+t) /)y ((G+t) /), —1<v<ld,

n

S|

o

Qs =

? <
[uN

f v (G/m)) v (G/n) v=1.

S|

.
=

(82)
We recall that forr = 1, the integrand vanishes whgn= 0 andn sincer > 1
and+. (0) =~/ (1) = 0. We define the truncation err@i"1 f by

EVIf=T1f - QW (83)

Let us define
g (1) = f (e (7)) (1), 0<7<1. (84)
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We need to extend the definition gf from the interval0, 1] into the stripS.
For the functiory, in .S we shall, in particular, replace condition (ii) of Defini-
tion 1.1(a) by

Y (2)+7m(1l=—2)=1 VzeS§. (85)
From this we see that
Y (L+iy) =1—7(—iy), 0<y<oo, (86)
and
Y. (1 4iy) =7, (—iy), 0<y<oo. (87)

With these comments we now have the following theorem.

Theorem 4.2 Suppose that the definition gf can be continued into the strif
such that

(i) g is continuous inS and holomorphic innt(S);

(i) gr(2) = o(exp(2mn|Sz|)) asJz — oo in S, uniformly with respect to
Rz.

Then
Ef = B, =

o) = (= (=) v, (=iy) = f (9 (iy)) v, (iy)
- {/o exp 27 (ny + ity) — 1] dy} - (89)
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Proof. It is obvious thatEl*"1f = ElYlg.and equationg8) follows immedi-
ately on applying the Abel-Plana formula, Theordm, to g, and using equa-
tions 86) and 87). &

Equation 88) will be taken as the starting point for the asymptotic estimates
of El»"1f for n > 1, to be discussed in the next two subsections.

4.2 Asymptotic estimates for E[*"1f when f is holomorphic
onsS

In making our asymptotic estimates our basic assumption is:ittsathosen large
enough so that the major contribution to the integraBi8) comes from the neigh-
bourhood ofy = 0.

Theorem 4.3 In addition to the conditions of Theoref2let us assume thatis
holomorphic at botl) and1. Then, for large enough,

. < (1) f® (1) + £® (0)
E’L’]f ~ Z( o ) >

k=0

[ cos (2rt,) — exp (~2mmy)| S oy (i) o ()] |-

cosh (2mny) — cos (27t,)
= (D01 - 0)

+ sin (27t,) '
k=0 k!
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(89)

. /oo R [k (i) 7, (iy))]

cosh (2mny) — cos (27t,)

Proof.  Recall that we are assuming that bgtland~, are real orf0, 1]. Since
we are assuming thgtis holomorphic at botly and1 then, in some region df
and1 we have respectively, that

0o £(k)
f () => / k!<0)vf (iy) | (90)

k=0

and

F(1 = (g = 3o T

k=0
If we formally substitute 90) and @1) into (88) and assume that the interchange
of summation and integration is permissible, we obt&#®) @fter some tedious
algebra. &

7 (—iy) . (91)

Note that in 89) we have used the symbok” to denote “asymptotically
equal to” i.e.a (n) ~ b(n) implies thata (n) /b (n) — 1 in the limit asn — oc.

Let us assume that near= 0 we can write

Y () = co (1) 2" {1 + idk (r) xk} ; (92)
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wherec () anddy, (), for all £ € N, are real. From equatio®®) we can write
Yo (€712y) = €725, (y) + 0TI e, (y) (93)
say, where the real functions ande, are defined by

or (y) == co(r {1+Z )" da, (7 k},

(94)
& (y) =co(r)y"™ 12 ) dar 1 (r) y?* .
Again, from equationg43),
7 (€712y) = TR (y) — €736 (y). (95)
With these preliminaries established we now have the following theorem.

Theorem 4.4 Let f satisfy the conditions of Theore3 For any sigmoidal
transformatiorny, of orderr > 1 and for—1 < v < 1thenforn > 1

BV~ e (M) {F0)[C (A =7 t) + (1 4+ 1/r)di(r) ¢ (—r,t,) /n] +
HACA=rL=t,)+ (L+1/r)di(r)C(=r, 1= t,) /n]} +
+0 (1/n™@) (96)

where( (-, -) denotes the generalised Riemann zeta function.
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Proof. In (89) we take the first term in each sum and write

Yr (Zy) = CO( ) 17r7"/2yT + o (T) d]_( ) z(r+1)7r/2 r+1 + O( r+2)

VL (iy) = reo (r) Iy (r 1) o (r) da (r) 72y + O (7).

(97)
We shall make use of the integrals
/00 Y dy <1 _sin (2mst,) (98)
o cosh (2mny) — cos (27t, ) 27m i s" sin (27t,)
an
y"~t[cos (2mt,) — exp (—27ny)] dy (r) & cos (27st,)
99
/ cosh (2mny) — cos (27t,) 27m) SZ:; - (99

see, for example, Edlyi et al [3, §6.6(5) and (8)]. In addition, we need the
following representation of the generalised Riemann zeta function

C(—rq) = 2(;5;;) i COS(QWSET— rm/2) 7 (100)
s=1

valid forr > 1 and0 < ¢ < 1. (See, for example, Gradshteyn and Ryzhik [4,
§9.521(2)]. After some straightforward algebra, we obtain the ternfqin) and
f (1) in equation 96).

For the termO (1 /nm‘”(z’r)) we note that in both98) and @9) the integral
of the term involvingy"~* is O (1/n"). Thus if in the terms involving’ (0) and
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f (1) we had kept higher order terms+h (e"”/zy) this would have given terms of

order1/n"*2. Again, if we had used the terms i@9) involving f’ (0) and ' (1)
we would obtain terms of ordér/n?". Since we have assumed> 1, (96) gives
the dominant terms in the asymptotic expansion'@f*’"1 f. This completes the
proof. &

There are two special cases which are worth noting. The first, in whiel)
givesty, = 1/2 which corresponds to the “mid-point” rule and the second, where
v = 1sothatt, = 1, corresponds to the “trapezoidal” rule.

Corollary 4.5 Under the conditions of Theoredn4

(2mn)" R~ 2e0 (r) T (r 41) (f (0) + £ (1)) %

x{cos(rm/2) (1 - 2") ¢ (r) —

—sin (r7/2) (r + 1) da (r) (1= 277) C(r +1) / (27n)}

+0 (1/nmn@0) (101)

and
(2mn)" BRI~ 2e0 (r) T (r+ 1) (£ (0) + f (1)) cos (rm/2) ¢ (r) —

—sin (r7/2) (r+1)dy(r)(r+ 1)/ (2mn)}
+0 (1/nm@n) (102)
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Proof.  This follows immediately from%6) on using the definition of the Rie-
mann zeta function; see Gradshteyn and Ryzhik9$4522(1)]. &

From equationsl(01) and (L02) it can be seen thatif; (r) = 0 andr is an odd
integer then the terms ifif vanish and we need to consider higher order terms.
On the other hand with; () = 0 andr an even integer then the terms{ip will
not be zero and the error behaves Iiké1/»n") which is unremarkable.

In the more general case given I96) we see that for all, € (0,1]if dy (r) =
0 then wherr is an even integer

(2rn)’ EYLf 20 (1) (<172 (£ 0) + £ (1) Y S2CT0) 6 (1/2)

s=1 s"
(103)
and, whenr is an odd integep 3,

() ] ~ 20 () (<12 (7 (0) — £ (1) 3 S o (1)
= (104)

We shall now suppose thatis an odd integer> 3 and that for allk € N,
dy—1 (r) = 0 sothats, (y) = 0; see 92) and @3). As the next theorem shows we
have an improved rate of convergence.

Theorem 4.6 Suppose that, in addition to the condition of Theo1g » =
2m + 1, m € N, and~y,,+1 IS such thats,,,+; is zero. If any of the following
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conditions is satisfied: (A}, =1/2,(B) t, =1,(C) f (1) = f(0),then

(2mn) D EZT L (o (2m+ 1) T (4m o+ 3) (f (1) = 1 (0)) x

g heo(2)
L0 (L) | (105)

n2m+l

Proof. Sincer = 2m + 1 ande,,,,+1 = 0 we have

Yomst (€7/%y) = (=1)" €™ 25301 (1) (106)
and '
Vomar (€7/%y) = (1) Opaa (1) - (107)
Consequently
R[4 (i) 7, (iy)] = (~1)" 4 CoS(km/2) 0y (1) Fpen (4)
and

S [ (i) 7 )] = (1) E* D 8in (k7/2) 08 01 (1) i (4)
Substituting these results int89) gives
o (—1)F (F& D (1) - f@ (0)

ELV,2m+1]f ~ X
,; 2k — 1)!




§4: The Offset Trapezoidal Rule E120

y /"" [cos (2mt,) — exp (=2mny)] 0uad () O () dy
0 cosh (2mny) — cos (27t,)

w (~1)" (@ (1) — £ (0))
s (2K)!
521::

051 (¥) Omea (y) dy
/0 cosh (2mny) — cos (27t,) (108)

+ (—1)" sin (27t,) X

Now neary = 0 we have
Soms1 () = co (2m 4 1) 2™+t (1 +0 (yz))

and
Bps (4) = (2m + 1) o (2m + 1) y?" (14 O (7))

we find that
OBt (1) S (1) = (co (2m + 1)) (2m + 1) gD (14 0 (7)) (109)

From @9) and (L07) we have

/oo [cos(2t,) — exp(—2mny)] 0521 () Oppnes () dy
0

cosh(2mny) — cos(2nt,)

(27rn)2k(2m+1)

= (2m+1)(co(2m+1))

xi% (1+0(1/n?)). (110)
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Again, from ©8) and 07) we find

/OO 5§fn+1 (y) 5ém+1 (y) dy
o cosh(2mny) — cos(2nt,)

O ((2k + 1) (2m + 1)
(27Tn)(2m+1)(2k+1)

= (2m+1) (co (2m + 1))*** x

- 1 sin (27st,) ,
8 ;l 5(2k+1)(2n+1) ) sin (27Tty) (1 +0 (1/n )) . (111)

By substituting 110 and (L11) into (108 and taking the first non-vanishing term
in each sum we see thatQpb) follows for each of conditions (A), (B) and (C). The
details are omittedé#

The result 105) is particularly good, for if we compare it witl®6) we see that
under the conditions of Theorem6, El""1f ~ O (1/n2’”) rather tharO (1/n")
of Theorem4.4. This dramatic improvement in convergence was first observed
by Sidi [15] for a whole class of sigmoidal transformations of which Transforma-
tion 3.4 is an example

Let us consider condition (C) of Theored6. If f(1) # f(0) then if we

defineF (z) := f(z) + (f(0) — f (1)) =z we see that# (1) = F (0) (= f(0)).
Furthermore,

[ i@ar= [ Fydr - (70)- 1)

and we could apply Theoret6to the functionf'.
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In the next subsection we consider asymptotic estimates of the error fyhen
instead of being holomorphic &tand1, has algebraic singularities at these points.

4.3 Asymptotic estimates forE[*"1 f when f has algebraic sin-
gularities at the end-points

The case wherf has an algebraic singularity at either or both end-points arises
frequently enough to justify its analysis. The principal result is given in Theo-
rem4.7 and from it we shall see that there is no special case such as that given by
Theoremd.6in the case whelf is holomorphic at both end points. Before stating
the theorem we note from equatiof0f that we have

1—t,=t_, for—1<v<1. (112)

Theorem 4.7 Suppos¢ is defined ort by
f(2)=22(1-2)"g(2) fora,8>—1, (113)
whereg is holomorphic onS, real on|0, 1] and such thay (0) # 0, g (1) # 0.
Let~, be a sigmoidal transformation of order» > 1. Then forn > 1
n" B~y (o) g (0) + -y (B,7,m) g (1) (114)
where
J,(,rn) = =)™ {CA—=r(a+1),t,)+
+(a+1+1/r)di(r){(=r(a+1), t,) /n}/n.(115)
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Proof. ~ We proceed as we have done in the proofs of Theorérhand4.6,
starting with equatior88) and replacingy, (x) by co (r) " (1 4 dy (r) x) and sim-
ilarly for ~/ (x). In particular we find neat that

f (1 — (e—m/zy)) + ( 6—i7r/2y)

= r(co(r)" g (1) {exp (—im (Br + 7 —1) /2) y* 1 +
+dy (T) (ﬁ +1+ 1/7”) exp (—iﬂ' (ﬁr + T) /2) yﬁr+r +
+0 (ymin(ﬂr+r+1, ﬂr+27~_1)) }

Again we make use of equatiordg8—(100) so that after some tedious algebra we
obtain equationsl(14) and (15). &

Suppose in Theored 7we have a transformatiop for whichd; (r) = 0 and
also that = 1, ort, = 1. Then a straightforward calculation shows that the right
hand side of 114) will be zero if we can choose such that both (1 + «) and
r (14 () are odd integers. We would then have to consider the next term in the
expansion. However, we shall not pursue this matter here. Suffice it to say that
there is no dramatic improvement in the rate of convergence by choosinbe
an odd integer as happened in the previous case which essentially corresponded
to havinga = 5 = 0.

We complete this section by considering the asymptotic estimate of the error
EL>1 f when the sigmoidal transformation is chosen to be of infinite order; in
particular we shall consider the IMT transformatidij, [see Transformatio.3.

We have the following result
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Theorem 4.8 Supposef is defined as in Theoredh7. Let~ be the IMT trans-
formation defined by equation83), (34), (35) and @38). Then forn > 1 and

v=1

E¥f = g(0)J (a,n)+ g (1) J(3,n) (116)

where

- poe a+l/4
J(a,n) ~ <Q22§;ra(1(;:))a+3/4 exp (— 4 (1 + a)) X (117)

X oS (\/47m(1 + o)+ 31/8 + 7Ta/2> :

1
Q= /0 exp (—1/z — 1/ (1 — z)) dz = 0.00702 98584 06609 65624,  (118)

correct to 20D.

Proof.  From equation&8), on assuming that the contribution to each integral
comes from the neighbourhood of zero, which is reasonable sinsel, we find

o & (7 (=)’ (—iy)]
exp (27my) -1

S 7 (iy)]
/ exp 27my —1 ay- (119)

HEIy 2 /
0
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Now for |x| < 1 we have, on integration once by parts,
v (x) = 2?7V (1+ O (J2]) /Qe

and
Y (z) = e (1+0(|2])) /Qe.

On neglecting the terms i (|z|), replacingz by ¢/?y we find from equa-
tion (119 that EI->I f is of the form given by equatiori{6) where

J(a,n) =

1+a

/ Y2 sin 7Toz+(1+oz)/y)dy' (120)
exp (2mny) — 1

In order to estimate/ (a, n) for n > 1 we define the complex integral (o, n)
by

J (a,n) = / e 72 oxp i (ma+ (1 + @) /2)] d= (121)

C
where( is a suitably chosen contour frobrto oc. Then we shall suppose that
J(a,n) ~ 287 (a,n) / (Qe)™. (122)

We obtain the value aff (a, n) by the method of steepest descents. If we write

J(a,n) = /czzo‘ exp (z)dz

and if is such that)’ () = 0, ¢ being the only zero of’ onC, then the method
of steepest descents gives

T (a,n) ~ V2r¢** expli (m — arg ¢ (0)) /2 exp [ (Q)] / ¢ (O)7*. (123)
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We find that
¢ = ((1+a)/2mn)exp (—in/4),
W) = 2@2m)*2(1+a) Y2,
argy)” (¢) = bm/4,
exp [ (¢)] = exp [— (4mn (1 + oz))l/z} exp {z (7ra + (4mn (1 + oz))l/z)] .

The substitution of these values into equatid®3) and the use of equatiod22)
recovers for us equatiod 18 and the theorem is proveds

This result agrees with that given by Iri, Moriguti and Takasajasp we
shall not discuss this transformation any further here. Suffice it to say that they
consider quite a few numerical examples which demonstrate the accuracy of this
result. However, one does question whether the funcfigriz) of [5, equation,

(4.1)] should be,/z v/T— z/2 and not(y/z + I —z) /2.

We shall conclude this section by stating, without proof, a generalization of
Theoren4.8.

Theorem 4.9 Under the same conditions as in Theorérg
Bl = g(0)J, (a,n) +g (1) J, (B,n)

where forn > land—-1 <v <1

N prs o at+l/4
J(a,n) ~ (;;;;a(l(;m))m3/4 exp (—\/47m (1+ a)) X




§5: Some numerical results E127
X COS (\/47m (1+a) —27t, + (3 + 4a) 7r/8> . (1249)

The proof is similar to that given for Theorefm8and it is obvious that when
v = 1, so thatt, = 1, the result of Theorem.8is recovered.

5 Some numerical results

Before giving some explicit numerical results let us consider the special case of a
sigmoidal transformation of ord@rm + 1 which satisfies equatioriQ6). This, in
particular, implies that

Yom+1 (em/zy) + Yom+1 (e—m/zy) =0, yeR"; (125)

that is, 241 (e"”/zy) is purely imaginary. We recall that Sidi's Transforma-
tion 3.4was obtained by assuming thasatisfies equatior8@) with the function
h satisfying equation33), so that

1 T
v =g ) e (126)
We ask what additional condition equatidt?f imposes om. With v defined

by equation 126), equation {25 implies that

)

'L7r/2 7271'/2

€) de + / €)de =0. (127)
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On putting¢ = —n in the second integral we require

eim/2

@ -n=ede=o0 vyer (128)

which will certainly be true if we choosk to be an even function. This, together
with i () = h (1 — &) (see equatiorn33d)), implies that if we choosg to be even,
periodic of periodl and such that (¢) = O (52’”) near( = 0 then we have an
appropriate sigmoidal transformation of ordem + 1) satisfying equationl(06).
We recall that Sidi chosk (z) = sin®™ (7z), which satisfies all these conditions.

We can argue in a similar way whehis defined by equatiorbg) so thaty
is defined by equatior6) providedh satisfies equatiorb@). To satisfy equa-
tion (125 we find that we now requiré to be an odd function with periotl.
Thus if, in addition,h () = O (527”‘1) nearé¢ = 0, theny as defined by equa-
tion (61) will be sigmoidal of order2m + 1) and satisfying equatioriL06). In
Transformation3.7 we choseh (z) = sin®"~* (2rx) which obviously satisfies
these conditions. Writing, (z) = sin®"~* (2rz) cos (27z) essentially recovers
Sidi’s Transformatior8.4.

Let us now consider some numerical examples.

Example 5.1 Consider the evaluation dff = [ exp (x) dz. We shall illustrate
this by the use of only two transformations; those given by Transforma2idns
and3.7. We compare the actual computed erngr&L1") f with the asymptotic es-
timate given by equatiorlQ2) in the case of Transformatiéhland for Transfor-
mation3.7 with the asymptotic estimate fa*” EL1"] f as given by equatiorl(5)
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r=3.0 r=3.5
n n3EL3 f eqgn @02 n’2EL3Sf eqn (L02
20 —0.0184942 —0.0185914 —0.122490 —0.123 843
40 —0.009 283 57 —0.009 29570 —0.117016 —0.117 341
60 —0.006 193 54 —0.006 197 14 —0.115031 —0.115174
80 —0.004 646 34 —0.004 64785 —0.114011 —0.114 090

Table 5.1: Errors and estimates for Transformafidn

We note for Transformatio.1thatcy (r) = 1 andd; (r) = r. This transfor-
mation allowsr to be a non-integer and we have illustrated this in Table 5.1. In
the cases displayed we see that the asymptotic estimates obtaineg-faragree

well with the actual errors.

n nSEL3f plOpLsl ¢
20 —0.897960  -1046
40 —0.888 656 -925
60 —0.886 978 -905
80 —0.886619 -898
100 —0.885 958 -895
oo —0.885 589 -889

Table 5.2: Errors and estimates for Transforma8oh
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In the second column of Table 5.2 we have given the quadrature€rfdt? f

for n = 20(20)100 in the case when we have used a third order transformation,
i.e. equation§8) with m = 1. The value corresponding to= oo is that obtained

from the estimatel(05 with m = 1, » = 1 andq = 1. Note that (3) is given

from equation§9) with m = 1. In the last column of Table 5.2 we have put= 2

and repeated the calculations. It should be noted that one needs to carry a lot of
precision in this case! In both these cases the asymptotic estimate is a reasonable
estimate for the actual error.

It is of interest to compare just two results from Tables 5.1 and 5.2. In each
case where we have used a third order transformation we note from Table 5.1 that
ES¥ f = —2.31 x10~* whereas from Table 5.2 we ha;® f = —1.40 x 10~8;
the improvement is dramatic. The fifth order transformation in Table 5.2 gives
ESPf = —1.02 x 10710,

Example 5.2 Suppose thaf f = [ 2* (1 — z)” dz wherea, 3 > —1. We shall
considern” EI}"1 f again for the two sigmoidal TransformatioBsl and3.7. In
Table 5.3 we have chosen= 0.4 and = 0.9 and have compared the actual
errors with the asymptotic estimate of Theorémfor » = 3 andr = 4.
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r=3 r=4
n n3EL3 f asymptotic n*ELA f asymptotic
20 —5.309 x 107* —5.423 x 107* —3.250 x 107* +1.383 x 10~
30 —3.378 x 107* —3.410 x 107* 46.656 x 107> +6.821 x 107°
40 —2.428 x 1074 —2.441 x 107  +4.117 x 107> +4.174 x 107>
50 —1.873 x 107™% —1.879 x 107% 42.840 x 10~° +2.866 x 10~°
60 —1.512x10™* —1.516 x 107% 42.100 x 10~°> +2.113 x 10~°

Table 5.3: Errors and estimates for= 0.4, 5 = 0.9 and Transformatio@.1

From Table 5.3, with the exception of the case 4, n = 20 where the sign
of the asymptotic estimate is incorrect, we see that the agreement between the
actual errors and the asymptotic errors is excellent.

In Table 5.4 we repeat the calculations for the case wher8 andr = 5 using
TransformatiorB8.7. In this case for the asymptotic error we have that) = 0
in Theoremd.7.
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3rd order 5th order
n n3EL3 f asymptotic nS B8 f asymptotic
20 —7.994 x 1073 —7.953 x 1073 +3.103 x 107* +2.619 x 10~*
30 —4.935x 1073 —4.924 x 1072 4+4.537 x 107° +4.224 x 10~°
40 —3.501 x 1073 —3.497 x 1072 +1.204 x 107° +1.116 x 10>
50 —2.681 x 10723 —2.679 x 1073 44.389 x 10°® +4.241 x 10°®
60 —2.156 x 1073 —2.155 x 1073  +1.986 x 1078 +1.867 x 10~°

Table 5.4: Errors and estimates for= 0.4, 5 = 0.9 and TransformatioB.7

Again we see that the asymptotic estimates agree well with the actual estimates
for the values of: given. It is of interest to compare, from Tables 5.3 and 5.4,
the actual truncation error for the third order transformation for the values of
given. In each case the Transformati gives the smaller truncation error by

a factor of10. In comparing Tables 5.3 and 5.4 we see that the actual truncation
errors of the 4th order Transformati@il are about the same as the 5th order
TransformatiorB8.7 for n = 10, 20 and30. Certainly Transformatio.7 has no
dramatic advantage over Transformatit in the case when the functiohhas
algebraic singularities at the end points.

6 Conclusion

The effect of a sigmoidal transformation on the offset trapezoidal rule is to replace
the evaluation of the integrand at equally spaced poin{@, ifj by the evaluation
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of a modified integrand at points which are no longer equally spaced. It is of in-
terest to consider the ratjpof the maximum distance between consecutive mesh
points to the minimum distance. From the way in which the sigmoidal transfor-
mation is defined it would appear that for a givemve could define a mesh ratio

Pn 8S

pu == x 2 (1/2) J2 (1), (129)

In Table 6.1 we consider, for some of the transformations we have considered.
In producing this table not only have we assumed that- 1 but also that- is

an odd intege(= 2m + 1) and thatn > 1. The calculations are routine and the
details are omitted.

Transformation n="p,

2.1 2m
24withl =2 (2/3) exp (4/3) /32
3.3 2m, /w2
3.5 4 /T m¥2/ (2m)*"

Table 6.1

In addition to the results of Table 6.1 we mention in passing that for Transfor-
mation2.3 with ¢/ = 2 (due to Sag and SzekereHd]) we find ne "p, ~ 2 so
thatp, increases exponentially with From Table 6.1 we see that in all caggs
grows liken?™, i.e. polynomial as distinct from exponential growth with This
observation has relevance when we attempt to solve approximately the various
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equations, arising from boundary integral methods, where the integral is replaced
with an offset trapezoidal rule after a sigmoidal transformation. Such discussion
is, however, beyond the scope of this paper.

We have observed that transformations have been chosenWith2) being
independent of. Kress B] states that “.. . (this) propertynsures, roughly speak-
ing, that one half of the grid points is equally distributed over the total interval,
whereas the other half is accumulated towards the two end points”. One way of
testing the distribution of points i, 1] is to define a numbetist (r, n) say, such

that )
2 i k 1
dist =—<1 =] —=|7.
sirai= 215 b (1) -3}

It is readily verified thatl /2 < dist (r,n) < 1. Equally spaced points correspond
to dist (r,n) = 1/2 whereas if all the points are evenly divided between the end
points0 and 1 thendist (r,n) = 1. In Table 6.2 we exhibitlist (r, 100) for

r = 3(2) 9 and for five transformations

order Transformation
T 2.1 2.2 2.3 3.4 3.7

0.7927 0.7113 0.8077 0.7126 0.7126
0.8745 0.7196 0.8794 0.7801 0.7351
0.9120 0.7236 0.9141 0.8161 0.7432
0.9333 0.7259 0.9343 0.8393 0.7473

© 3 Ot W

Table 6.2: distr, 100) for variousr and transformations.



References E135

With values ofdist (r, n) closer to a half being considered as “better” than those
close tol we see that Transformatidh?2 is the “best” of these transformations
with Transformatior3.7 being a close second. The “worst” transformation, per-
haps not surprisingly, is Transformati@rB.

We might conclude by asking whether a sigmoidal transformation exists hav-
ing the algebraic simplicity of Transformatiéhl, with ~/ (1/2) being indepen-
dent ofr and for which we get the improved convergence rates of Transforma-
tions3.4and3.7 under certain conditions.

Acknowledgement: the author thanks Professor Avram Sidi for his comments
on this paper.
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