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Abstract

A sigmoidal transformation is a one-to-one mapping of the compact in-
terval [0, 1] onto itself whose graph isS-shaped. After giving a formal def-
inition, various mappings already given in the literature are reviewed in the
light of the definition. At least one new transformation is introduced and cri-
teria given for generating transformations having special properties. The use
of these transformations in using the trapezoidal rule to evaluate

∫ 1
0 f (x) dx

∗Dept of Mathematics, University of Tasmania, GPO Box 252-37, Hobart, Tasmania 7001,
Australia.mailto:elliott@hilbert.maths.utas.edu.au

See http://jamsb.austms.org.au/V40/E006/home.html for this paper and
ancillary services,c© Austral. Mathematical Soc. 1998. Published 12 November 1998, last cor-
rected November 23, 1998.

mailto:elliott@hilbert.maths.utas.edu.au
http://jamsb.austms.org.au/V40/E006/home.html
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is then considered and asymptotic estimates of the truncation errors are ob-
tained under different conditions. The paper concludes with some numerical
examples.
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1 Introduction

We shall start by giving a formal definition of what we mean by a sigmoidal trans-
formation (see Definition1.1). We shall then show how all the sigmoidal transfor-
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mations we shall consider in this paper are generated from a simple formula (see
equation (1)) involving a suitably chosen functionf . After stating conditions to be
satisfied byf we consider in some detail many of the sigmoidal transformations
already to be found in the literature. In§2 we shall consider what I have called
“algebraic” transformations of which that due to Kress [8] is an example. These,
in turn, lead on to transformations involving exponential functions and associated
with the names of Sag & Szekeres [14], Mori [ 11], Jeon [6]. In §3 we consider
“integral” transformations which are associated with the names of Korobev [7],
Iri, Moriguti & Takasawa [5], Laurie [9] and Sidi [15]. In each of§2 and§3 we
introduce a new transformation and consider its properties. All these transforma-
tions are associated with the evaluation of integrals of the form

∫ 1
0 f(x)dx using

the general offset trapezoidal rule.

It is well known that the truncation error is given by the Euler-Maclaurin ex-
pansion which involves a knowledge of the integrand and its derivatives at the
end-points0 and1. As we shall see, a suitably chosen sigmoidal transformation
of the variable of integration will allow, in general, an arbitrary number of these
derivatives to be zero thereby improving the rate of convergence of the quadra-
ture sum to the integral. For some well known sigmoidal transformations, all the
derivatives will be zero and we shall then have a rate of convergence which is
exponential.

Our aim, in Section§4, is to obtain asymptotic forms for the truncation error
and this we have been able to do making use of the well known Abel-Plana for-
mula which, however, does require that the definition off can be extended from
[0, 1] into a stripS of the complex plane based on[0, 1]; see (74). For many exam-
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ples this is not a limitation. Two asymptotic estimates are given. In the first, see
§4.2, we assume thatf is holomorphic on[0, 1]; in the second, see§4.3, we shall
assume thatf is holomorphic at all points of(0, 1) and has algebraic singularities
at the points0 and1. In §5 we give the results of some numerical experiments.

Let us now consider the definition of a sigmoidal transformation and, in par-
ticular, a sigmoidal transformation of orderr.

Definition 1.1 (a) A real-valued functionγ is said to be a sigmoidal transfor-
mation if the following conditions are satisfied:

(i) γ ∈ C1 [0, 1] ∩ C∞ (0, 1) with γ (0) = 0;

(ii) γ (x) + γ (1− x) = 1, 0 ≤ x ≤ 1;

(iii) γ is strictly increasing on[0, 1];

(iv) γ′ is strictly increasing on[0, 1/2] with γ′ (0) = 0.

(b) If, in addition to (a), either

(i) γ(j) (x) = O (xr−j) nearx = 0, for all j ∈ N0 whereN0 = {0, 1, 2, ...}
andr ≥ 1, thenγ is said to be a sigmoidal transformation of orderr;
or

(ii) γ(j) (0) = 0 for all j ∈ N0, thenγ is said to be a sigmoidal transfor-
mation of infinite order.
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Examples of these transformations will be given in§2 and§3 but let us first
consider some general properties arising from this definition.

1. From (a)(i) and (a)(ii) we have thatγ (1) = 1. From (a)(iii) we see thatγ is
a one-to-one mapping of the compact interval[0, 1] onto itself.

2. From (a)(i), (a)(ii) and (a)(iv) we have thatγ′ (x) = γ′ (1− x) so that
γ′ (1) = 0, also. The functionγ′ is symmetric about the linex = 1/2.
Since, from (a)(iv),γ′ is strictly increasing on[0, 1/2], it will be strictly
decreasing on[1/2, 1]. Thus the functionγ′ is “bell-shaped” and has a
global maximum atx = 1/2. Again, from (a)(i) and (a)(ii), we have
thatγ′′ (x) + γ′′ (1− x) = 0 on (0, 1) so that, in particular,γ′′ (1/2) = 0
as one would expect. Because the graph ofγ is like an elongatedS we
have elected to call such transformations,sigmoidaltransformations (see
the New Collins Concise English Dictionary, 1982). They are also known
asperiodizingtransformations (see Laurie [9]).

3. From (a)(ii) and (b)(i) we see that ifγ is a sigmoidal transformation of order
r then, nearx = 1, for all j ∈ N0,

γ(j) (x) = δ0,j +O
(
(1− x)r−j

)
,

whereδ0,j is Kronecker’s delta. Again, from (a)(ii) and (b)(ii), ifγ is a
sigmoidal transformation of infinite order then althoughγ (1) = 1, never-
theless we haveγ(j) (1) = 0 for all j ∈ N, whereN := {1, 2, 3, ...}.
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We need a way of generating sigmoidal transformations and, from an inspec-
tion of the particular sigmoidal transformations to be found in the literature (see
§§2,3), the following theorem appears to be particularly useful.

Theorem 1.2 Suppose a real-valued functionf , defined on[0, 1], has the follow-
ing properties:

(i) f ∈ C1 [0, 1] ∩ C∞ (0, 1) with f (0) = f ′ (0) = 0 andf (x) > 0 for
0 < x ≤ 1;

(ii) f ′(x)
f (x) + f ′(1−x)

f (1−x) > 0 for 0 < x < 1;

(iii) f ′′(x)
f (x) − f ′′(1−x)

f (1−x) > 2
(

f ′(x)−f ′(1−x)
f (x)+f (1−x)

) (
f ′(x)
f (x) + f ′(1−x)

f (1−x)

)
for 0 < x < 1/2.

Then the functionγ, defined on[0, 1] by

γ (x) = f (x) / (f (x) + f (1− x)) , (1)

is sigmoidal.

Proof. From (i), sincef (x) > 0 for 0 < x ≤ 1 thenf (x) + f (1− x) > 0 for
0 ≤ x ≤ 1 so thatγ is defined on[0, 1]. For allx ∈ [0, 1] we see from (1) that
γ (x)+γ (1− x) = 1 so that, in particular, sincef (0) = 0 we haveγ (0) = 0 and
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γ (1) = 1. From the conditions placed onf in (i) we see that conditions (a)(i) and
(ii) of Definition 1.1are satisfied.

From (1) we have

γ′ (x) = (f ′ (x) f (1− x) + f ′ (1− x) f (x)) / (f (x) + f (1− x))2 . (2)

From (i) and (ii), the numerator is positive on(0, 1) and since the denominator is
strictly positive we have thatγ′ > 0 on (0, 1). Henceγ is strictly increasing on
[0, 1] so that condition (a)(iii) of Definition1.1 is satisfied.

To prove (a)(iv) of Definition1.1we need to show thatγ′′ > 0 on(0, 1/2). On
differentiating (2) with respect tox we find, after a little algebra, that condition
(iii) implies that γ′′ is positive on(0, 1/2). Henceγ′ is strictly increasing on
[0, 1/2] and, again from (2), γ′ (0) = 0.

Henceγ, as defined by equation (1), is a sigmoidal transformation.♠

Corollary 1.3 Supposef satisfies conditions (i) to (iii) of Theorem1.2 andγ is
defined by equation (1).

(a) If, for all j ∈ N0, f (j) (x) = O (xr−j) near x = 0, r ≥ 1, thenγ is a
sigmoidal transformation of orderr;

(b) If f and all its derivatives vanish atx = 0 thenγ is a sigmoidal transfor-
mation of infinite order.
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Proof. The proofs of both parts (a) and (b) follow at once from the definition
of γ as given in equation (1). ♠

As we shall see below, for a given functionf , it is sometimes difficult to
check out all the conditions of Theorem1.2, in particular condition (iii) can be
troublesome. However, if we use Theorem1.2to defineγ from a givenf then we
know thatγ′ should have a local maximum atx = 1/2.

Theorem 1.4 Supposef satisfies condition (i) of Theorem1.2. If

3f ′ (1/2) f ′′ (1/2)− f (1/2) f ′′′ (1/2) > 0 , (3)

thenγ, as defined by equation (1), satisfies conditions (a)(i) and (a)(ii) of Defini-
tion 1.1andγ′ has a local maximum atx = 1/2.

Proof. The first part has already been proved in Theorem1.2. On differentiating
equation (2) twice with respect tox then we find, after some tedious algebra, that
γ′′′ (1/2) < 0 gives inequality (3). ♠

In the next section we shall consider some of the existing sigmoidal transfor-
mations in the light of the analysis given in this section and we shall introduce
some new transformations.
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2 Examples of “algebraic” sigmoidal transformations

Many sigmoidal transformation, although not called by that name, have already
appeared in the literature and we shall look at them again following the discussion
of §1. In addition we shall consider two new transformations and also some of the
connections between them.

Transformation 2.1 Perhaps the algebraically simplest and most widely used of
these transformations is that obtained by choosing

f (x) = xr, r > 1 . (4)

This has been used, for example, by Pr¨ossdorf and Rathsfeld [13], Elliott and
Prössdorf [2] and Duduchava, Elliott and Wendland [1].

It is immediately obvious thatf satisfies conditions (i) and (ii) of Theorem1.2.
For condition (iii) we require

(r − 1) (1− 2x)

x (1− x)
> −2r

(
(1− x)r−1− xr−1

xr + (1− x)r

)
on (0, 1/2) . (5)

Sincer > 1 and0 < x < 1/2 we see that the left hand side of (5) is always pos-
itive whereas the right hand side is negative. Thus condition (iii) of Theorem1.2
is satisfied so that

γr (x) := xr/ (xr + (1− x)r) (6)
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is a sigmoidal transformation and, from Corollary1.3, it is obvious that it is of
orderr. From equation (6) we have that

` := γ′r (1/2) = r , (7)

which obviously increases withr. It is readily verified from equation (6) that, for
any positive real numbersp andr, this transformation has the beautiful property

γp (γr (x)) = γr (γp (x)) = γpr (x) . (8)

From this it immediately follows that the inverse ofγr isγ1/r, although forr > 1 it
is obvious thatγ1/r is not a sigmoidal transformation according to Definition1.1.

Transformation 2.2 We shall now look at a variant of Transformation2.1which
has the virtue that̀ = γ

′
r (1/2) is independent ofr. We shall write

f (x) = (x− cE2 (x))r , r > 1 , (9)

wherec is a constant to be determined andE2 denotes the Euler polynomial of
degree2 defined by

E2 (x) = x2 − x , (10)

(see, for example Gradshteyn & Ryzhik [4, §9.6]). Now

f (x) = (1 + c)r xr (1− (c/ (1 + c))x)r
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so that ifγ is to be of orderr we must have1 + c > 0 or c > −1. In this case
condition (i) of Theorem1.2 is satisfied. Condition (ii) of Theorem1.2 requires
that

1 +
c

2
+ 2c

(
x− 1

2

)2

> 0 (11)

on (0, 1) and again this is true ifc > −1.

Since` := γ′ (1/2) we find, withf defined by equation (9), that

c = 2 (r/`− 1) . (12)

Now c > −1 implies thatr > `/2 and since we have already assumedr > 1 we
shall henceforth assume that

r > max (1, `/2) . (13)

Condition (iii) of Theorem1.2appears intractable in this case and if we replace it
by the weaker condition given by inequality (3) we find, after some algebra, that
we must have (

`2 − 3
)
r2 + 3`r − `2 > 0 . (14)

This will certainly be satisfied if we assume

` >
√

3 and r > max (1, `/2) . (15)

Thus choosing̀ andr satisfying (15), with c given by equation (12) andf defined
by equation (9), we claim that theγ defined by equation (1) will be a sigmoidal
transformation. In particular, with̀ = 2 andr > 1, c = r − 2 will given a
sigmoidal transformationγr or orderr such thatγ′r (1/2) = 2. It is of interest to
investigate what happens to this transformation asr →∞.
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Transformation 2.3 From Transformation2.2we can write, from equation (1),

γr (x) = 1/ (1 + Fr (x)) ,

where

Fr (x) = f (1− x) /f (x)

=

(
1 + `

r

(
1

2x
− 1

))r

(
1− `

r

(
1− 1

2(1−x)

))r ,

on using equations (9), (10) and (12). On lettingr →∞we obtain a limit function
F∞ say, where

F∞ (x) = exp

[
`

2

(
1

x
− 1

1− x

)]
. (16)

This gives rise to a sigmoidal transformation, which we shall denote byγSS
∞ , de-

fined by

γSS
∞ (x) =

1

1 + F∞ (x)
=

1

2
+

1

2
tanh

[
`

4

(
−1

x
+

1

1− x

)]
. (17)

This transformation turns out to be the one introduced by Sag and Szekeres [14]
in the context of evaluating multi-dimensional integrals over the unit hypercube.
We might note in passing thatγSS

∞ can be obtained by choosing either

f (x) = exp

(
− `

2x

)
or f (x) = exp

[
`

4

(
−1

x
+

1

1− x

)]
. (18)
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Using the first of these representations it is readily shown thatf satisfies con-
ditions (i) and (ii) of Theorem1.2 for any ` > 0 but the weaker inequality (3)
requires, not surprisingly, that` >

√
3 in order thatγSS

∞ have a local maximum at
1/2.

At this point we have the choice of two directions open to us. Either we con-
tinue with sigmoidal transformations of infinite order (and there are quite a few
of these) or we return to the spirit of Transformation2.2 where we look for sig-
moidal transformations of orderr with a bounded value ofγ′ (1/2). We consider
the latter first.

Transformation 2.4 This transformation was first considered by Kress [8]. Trans-
forming what he has defined over the interval[0, 2π] to the interval[0, 1] we
choose

f (x) = (x+ cB3 (x))r (19)

wherer > 1, c is a constant to be determined andB3 is the Bernoulli polynomial
of degree 3 defined by

B3 (x) := x (x− 1/2) (x− 1) , (20)

see Gradshteyn & Ryzhik [4,§9.62].

Now since we wantγ to be of orderr we have, nearx = 0, that

f (x) = (1 + c/2)r xr (1 +O (x))
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so that we must havec > −2. Again, from condition (ii) of Theorem1.2we find
that this reduces to requiring

1 + cB′
3 (x) > 0 on (0, 1)

which in turn requiresc < 4. Thus we have−2 < c < 4. But again, with
` = γ′ (1/2) we find that

c = 4 (1− `/r) (21)

and, since−2 < c < 4, we must have

0 < `/r < 3/2 . (22)

Since` > 0 andr > 1 the left hand inequality is readily satisfied but the right
hand inequality requires thatr > 2`/3. Again condition (iii) of Theorem1.2 is
too difficult to apply directly but the weaker condition (3) implies, after a little
algebra, that (

r2− 1
)

(`/r)3 > 3 (1− `/r) . (23)

This inequality essentially gives us an upper limit onr for a given value of̀ . In
Table 2.1 we have recorded for` = 2 (0.5) 4 the maximum value ofr allowed by
equation (23).
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` rmin = 2`/3 rmax

2 1.333 4.537
2.5 1.667 7.619
3 2.000 11.937
3.5 2.333 17.746
4 2.667 25.300

Table 2.1: Range ofr for a given`

Thus our analysis indicates that for a given value of` if we chooser in the
interval (rmin, rmax) then we expect the transformation defined by equations (1),
(19) and (21) to be sigmoidal of orderr.

There are a few transformations to be found in the literature which are of a
similar nature to that given by Sag and Szekeres. We consider briefly just two of
them.

Transformation 2.5 Mori [11] has given a transformation mapping[−1, 1] onto
itself. Transforming this to a mapping of[0, 1] onto itself and using the notation
of this paper, Mori’s transformation corresponds to choosing

f (x) = exp

[
` sinh

(
1

4 (1− x)
− 1

4x

)]
(24)
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so that the transformationγM
∞ say, is of infinite order and is given by

γM
∞ (x) =

1

2
+

1

2
tanh

[
` sinh

(
1

4 (1− x)
− 1

4x

)]
, (25)

which should be compared with equation (17). Again, we haveγM
∞ (1/2) = `.

From inequality (3), the requirement thatγM ′
∞ has a local maximum at1/2 gives,

after some tedious algebra, that` >
√

7/2 = 1.870829 to 6D.

Transformation 2.6 Jeon [6] has introduced a transformation which has over-
tones of both the Sag and Szekeres and Mori transformations as well as the Kress
transformation.

If α, β > 0 and ifp is defined by

p = α2β (1 + β log 2) , (26)

then, with
v (x) = x+ (4− 8/p)B3 (x) , (27)

Jeon’s transformation is obtained by choosing the functionf to be

f (x) = exp
[
α (v (x))−β log v (x)

]
. (28)

With this choice ofp and for any values ofα andβ we find that Jeon’s transfor-
mation,γJ

∞ say, has the property thatγJ ′
∞ (1/2) = 2. As with Transformations2.3



§2: Examples of “algebraic” sigmoidal transformations E93

and2.5all derivatives ofγJ
∞ of all orders vanish at both0 and1. Now γJ

∞ is not
sigmoidal, according to Definition1.1, for all values ofα, β > 0. In fact requir-
ing the derivative to have a local maximum at1/2 (see (3)) requires thatα andβ
satisfy the inequality

α2 (1 + βlog2)3
(
14− 3α.2β (1 + βlog2)

)
> (29)

22−2β
[
(1 + βlog2)

(
β2 + 3β + 2

)
+ β (2β + 3)

]
.

This appears to be too complicated to take any further but it is readily checked for
given values ofα andβ.

Jeon’s transformation seems to be unnecessarily complicated involving, as it
does, two parametersα and β and introducing the cubicv in order to have a
bounded derivative on[0, 1]. A similar result in the spirit of Jeon’s transformation
is obtained by choosing

f (x) = exp [`.log x/ (2 (1 + log 2) x)] . (30)

It is readily verified thatγ′ (1/2) = `.Obviously, all derivatives of the correspond-
ing γ vanish at both zero and one and we haveγ (0) = 0, γ (1) = 1. On applying
inequality (3) we find thatγ has a local maximum atx = 1/2 provided that

` > ((11 + 6 log 2) / (2 + 2 log 2))1/2 = 2.115 874, (31)

to 6D. We do not propose to proceed any further in this paper with this transfor-
mation; it is merely noted in passing.
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3 Examples of “integral” sigmoidal transformations

We now consider transformations in which the functionf is given as the integral
of some functionh. To be more explicit, let

f (x) =
∫ x

0
h (ξ) dξ. (32)

If the functionh satisfies the condition

h (ξ) = h (1− ξ) , 0 ≤ ξ ≤ 1 , (33)

then we have simply from equation (1) that

γ (x) = (1/Q)
∫ x

0
h (ξ) dξ , 0 ≤ x ≤ 1 , (34)

where

Q :=
∫ 1

0
h (ξ)dξ . (35)

In other words, from equations (32) and (33) we have that

f (x) + f (1− x) = Q ,

a constant. We now need conditions onh for γ to be sigmoidal.

Theorem 3.1 Supposeh is such that
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(i) h ∈ C [0, 1] ∩ C∞ (0, 1) with h (0) = 0 andh (x) > 0 for 0 < x ≤ 1,

(ii) h (x) = h (1− x) , 0 ≤ x ≤ 1,

(iii) h′ (x) > 0 on (0, 1/2],

(iv) h(j) (x) = O
(
xr−1−j

)
nearx = 0, for all j ∈ N0.

Thenγ, as defined by equations (34) and (35), is a sigmoidal transformation of
orderr.

Proof. We check this against the requirements of Definition1.1. From (i) and
(ii) we have that

f (x) + f (1− x) =
∫ 1

0
h (ξ) dξ = Q > 0 .

Thusγ is defined on[0, 1] and furthermore, from (ii) again, we have thatγ (x) +
γ (1− x) = 1 for 0 ≤ x ≤ 1. Now γ′ (x) = h (x) /Q which is positive on(0, 1)
so thatγ is increasing on[0, 1]. Furthermore,γ′ (0) = 0. Now γ′′ (x) = h′ (x) /Q
and from (iii) we have thatγ′ is strictly increasing on[0, 1/2]. Thus conditions
(a)(i) to (a)(iv) of Definition1.1 are satisfied. Finally as a consequence of (iv)
and from the definition ofγ we have thatγ(j) (x) = O (xr−j) nearx = 0, for all
j ∈ N0, so thatγ is a sigmoidal transformation of orderr. ♠
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We note that the conditions of this theorem are considerably simpler than those
of Theorem1.2 which we used in the previous section for “algebraic” sigmoidal
transformations. Let us now consider some examples.

Transformation 3.2 Korobev [7] chooses

h (x) = (x (1− x))r−1 with r > 1 . (36)

It is readily verified that thish satisfies conditions (i)–(iv) of Theorem3.1. Now

Q =
∫ 1

0
(x (1− x))r−1 dx = (Γ (r))2 /Γ (2r) , (37)

see Gradshteyn and Ryzhik [4,§3.191(3)].

For r � 1 we have thatQ ∼ π1/2/
(
22r−1r1/2

)
. Consequently

γ′ (1/2) ∼
(
2/π1/2

)
r1/2 for r � 1 ,

which increases asr increases.

Transformation 3.3 In the spirit of the Sag, Szekeres transformation (see Trans-
formation2.3) Iri, Moriguti and Takasawa [5] have chosen

h (x) = exp [− (1/x+ 1/ (1− x))] . (38)
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Again, it is readily verified thath satisfies conditions (i)–(iii) of Theorem3.1so
that γ as defined in (34) is a sigmoidal transformation. In this case it is obvi-
ous thatγ(k) vanishes at both 0 and 1 for allk ∈ N so that this is a sigmoidal
transformation of infinite order.

In this caseQ = 0.00702986 to 6 significant digits (see [5, equation (1.3)])
and we find thatγ′ (1/2) = 2.605406, correct to 6 decimal places.

Transformation 3.4 An important transformation has been given by Sidi [15]
who chooses

h (x) = (sin (πx))r−1 , N 3 r ≥ 2. (39)

Again we see thath satisfies conditions (i) to (iv) of Theorem3.1so that the corre-
sponding transformationγr, is sigmoidal and of orderr. We have, see Gradshteyn
and Ryzhik [4,§3.621], that

Q =
∫ 1

0
(sin (πx))r−1 dx = Γ (r/2) /

(
π1/2Γ (r/2 + 1/2)

)
(40)

so that, in particular,

γ′r (1/2) ∼ (πr/2)1/2 for r � 1 , (41)

which is unbounded asr increases.

On integration by parts we find, after a little algebra, that forr ≥ 1, γr satisfies
the recurrence relation

γr+1 (x) = γr−1 (x)− Γ (r/2)

2π1/2Γ (r/2 + 1/2)
(sin (πx))r−1 cos (πx) , (42)
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if we defineγ0(x) := 1/2 andγ1 := x. We have, in particular, that

γ2 (x) = (1− cos (πx)) /2 , and

γ3 = x− 1

2π
sin(2πx) .

(43)

More generally, on using the expression for(sin (πξ))2m as given in Gradshteyn
and Ryzhik [4,§1.320(1)] and integrating term by term, we find

γ2m+1 (x) = x+ 2
m∑
s=1

(−1)s (m!)2

(m− s)! (m+ s)!

(
1

2πs

)
sin (2πsx) , (44)

for all m ∈ N. We shall consider the importance of this particular odd order
sigmoidal transformation later when we consider the Euler-Maclaurin summation
formula (see§4.2).

Transformation 3.5 Laurie [9] looks for an integral sigmoidal transformation of
orderr wherer is an odd integer greater than or equal to3 such that the function
h, in addition to satisfying (33), also satisfies



h(2i) (0) = 0 for i = 0 (1) ((r − 3) /2) ,

h(2i−1) (0) = 0 for i = 1 (1) (r − 1) .
(45)
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We see that (33) and (45) together imply thath also satisfies the same homoge-
neous conditions as given in (45) but at the end-point1. Thus there is a total of
3 (r − 1) homogeneous conditions to be satisfied and Laurie looks for a polyno-
mial solution of degree3 (r − 1). To this end recall that the Bernoulli polynomials
B2j , j ∈ N0, of even order satisfy

B2j (x) = B2j (1− x) . (46)

(see, for example, Gradshteyn & Ryzhik [4,§9.623(4)]) and write

h (x) =
3(r−1)/2∑

j=1

cj (B2j (x)− B2j) , (47)

where c3(r−1)/2 = 1, and B2j denotes the Bernoulli number which is equal to
B2j (0). This is a polynomial of exact degree3 (r − 1) and it satisfiesh (x) =
h (1− x) together withh (0) = 0. Recall that

B(i)
2j (x) =

(2j)!

(2j − i)!
B2j−i (x) (48)

so that from the second of (45) we have

0 = h(2i−1) (0) =
3(r−1)/2∑

j=1

cj
(2j)!

(2j − 2i+ 1)!
B2j−2i+1 . (49)

If we recall that all odd order Bernoulli numbers are zero except forB1 which is
equal to−1/2 we see that equation (49) imply that

ci = 0 for i = 1 (1) (r − 1) . (50)
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Consequently we may rewrite (47) as

h (x) =
3(r−1)/2∑

j=r

cj (B2j (x)− B2j) , (51)

with c3(r−1)/2 = 1. It now remains to satisfyh(2i) (0) = 0 for i = 1 (1) ((r − 3) /2)
sinceh (0) = 0 is satisfied automatically. Again, using (48) we find

3(r−1)/2∑
j=r

cj
(2j)!B2j−2i

(2j − 2i)!
= 0 for i = 1 (1) ((r − 3) /2) , (52)

which we can rewrite as
(3r−5)/2∑

j=r

(2j)!B2j−2i

(2j − 2i)!
cj = −(3r − 3)!B3(r−1)−2i

(3 (r − 1)− 2i)!
, (53)

for i = 1 (1) ((r − 3) /2), giving us(r − 3) /2 equations for the(r − 3) /2 un-
knownscr, cr+1, ..., c(3r−5)/2. The author has been unable to determine whether
this system of equations has a unique solution for all odd integersr. However,
Laurie [9] quotes Schneider (private communication) who claims that this is true.

With h given by (51) we find from (34) and (35) that

γr (x) = x−

3(r−1)/2∑
j=r

(cj/ (2j + 1))B2j+1 (x)

3(r−1)/2∑
j=r

cjB2j

. (54)
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Let us now consider the three examples discussed by Laurie [9].

(i) r = 3 From (51) we see immediately that

h (x) = B6 (x)−B6

and, from (54),

γ3 (x) = x− 6B7 (x)

= 7x3 − 21x5 + 21x6− 6x7, (55)

which isO
(
x3
)

as expected. Also,γ′3 (1/2) = 63/32.

(ii) r = 5 From (53) we findc5 = 10/3 and withc6 = 1 we have from (54) that

γ5 (x) = x+
210

53
(130 B11 (x) + 33 B13 (x))

= (3003 x5− 17 160 x7 + 85 085 x9− 150 150 x10

+ 117 390 x11− 45 045 x12 + 6 930 x13)/53 . (56)

Again, as expected,γ5 (x) = O
(
x5
)

and we have

γ′5 (1/2) = 285, 285/108, 544 = 2.628 289

correct to 6D.
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(iii) r = 7 From equation (53) we find

c7 =
3 123

269
, c8 =

10 395

1 076
withc9 = 1 .

With these values,

γ7 (x) = x−56 488 824

1 145
B15 (x)−8 295 210

229
B17 (x)−768 264

229
B19 (x) (57)

and it can be verified that

γ7 (x) =
112 404

229
x7 +O

(
x9
)
.

Finally we note thatγ′7 (1/2) = 23 686 236/7 503 872 = 3.156 535, correct
to 6D. Thus it appears thatγ′r (1/2) is increasing withr but whetherγ′r (1/2)
is bounded above is not known.

Sidi’s Transformation3.4 has the property thatγ′r (1/2) diverges asr → ∞.
We now consider a transformation which is similar to the Sidi odd order trans-
formation but for whichγ′2m+1 (1/2) is bounded for allm ∈ N. In place of equa-
tion (32) let us now write

f (x) =
∫ x

0
(x− ξ)h (ξ) dξ , (58)

for someh. This is essentially a repeated integral of equation (32). We shall
assume now thath satisfies the condition

h (ξ) + h (1− ξ) = 0 , 0 ≤ ξ ≤ 1 . (59)
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Then, from equation (1),

γ (x) =
∫ x

0
(x− ξ)h (ξ) dξ /

∫ 1

0
(x− ξ)h (ξ)dξ . (60)

The denominator in equation (60) appears at first sight to depend onx but, from
equation (59), we see that

∫ 1
0 h (ξ) dξ = 0. Thus we can rewrite equation (60) as

γ (x) =
∫ x

0
(x− ξ)h (ξ) dξ /

∫ 1

0
(1− ξ)h (ξ) dξ . (61)

With these preliminary comments we need further conditions onh in order
thatγ be a sigmoidal transformation of orderr.

Theorem 3.6 Supposeh is such that

(i) h ∈ C [0, 1] ∩ C∞ (0, 1) with h (x) > 0 for x ∈ (0, 1/2),

(ii) h (x) + h (1− x) = 0 for 0 ≤ x ≤ 1,

(iii) h(j) (x) = O
(
xr−2−j

)
, nearx = 0, for all j ∈ N0 andr > 1.

Thenγ, as defined by equation (61), is a sigmoidal transformation of orderr.
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Proof. First we observe, on using (i) and (ii), that
∫ 1

0
(1− ξ)h (ξ) dξ =

∫ 1/2

0
(1− ξ)h (ξ) dξ +

∫ 1/2

0
ξh (1− ξ) dξ

=
∫ 1/2

0
(1− 2ξ)h (ξ) dξ > 0

since1 − 2ξ > 0 on (0, 1/2) and, from (i),h > 0 on (0, 1/2). Thusγ in
equation (61) is defined, withγ (0) = 0 and γ (1) = 1. Again, using (ii),
γ (x) + γ (1− x) = 1 for 0 ≤ x ≤ 1.

From (61),

γ′ (x) =
∫ x

0
h (ξ) dξ/

∫ 1

0
(1− ξ)h (ξ) dξ . (62)

We shall now show that
∫ x

0 h (ξ) dξ > 0 for 0 < x < 1. Sinceh > 0 on (0, 1/2)
we have that the result is true for0 < x ≤ 1/2. For 1/2 ≤ x < 1 we have, on
using (ii),

∫ x

0
h (ξ) dξ =

(∫ 1

0
−
∫ 1

x

)
h (ξ) dξ

=
∫ 1

x
h (1− ξ) dξ =

∫ 1−x

0
h (ξ) dξ > 0

since0 < 1− x ≤ 1/2, i.e. 1/2 ≤ x < 1. Thusγ′ > 0 on (0, 1) andγ is strictly
increasing on(0, 1) with γ (0) = 0 andγ(1) = 1.

Again,γ′′ (x) = h (x) /
∫ 1

0 (1− ξ)h (ξ) dξ which by (i), is> 0 on (0, 1/2) so
thatγ′ is strictly increasing on(0, 1/2) with, from equation (62), γ′ (0) = 0.
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Finally from (i) and (iii) we see thatγ (x) = O (xr) nearx = 0 andγ ∈
C1 [0, 1] ∩ C∞ (0, 1) so thatγ is a sigmoidal transformation of orderr. ♠

Transformation 3.7 Suppose we choose

h (ξ) = sin2m−1 (2πξ) , m ∈ N . (63)

This function satisfies the conditions of theorem3.6 to give a sigmoidal transfor-
mation

γ2m+1 (x) =
∫ x

0
(x− ξ) sin2m−1 (2πξ) dξ/

∫ 1

0
(1− ξ) sin2m−1 (2πξ)dξ , (64)

of order2m+ 1. It is convenient to define

γ1 (x) = x

and then equation (64) gives, whenm = 1,

γ3 (x) = x− 1

2π
sin (2πx) ,

which is identical to the third order Sidi transformation, see (43). In fact, judicious
integration of equation (64) by parts gives the recurrence relation

γ2m+1 (x) = γ2m−1 (x)− Γ (m− 1/2)

2π3/2 (2m− 1) Γ (m)
sin2m−1 (2πx) , for m ∈ N .

(65)
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From Gradshteyn and Ryzhik [4,§3.821(2)] we find

∫ 1

0
(1− ξ) sin2m−1 (2πξ) dξ =

Γ (m)

(4π1/2Γ (m+ 1/2))
. (66)

Then, from equations (64) and (66), we find

γ′2m+1 (1/2) =
4π1/2Γ (m+ 1/2)

Γ (m)

∫ 1/2

0
sin2m−1 (2πξ) dξ .

Again from Gradshteyn and Ryzhik [4,§3.621(1)] we obtain

γ′2m+1 (1/2) = 2 , for all m ∈ N , (67)

which, of course, is independent ofm.

From equation (64) we may writeγ2m+1 as a finite sum. Making use of Grad-
shteyn and Ryzhik [4,§1.320(3)] we find, after some algebra, that

γ2m+1 (x) = x+
2 (Γ (m+ 1/2))2

π2

m∑
s=1

(−1)s sin [2π (2s− 1)x]

Γ (m− s+ 1) Γ (m+ s) (2s− 1)2 , (68)

for all m ∈ N.

Finally, let us consider the explicit behaviour ofγ2m+1 (x) nearx = 0. Forx
close to0 we have from equation (64), on replacingsin (2πξ) by (2πξ), that

γ2m+1 (x) =
4π1/2Γ (m+ 1/2)

Γ (m)

∫ x

0
(x− ξ) (2πξ)m−1 dξ ,
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approximately. Integrating gives

γ2m+1 (x) =
22m−1π2m−1/2Γ (m+ 1/2)

(m+ 1/2) Γ (m+ 1)
x2m+1 + O

(
x2m+3

)
, (69)

for m ∈ N. We observe that nearx = 0 the expansion ofγ2m+1 is of the form
x2m+1∑∞

k=0 akx
2k, for some coefficientsak. That is, the expansion ofγ2m+1 near

the origin involves only every second power ofx, an observation which will be
important later (see§4.2).

4 The Offset Trapezoidal Rule

One of the most important application of sigmoidal transformations is in the ap-
proximate evaluation of integrals of the form

∫ 1
0 f (x) dx by means of the offset

trapezoidal rule. The aim of this section is to giveasymptoticestimates of the
truncation error. In order to do this, we introduce the Abel-Plana formula for
the truncation error which, although dating back to the early nineteenth century,
proves to be particularly useful in this context. We give asymptotic errors for two
distinct cases. In the first, see§4.2, we assume thatf is holomorphic on[0, 1]; for
the second, see§4.3, we assume thatf is holomorphic only on(0, 1) with alge-
braic singularities at the end-points0 and1. Numerical examples of the estimates
we obtain are given in§5.
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4.1 The Offset Trapezoidal Rule and the Abel-Plana formula

We use notation introduced by Lyness [10]. Suppose that

tν = (ν + 1) /2 for − 1 < ν ≤ 1 , (70)

so that0 < tν ≤ 1 with, in particular,t0 = 1/2 andt1 = 1. The offset trapezoidal
ruleQ[ν]

n f, n ∈ N, −1 < ν ≤ 1 is defined by

Q[ν]
n f :=




1

n

n−1∑
j=0

f ((j + tν) /n) , −1 < ν < 1 ,

1

n

n∑
j=0

′′
f (j/n) , ν = 1 ,

(71)

where
∑′′ denotes a sum whose first and last terms are halved. If

If :=
∫ 1

0
f (t) dt (72)

then we want an expression for the truncation errorE [ν]
n f where

E [ν]
n f := If −Q[ν]

n f. (73)

Although we shall assume throughout thatf is a real function on[0, 1], we shall
assume that the definition off may be continued into the stripS of the complex
z-plane defined by

S := {z : 0 ≤ x = < z ≤ 1, −∞ < y = = z <∞} . (74)

We can now give the Abel-Plana formula (see, for example, Olver [12]).
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Theorem 4.1 (Abel-Plana). Suppose that

(i) f is continuous inS and holomorphic inint (S);

(ii) f (z) = o (exp (2πn |= z|)) as= z → ±∞ in S,

uniformly with respect to< z.
Then

E [ν]
n f = −2=

{∫ ∞

0

f (1 + iy)− f (iy)

{exp [2π (ny + itν)]− 1}dy
}
. (75)

Proof. Let C1 = ABCD be a contour inS ∩ (= z ≤ 0) wherez = −iy, 0 ≤
y ≤ Y alongAB; z = x− iY , 0 ≤ x ≤ 1 alongBC; andz = 1− iy, Y ≥ y ≥ 0
alongCD. Similarly inS ∩ (= z ≥ 0) we letC2 = EFGH be the contour where
z = 1+ iy, 0 ≤ y ≤ Y alongEF ; z = x+ iY, 1 ≥ x ≥ 0 alongFG; and finally
z = iy, Y ≥ y ≥ 0 alongGH.

If tν = 1, then we modify these contours by semicircular indentations in the
neighbourhoods of the points0 and1. Sincef is holomorphic inS we have, by
Cauchy’s theorem,

∫ 1

0
f (x) dx =

1

2

∫
C1

f (x) dx− 1

2

∫
C2

f (x) dx. (76)
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Again, by Cauchy’s residue theorem,

∫
C1+C2

f (z) cot (π (nz − tν)) dz =




2i

n

n−1∑
k=0

f ((k + tν) /n) , −1 < ν < 1 ,

2i

n

n∑
k=0

′′
f (k/n) , ν = 1 .

(77)

From equations (71), (73), (76) and (77) we have

E [ν]
n f =

1

2

∫
C1

f (z) (1 + i cot (π (nz − tν))) dz

− 1

2

∫
C2

f (z) (1− i cot (π (nz − tν))) dz

=
∫
C2

f (z) dz

{exp [−2πi (nz − tν)]− 1}
−
∫
C1

f (z) dz

{exp [2πi (nz − tν)]− 1} . (78)

From condition (ii) we see that the contributions to the integrals overC1 andC2

fromBC andFG respectively tend to zero asY →∞. If we letE [ν]
n,0f denote the

contribution toE [ν]
n f from the integrals overAB andGH then we find that

E [ν]
n,0f = 2=

{∫ Y

0

f (iy) dy

exp [2π (ny + itν)]− 1

}
. (79)
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Similarly, if E [ν]
n,1f denotes the contribution toE [ν]

n f from integrals overCD and
EF then

E [ν]
n,1f = −2=

{∫ Y

0

f (1 + iy) dy

exp [2π (ny + itν)]− 1

}
. (80)

From equations (79) and (80) and lettingY →∞, equation (75) follows. ♠
Suppose now thatγr denotes a sigmoidal transformation of orderr > 1. From

equation (72), on writingt = γr (τ), we have

If =
∫ 1

0
f (γr (τ)) γ′r (τ) dτ . (81)

Applying the offset trapezoidal rule to the integrandf (γr (τ)) γ′r (τ) gives a quad-
rature sumQ[ν,r]

n f , say, where

Q[ν,r]
n f :=




1

n

n−1∑
j=0

f (γr ((j + tν) /n)) γ′r ((j + tν) /n) , −1 < ν < 1 ,

1

n

n−1∑
j=1

f (γr (j/n)) γ′r (j/n) , ν = 1 .

(82)
We recall that forν = 1, the integrand vanishes whenj = 0 andn sincer > 1
andγ′r (0) = γ′r (1) = 0. We define the truncation errorE [ν,r]

n f by

E [ν,r]
n f := If −Q[ν,r]

n f . (83)

Let us define
gr (τ) := f (γr (τ)) γ′r (τ) , 0 ≤ τ ≤ 1 . (84)
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We need to extend the definition ofgr from the interval[0, 1] into the stripS.
For the functionγr in S we shall, in particular, replace condition (ii) of Defini-
tion 1.1(a) by

γr (z) + γr (1− z) = 1 ∀ z ∈ S . (85)

From this we see that

γr (1 + iy) = 1− γr (−iy) , 0 ≤ y <∞ , (86)

and
γ′r (1 + iy) = γ′r (−iy) , 0 ≤ y <∞ . (87)

With these comments we now have the following theorem.

Theorem 4.2 Suppose that the definition ofgr can be continued into the stripS
such that

(i) gr is continuous inS and holomorphic inint(S);

(ii) gr (z) = o (exp(2πn |=z|)) as=z → ±∞ in S, uniformly with respect to
<z.

Then

E [ν,r]
n f = E [ν]

n gr =

−2=
{∫ ∞

0

f (1− γr (−iy)) γ′r (−iy)− f (γr (iy)) γ′r (iy)

exp [2π (ny + itν)− 1]
dy

}
. (88)
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Proof. It is obvious thatE [ν,r]
n f = E [v]

n gr and equation (88) follows immedi-
ately on applying the Abel-Plana formula, Theorem4.1, to gr and using equa-
tions (86) and (87). ♠

Equation (88) will be taken as the starting point for the asymptotic estimates
of E [ν,r]

n f for n� 1, to be discussed in the next two subsections.

4.2 Asymptotic estimates forE [ν,r]
n f when f is holomorphic

on S

In making our asymptotic estimates our basic assumption is thatn is chosen large
enough so that the major contribution to the integral in (88) comes from the neigh-
bourhood ofy = 0.

Theorem 4.3 In addition to the conditions of Theorem4.2let us assume thatf is
holomorphic at both0 and1. Then, for large enoughn,

E [ν,r]
n f ∼

∞∑
k=0

(
(−1)k f (k) (1) + f (k) (0)

)
k!

×

×
∫ ∞

0

[cos (2πtν)− exp (−2πny)]=
[
γk

r (iy) γ′r (iy)
]

cosh (2πny)− cos (2πtv)
dy +

+ sin (2πtν)
∞∑
k=0

(
(−1)k f (k) (1)− f (k) (0)

)
k!

×
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×
∫ ∞

0

<
[
γk

r (iy) γ′r (iy)
]

cosh (2πny)− cos (2πtν)
dy . (89)

Proof. Recall that we are assuming that bothf andγr are real on[0, 1]. Since
we are assuming thatf is holomorphic at both0 and1 then, in some region of0
and1 we have respectively, that

f (γr (iy)) =
∞∑
k=0

f (k) (0)

k!
γk

r (iy) , (90)

and

f (1− γr (−iy)) =
∞∑
k=0

(−1)k f (k) (1)

k!
γk

r (−iy) . (91)

If we formally substitute (90) and (91) into (88) and assume that the interchange
of summation and integration is permissible, we obtain (89) after some tedious
algebra.♠

Note that in (89) we have used the symbol “∼” to denote “asymptotically
equal to” i.e.a (n) ∼ b (n) implies thata (n) /b (n) → 1 in the limit asn→∞.

Let us assume that nearx = 0 we can write

γr (x) = c0 (r)xr

{
1 +

∞∑
k=1

dk (r)xk

}
, (92)
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wherec0 (r) anddk (r), for all k ∈ N, are real. From equation (92) we can write

γr

(
eiπ/2y

)
= eirπ/2δr (y) + ei(r−1)π/2εr (y) (93)

say, where the real functionsδr andεr are defined by




δr (y) := c0 (r) yr

{
1 +

∞∑
k=1

(−1)k d2k (r) y2k

}
,

εr (y) := c0 (r) yr−1
∞∑
k=1

(−1)k d2k−1 (r) y2k .

(94)

Again, from equation (93),

γ′r
(
eiπ/2y

)
= ei(r−1)π/2δ′r (y)− eirπ/2ε′r (y) . (95)

With these preliminaries established we now have the following theorem.

Theorem 4.4 Let f satisfy the conditions of Theorem4.3. For any sigmoidal
transformationγr of orderr > 1 and for−1 < ν ≤ 1 then forn� 1

nrE [ν,r]
n f ∼ −rc0 (r) {f (0) [ζ (1− r, tν) + (1 + 1/r) d1 (r) ζ (−r, tν) /n] +

+f (1) [ζ (1− r, 1− tν) + (1 + 1/r)d1 (r) ζ (−r, 1− tν) /n]}+

+O
(
1/nmin(2,r)

)
, (96)

whereζ (· , ·) denotes the generalised Riemann zeta function.
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Proof. In (89) we take the first term in each sum and write


γr (iy) = c0 (r) eiπr/2yr + c0 (r) d1 (r) ei(r+1)π/2yr+1 +O
(
yr+2

)
,

γ′r (iy) = rc0 (r) ei(r−1)π/2yr−1 + (r + 1) c0 (r) d1 (r) eirπ/2yr +O
(
yr+1

)
.

(97)
We shall make use of the integrals

∫ ∞

0

yr−1dy

cosh (2πny)− cos (2πtν)
=

2Γ (r)

(2πn)r

∞∑
s=1

1

sr
· sin (2πstν)

sin (2πtν)
(98)

and∫ ∞

0

yr−1 [cos (2πtν)− exp (−2πny)] dy

cosh (2πny)− cos (2πtν)
=

2Γ (r)

(2πn)r

∞∑
s=1

cos (2πstν)

sr
; (99)

see, for example, Erd´elyi et al [3, §6.6(5) and (8)]. In addition, we need the
following representation of the generalised Riemann zeta function

ζ (1− r, q) =
2Γ (r)

(2π)r

∞∑
s=1

cos(2πsq − rπ/2)

sr
, (100)

valid for r > 1 and0 ≤ q ≤ 1. (See, for example, Gradshteyn and Ryzhik [4,
§9.521(2)]. After some straightforward algebra, we obtain the terms inf (0) and
f (1) in equation (96).

For the termO
(
1/nmin(2,r)

)
we note that in both (98) and (99) the integral

of the term involvingyr−1 is O (1/nr). Thus if in the terms involvingf (0) and
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f (1) we had kept higher order terms inγ′r
(
eiπ/2y

)
this would have given terms of

order1/nr+2. Again, if we had used the terms in (89) involving f ′ (0) andf ′ (1)
we would obtain terms of order1/n2r. Since we have assumedr > 1, (96) gives
the dominant terms in the asymptotic expansion ofnrE [ν,r]

n f . This completes the
proof. ♠

There are two special cases which are worth noting. The first, in whichν = 0
givest0 = 1/2 which corresponds to the “mid-point” rule and the second, where
ν = 1 so thattν = 1, corresponds to the “trapezoidal” rule.

Corollary 4.5 Under the conditions of Theorem4.4

(2πn)r E [0,r]
n f ∼ 2c0 (r) Γ (r + 1) (f (0) + f (1))×

×{cos(rπ/2)
(
1− 21−r

)
ζ (r)−

− sin (rπ/2) (r + 1) d1 (r)
(
1− 2−r

)
ζ (r + 1) / (2πn)}

+O
(
1/nmin(2,r)

)
, (101)

and

(2πn)r E [1,r]
n f ∼ 2c0 (r) Γ (r + 1) (f (0) + f (1)) cos (rπ/2) ζ (r)−

− sin (rπ/2) (r + 1) d1 (r) ζ (r + 1) / (2πn)}
+O

(
1/nmin(2,r)

)
, (102)
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Proof. This follows immediately from (96) on using the definition of the Rie-
mann zeta function; see Gradshteyn and Ryzhik [4,§9.522(1)].♠

From equations (101) and (102) it can be seen that ifd1 (r) = 0 andr is an odd
integer then the terms in{} vanish and we need to consider higher order terms.
On the other hand withd1 (r) = 0 andr an even integer then the terms in{} will
not be zero and the error behaves likeO (1/nr) which is unremarkable.

In the more general case given by (96) we see that for alltν ∈ (0, 1] if d1 (r) =
0 then whenr is an even integer

(2πn)r E [ν,r]
n f ∼ 2Γ (r) (−1)1+r/2 (f (0) + f (1))

∞∑
s=1

cos(2πstν)
sr

+O
(
1/n2

)
;

(103)
and, whenr is an odd integer≥ 3,

(2πn)r E [ν,r]
n f ∼ 2Γ (r) (−1)(r−1)/2 (f (0)− f (1))

∞∑
s=1

sin(2πstν)

sr
+O

(
1/n2

)
.

(104)

We shall now suppose thatr is an odd integer≥ 3 and that for allk ∈ N,
d2k−1 (r) = 0 so thatεr (y) = 0; see (92) and (93). As the next theorem shows we
have an improved rate of convergence.

Theorem 4.6 Suppose that, in addition to the condition of Theorem4.3, r =
2m + 1, m ∈ N, andγ2m+1 is such thatε2m+1 is zero. If any of the following
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conditions is satisfied: (A)tν = 1/2, (B) tν = 1, (C) f (1) = f (0),then

(2πn)2(2m+1)E [ν,2m+1]
n f ∼ (c0 (2m+ 1))2 Γ (4m+ 3) (f ′ (1)− f ′ (0))×

×
( ∞∑

s=1

cos(2πstv)
s4m+2

)(
1 +O

(
1

n2

))

+O
(

1

n2m+1

)
. (105)

Proof. Sincer = 2m+ 1 andε2m+1 = 0 we have

γ2m+1

(
eiπ/2y

)
= (−1)m eiπ/2δ2m+1 (y) (106)

and
γ′2m+1

(
eiπ/2y

)
= (−1)m δ′2m+1 (y) . (107)

Consequently

<
[
γk

r (iy) γ′r (iy)
]

= (−1)m(k+1) cos(kπ/2) δk
2m+1 (y) δ′2m+1 (y)

and
=
[
γk

r (iy) γ′r (iy)
]

= (−1)m(k+1) sin(kπ/2) δk
2m+1 (y) δ′2m+1 (y) .

Substituting these results into (89) gives

E [ν,2m+1]
n f ∼

∞∑
k=1

(−1)k
(
f (2k−1) (1)− f (2k−1) (0)

)
(2k − 1)!

×
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×
∫ ∞

0

[cos (2πtν)− exp (−2πny)] δ2k−1
2m+1 (y) δ′2m+1 (y) dy

cosh (2πny)− cos (2πtν)

+ (−1)m sin (2πtν)
∞∑
k=0

(−1)k
(
f (2k) (1)− f (2k) (0)

)
(2k)!

×

×
∫ ∞

0

δ2k
2m+1 (y) δ′2m+1 (y) dy

cosh (2πny)− cos (2πtν)
. (108)

Now neary = 0 we have

δ2m+1 (y) = c0 (2m+ 1) y2m+1
(
1 +O

(
y2
))

and
δ′2m+1 (y) = (2m+ 1) c0 (2m+ 1) y2m

(
1 +O

(
y2
))

we find that

δ2k−1
2m+1 (y) δ′2m+1 (y) = (c0 (2m+ 1))2k (2m+ 1) y2k(2m+1)−1

(
1 +O

(
y2
))

(109)

From (99) and (107) we have

∫ ∞

0

[cos(2πtν)− exp(−2πny)] δ2k−1
2m+1 (y) δ′2m+1 (y) dy

cosh(2πny)− cos(2πtν)

= (2m+ 1) (c0 (2m+ 1))2k 2Γ (2k (2m+ 1))

(2πn)2k(2m+1)

×
∞∑
s=1

cos(2πstν)
s2k(2m+1)

(
1 +O

(
1/n2

))
. (110)
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Again, from (98) and (107) we find

∫ ∞

0

δ2k
2m+1 (y) δ′2m+1 (y) dy

cosh(2πny)− cos(2πtν)

= (2m+ 1) (c0 (2m+ 1))2k+1× 2Γ ((2k + 1) (2m+ 1))

(2πn)(2m+1)(2k+1)

×
∞∑
s=1

1

s(2k+1)(2m+1)
· sin (2πstν)

sin (2πtν)

(
1 +O

(
1/n2

))
. (111)

By substituting (110) and (111) into (108) and taking the first non-vanishing term
in each sum we see that (105) follows for each of conditions (A), (B) and (C). The
details are omitted.♠

The result (105) is particularly good, for if we compare it with (96) we see that
under the conditions of Theorem4.6, E[ν,r]

n f ∼ O
(
1/n2r

)
rather thanO (1/nr)

of Theorem4.4. This dramatic improvement in convergence was first observed
by Sidi [15] for a whole class of sigmoidal transformations of which Transforma-
tion 3.4 is an example

Let us consider condition (C) of Theorem4.6. If f (1) 6= f (0) then if we
defineF (x) := f (x) + (f (0)− f (1)) x we see thatF (1) = F (0) (= f (0)).
Furthermore,

∫ 1

0
f (x) dx =

∫ 1

0
F (x) dx− 1

2
(f (0)− f (1))

and we could apply Theorem4.6to the functionF .



§4: The Offset Trapezoidal Rule E122

In the next subsection we consider asymptotic estimates of the error whenf ,
instead of being holomorphic at0 and1, has algebraic singularities at these points.

4.3 Asymptotic estimates forE [ν,r]
n f when f has algebraic sin-

gularities at the end-points

The case whenf has an algebraic singularity at either or both end-points arises
frequently enough to justify its analysis. The principal result is given in Theo-
rem4.7and from it we shall see that there is no special case such as that given by
Theorem4.6in the case whenf is holomorphic at both end points. Before stating
the theorem we note from equation (70) that we have

1− tν = t−ν for− 1 < ν ≤ 1. (112)

Theorem 4.7 Supposef is defined onS by

f (z) = zα (1− z)β g (z) for α, β > −1, (113)

whereg is holomorphic onS, real on [0, 1] and such thatg (0) 6= 0, g (1) 6= 0.
Letγr be a sigmoidal transformation of orderr, r > 1. Then forn� 1

nrE [ν,r]
n f ∼ Jν (α, r, n) g (0) + J−ν (β, r, n) g (1) (114)

where

Jν (α, r, n) := −r (c0 (r))1+α {ζ (1− r (α + 1) , tν) +

+ (α + 1 + 1/r) d1 (r) ζ (−r (α + 1) , tν) /n}/nαr.(115)
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Proof. We proceed as we have done in the proofs of Theorems4.4 and4.6,
starting with equation (88) and replacingγr (x) by c0 (r)xr (1 + d1 (r)x) and sim-
ilarly for γ′r (x). In particular we find near1 that

f
(
1− γr

(
e−iπ/2y

))
γ′r
(
e−iπ/2y

)
= r (c0 (r))1+β g (1)

{
exp (−iπ (βr + r − 1) /2) yβr+r−1 +

+ d1 (r) (β + 1 + 1/r) exp (−iπ (βr + r) /2) yβr+r +

+O
(
ymin(βr+r+1, βr+2r−1)

)}
.

Again we make use of equations (98)–(100) so that after some tedious algebra we
obtain equations (114) and (115). ♠

Suppose in Theorem4.7we have a transformationγr for whichd1 (r) = 0 and
also thatν = 1, or tν = 1. Then a straightforward calculation shows that the right
hand side of (114) will be zero if we can chooser such that bothr (1 + α) and
r (1 + β) are odd integers. We would then have to consider the next term in the
expansion. However, we shall not pursue this matter here. Suffice it to say that
there is no dramatic improvement in the rate of convergence by choosingr to be
an odd integer as happened in the previous case which essentially corresponded
to havingα = β = 0.

We complete this section by considering the asymptotic estimate of the error
E [1,∞]

n f when the sigmoidal transformation is chosen to be of infinite order; in
particular we shall consider the IMT transformation [5], see Transformation3.3.
We have the following result
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Theorem 4.8 Supposef is defined as in Theorem4.7. Let γ be the IMT trans-
formation defined by equations (32), (34), (35) and (38). Then forn � 1 and
ν = 1

E[1,∞]
n f = g (0)J (α, n) + g (1) J (β, n) (116)

where

J (α, n) ∼ −2
√
π (1 + α)α+1/4

(Qe)1+α (2πn)α+3/4 exp
(
−
√

4πn (1 + α)
)
× (117)

× cos
(√

4πn (1 + α) + 3π/8 + πα/2
)
,

Q =
∫ 1

0
exp (−1/x− 1/ (1− x)) dx = 0.00702 98584 06609 65624, (118)

correct to 20D.

Proof. From equation (88), on assuming that the contribution to each integral
comes from the neighbourhood of zero, which is reasonable sincen� 1, we find

E [1,∞]
n f ∼ 2g (1)

∫ ∞

0

=
[
(γ (−iy))β γ′ (−iy)

]
exp (2πny)− 1

dy

−2g (0)
∫ ∞

0

= [(γ (iy))α γ′ (iy)]
exp (2πny)− 1

dy. (119)
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Now for |x| � 1 we have, on integration once by parts,

γ (x) = x2e−1/x (1 +O (|x|)) /Qe
and

γ′ (x) = e−1/x (1 +O (|x|)) /Qe .
On neglecting the terms inO (|x|), replacingx by eiπ/2y we find from equa-
tion (119) thatE [1,∞]

n f is of the form given by equation (116) where

J (α, n) =
2

(Qe)1+α

∫ ∞

0

y2α sin (πα + (1 + α) /y)

exp (2πny)− 1
dy . (120)

In order to estimateJ (α, n) for n � 1 we define the complex integralJ (α, n)
by

J (α, n) =
∫
C
e−2πnzz2α exp [i (πα + (1 + α) /z)] dz (121)

whereC is a suitably chosen contour from0 to∞. Then we shall suppose that

J (α, n) ∼ 2=J (α, n) / (Qe)1+α . (122)

We obtain the value ofJ (α, n) by the method of steepest descents. If we write

J (α, n) =
∫
C
z2α expψ(z)dz

and ifζ is such thatψ′ (ζ) = 0, ζ being the only zero ofψ′ onC, then the method
of steepest descents gives

J (α, n) ∼
√

2πζ2α exp [i (π − argψ′′ (ζ)) /2] exp [ψ (ζ)] / |ψ′′ (ζ)|1/2
. (123)
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We find that

ζ = ((1 + α) /2πn)1/2 exp (−iπ/4) ,

|ψ′′ (ζ)| = 2 (2πn)3/2 (1 + α)−1/2 ,

argψ′′ (ζ) = 5π/4,

exp [ψ (ζ)] = exp
[
− (4πn (1 + α))1/2

]
exp

[
i
(
πα + (4πn (1 + α))1/2

)]
.

The substitution of these values into equation (123) and the use of equation (122)
recovers for us equation (118) and the theorem is proved.♠

This result agrees with that given by Iri, Moriguti and Takasawa [5] so we
shall not discuss this transformation any further here. Suffice it to say that they
consider quite a few numerical examples which demonstrate the accuracy of this
result. However, one does question whether the functionf0.5 (x) of [5, equation,
(4.1)] should be

√
x
√

1− x/2 and not
(√

x+
√

1− x
)
/2.

We shall conclude this section by stating, without proof, a generalization of
Theorem4.8.

Theorem 4.9 Under the same conditions as in Theorem4.8,

E [ν,∞]
n f = g (0)Jν (α, n) + g (1)Jν (β, n)

where forn� 1 and−1 < ν ≤ 1

Jν(α, n) ∼ −2
√
π (1 + α)α+1/4

(Qe)1+α (2πn)α+3/4 exp
(
−
√

4πn (1 + α)
)
×
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× cos
(√

4πn (1 + α)− 2πtν + (3 + 4α)π/8
)
. (124)

The proof is similar to that given for Theorem4.8and it is obvious that when
ν = 1, so thattν = 1, the result of Theorem4.8is recovered.

5 Some numerical results

Before giving some explicit numerical results let us consider the special case of a
sigmoidal transformation of order2m+ 1 which satisfies equation (106). This, in
particular, implies that

γ2m+1

(
eiπ/2y

)
+ γ2m+1

(
e−iπ/2y

)
= 0, y ∈ R+ ; (125)

that is, γ2m+1

(
eiπ/2y

)
is purely imaginary. We recall that Sidi’s Transforma-

tion 3.4was obtained by assuming thatf satisfies equation (32) with the function
h satisfying equation (33), so that

γ (x) =
1

Q

∫ x

0
h (ξ) dξ . (126)

We ask what additional condition equation (125) imposes onh. With γ defined
by equation (126), equation (125) implies that

∫ eiπ/2y

0
h (ξ) dξ +

∫ e−iπ/2y

0
h (ξ) dξ = 0 . (127)
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On puttingξ = −η in the second integral we require∫ eiπ/2y

0
(h (ξ)− h (−ξ)) dξ = 0 ∀ y ∈ R+ (128)

which will certainly be true if we chooseh to be an even function. This, together
with h (ξ) = h (1− ξ) (see equation (33)), implies that if we chooseh to be even,
periodic of period1 and such thath (ξ) = O

(
ξ2m

)
nearξ = 0 then we have an

appropriate sigmoidal transformation of order(2m+ 1) satisfying equation (106).
We recall that Sidi choseh (x) = sin2m (πx), which satisfies all these conditions.

We can argue in a similar way whenf is defined by equation (58) so thatγ
is defined by equation (61) providedh satisfies equation (59). To satisfy equa-
tion (125) we find that we now requireh to be an odd function with period1.
Thus if, in addition,h (ξ) = O

(
ξ2m−1

)
nearξ = 0, thenγ as defined by equa-

tion (61) will be sigmoidal of order(2m+ 1) and satisfying equation (106). In
Transformation3.7 we choseh (x) = sin2m−1 (2πx) which obviously satisfies
these conditions. Writingh (x) = sin2m−1 (2πx) cos (2πx) essentially recovers
Sidi’s Transformation3.4.

Let us now consider some numerical examples.

Example 5.1 Consider the evaluation ofIf =
∫ 1

0 exp (x) dx. We shall illustrate
this by the use of only two transformations; those given by Transformations2.1
and3.7. We compare the actual computed errorsnrE [1,r]

n f with the asymptotic es-
timate given by equation (102) in the case of Transformation2.1and for Transfor-
mation3.7with the asymptotic estimate forn2rE [1,r]

n f as given by equation (105)
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r=3.0 r=3.5
n n3E [1,3]

n f eqn (102) n7/2E [1,3.5]
n f eqn (102)

20 −0.018 494 2 −0.018 591 4 −0.122 490 −0.123 843
40 −0.009 283 57 −0.009 295 70 −0.117 016 −0.117 341
60 −0.006 193 54 −0.006 197 14 −0.115 031 −0.115 174
80 −0.004 646 34 −0.004 647 85 −0.114 011 −0.114 090

Table 5.1: Errors and estimates for Transformation2.1

We note for Transformation2.1 thatc0 (r) = 1 andd1 (r) = r. This transfor-
mation allowsr to be a non-integer and we have illustrated this in Table 5.1. In
the cases displayed we see that the asymptotic estimates obtained forn� 1 agree
well with the actual errors.

n n6E [1,3]
n f n10E [1,5]

n f

20 −0.897 960 -1046
40 −0.888 656 -925
60 −0.886 978 -905
80 −0.886 619 -898
100 −0.885 958 -895
∞ −0.885 589 -889

Table 5.2: Errors and estimates for Transformation3.7



§5: Some numerical results E130

In the second column of Table 5.2 we have given the quadrature errorn6E [1,3]
n f

for n = 20(20)100 in the case when we have used a third order transformation,
i.e. equation (68) withm = 1. The value corresponding ton = ∞ is that obtained
from the estimate (105) with m = 1, ν = 1 andq = 1. Note thatc0 (3) is given
from equation (69) withm = 1. In the last column of Table 5.2 we have putm = 2
and repeated the calculations. It should be noted that one needs to carry a lot of
precision in this case! In both these cases the asymptotic estimate is a reasonable
estimate for the actual error.

It is of interest to compare just two results from Tables 5.1 and 5.2. In each
case where we have used a third order transformation we note from Table 5.1 that
E [1,3]

20 f = −2.31×10−4 whereas from Table 5.2 we haveE [1,3]
20 f = −1.40×10−8;

the improvement is dramatic. The fifth order transformation in Table 5.2 gives
E [1,5]

20 f = −1.02× 10−10.

Example 5.2 Suppose thatIf =
∫ 1

0 x
α (1− x)β dx whereα, β > −1. We shall

considernrE [1,r]
n f again for the two sigmoidal Transformations2.1 and3.7. In

Table 5.3 we have chosenα = 0.4 andβ = 0.9 and have compared the actual
errors with the asymptotic estimate of Theorem4.7for r = 3 andr = 4.
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r=3 r=4
n n3E [1,3]

n f asymptotic n4E [1,4]
n f asymptotic

20 −5.309× 10−4 −5.423× 10−4 −3.250× 10−4 +1.383× 10−4

30 −3.378× 10−4 −3.410× 10−4 +6.656× 10−5 +6.821× 10−5

40 −2.428× 10−4 −2.441× 10−4 +4.117× 10−5 +4.174× 10−5

50 −1.873× 10−4 −1.879× 10−4 +2.840× 10−5 +2.866× 10−5

60 −1.512× 10−4 −1.516× 10−4 +2.100× 10−5 +2.113× 10−5

Table 5.3: Errors and estimates forα = 0.4, β = 0.9 and Transformation2.1

From Table 5.3, with the exception of the caser = 4, n = 20 where the sign
of the asymptotic estimate is incorrect, we see that the agreement between the
actual errors and the asymptotic errors is excellent.

In Table 5.4 we repeat the calculations for the case whenr = 3 andr = 5 using
Transformation3.7. In this case for the asymptotic error we have thatd1 (r) = 0
in Theorem4.7.
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3rd order 5th order
n n3E [1,3]

n f asymptotic n5E [1,5]
n f asymptotic

20 −7.994× 10−3 −7.953× 10−3 +3.103× 10−4 +2.619× 10−4

30 −4.935× 10−3 −4.924× 10−3 +4.537× 10−5 +4.224× 10−5

40 −3.501× 10−3 −3.497× 10−3 +1.204× 10−5 +1.116× 10−5

50 −2.681× 10−3 −2.679× 10−3 +4.389× 10−6 +4.241× 10−6

60 −2.156× 10−3 −2.155× 10−3 +1.986× 10−6 +1.867× 10−6

Table 5.4: Errors and estimates forα = 0.4, β = 0.9 and Transformation3.7

Again we see that the asymptotic estimates agree well with the actual estimates
for the values ofn given. It is of interest to compare, from Tables 5.3 and 5.4,
the actual truncation error for the third order transformation for the values ofn
given. In each case the Transformation2.1 gives the smaller truncation error by
a factor of10. In comparing Tables 5.3 and 5.4 we see that the actual truncation
errors of the 4th order Transformation2.1 are about the same as the 5th order
Transformation3.7 for n = 10, 20 and30. Certainly Transformation3.7 has no
dramatic advantage over Transformation2.1 in the case when the functionf has
algebraic singularities at the end points.

6 Conclusion

The effect of a sigmoidal transformation on the offset trapezoidal rule is to replace
the evaluation of the integrand at equally spaced points in[0, 1] by the evaluation
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of a modified integrand at points which are no longer equally spaced. It is of in-
terest to consider the ratioρ of the maximum distance between consecutive mesh
points to the minimum distance. From the way in which the sigmoidal transfor-
mation is defined it would appear that for a givenn we could define a mesh ratio
ρn as

ρn :=
1

n
× γ′r (1/2) /γr (1/n) . (129)

In Table 6.1 we considerρn for some of the transformations we have considered.
In producing this table not only have we assumed thatn � 1 but also thatr is
an odd integer(= 2m+ 1) and thatm� 1. The calculations are routine and the
details are omitted.

Transformation n−2mρn

2.1 2m
2.4 with ` = 2 (2/3) exp (4/3) /32m

3.3 2m/π2m

3.5 4
√
π m3/2/ (2π)2m

Table 6.1

In addition to the results of Table 6.1 we mention in passing that for Transfor-
mation2.3 with ` = 2 (due to Sag and Szekeres [14]) we find ne−nρn ∼ 2 so
thatρn increases exponentially withn. From Table 6.1 we see that in all casesρn

grows liken2m, i.e. polynomial as distinct from exponential growth withn. This
observation has relevance when we attempt to solve approximately the various
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equations, arising from boundary integral methods, where the integral is replaced
with an offset trapezoidal rule after a sigmoidal transformation. Such discussion
is, however, beyond the scope of this paper.

We have observed that transformations have been chosen withγ′r (1/2) being
independent ofr. Kress [8] states that “. . . (this) property ensures, roughly speak-
ing, that one half of the grid points is equally distributed over the total interval,
whereas the other half is accumulated towards the two end points”. One way of
testing the distribution of points in[0, 1] is to define a numberdist (r, n) say, such
that

dist (r, n) :=
2

n

{
1 +

n−1∑
k=1

∣∣∣∣∣γr

(
k

n

)
− 1

2

∣∣∣∣∣
}
.

It is readily verified that1/2 ≤ dist (r, n) ≤ 1. Equally spaced points correspond
to dist (r, n) = 1/2 whereas if all the points are evenly divided between the end
points 0 and 1 then dist (r, n) = 1. In Table 6.2 we exhibitdist (r, 100) for
r = 3 (2) 9 and for five transformations

order Transformation
r 2.1 2.2 2.3 3.4 3.7

3 0.7927 0.7113 0.8077 0.7126 0.7126
5 0.8745 0.7196 0.8794 0.7801 0.7351
7 0.9120 0.7236 0.9141 0.8161 0.7432
9 0.9333 0.7259 0.9343 0.8393 0.7473

Table 6.2: dist(r, 100) for variousr and transformations.
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With values ofdist (r, n) closer to a half being considered as “better” than those
close to1 we see that Transformation2.2 is the “best” of these transformations
with Transformation3.7 being a close second. The “worst” transformation, per-
haps not surprisingly, is Transformation2.3.

We might conclude by asking whether a sigmoidal transformation exists hav-
ing the algebraic simplicity of Transformation2.1, with γ′r (1/2) being indepen-
dent ofr and for which we get the improved convergence rates of Transforma-
tions3.4and3.7under certain conditions.

Acknowledgement: the author thanks Professor Avram Sidi for his comments
on this paper.
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