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Inversion of a generalised Hilbert transform
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Abstract

An integral transformHy is defined which reduces to the ordinary Hilbert
transformH0 wheny = 0, and is useful in some hydrodynamic applications.
AlthoughHy does not seem to be explicitly invertible fory 6= 0 (in contrast
to H−1

0 = −H0), it is readily invertible numerically fory less than a certain
precision-dependent bound.
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1 Introduction

The ordinary (doubly-infinite range) Hilbert transform [1] is defined by the Cauchy
principal-value integral

g(x) =
1

π

∫ ∞

−∞
f(ξ)

ξ − x
dξ = H0f(x) , (1)

wheref(x) is a given function defined for all realx. This transformH0 is explic-
itly invertible, and indeed its inverse is its negative, i.e.

f(x) = −1

π

∫ ∞

−∞
g(ξ)

ξ − x
dξ = −H0g(x) , (2)
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orH−1
0 = −H0.

Inversion of any integral transform is equivalent to solution of an integral equa-
tion of the first kind, and in particular, inversion of Hilbert transforms and some
generalisations that retain a Cauchy-singular kernel is the topic of singular inte-
gral equation theory [6]. Alternatively, this result can be viewed from a complex
function point of view [3], and on the doubly-infinite range is just a simple conse-
quence of Cauchy’s theorem, expressing the fact that on the real axis, the real and
imaginary parts of a function that is analytic in the upper half plane and vanishes
at infinity, are Hilbert transforms of each other.

One of the definitions of a Cauchy principal-value integral is via a limit of the
ordinary integral

∫ ∞

−∞
f(ξ)(ξ − x)

(ξ − x)2 + y2
dξ −→

∫ ∞

−∞
f(ξ)

ξ − x
dξ (3)

asy → 0. It is therefore natural to enquire about the properties of the nonsingular
generalised Hilbert transform defined by

Hyf(x) =
1

π

∫ ∞

−∞
f(ξ) (ξ − x)

(ξ − x)2 + y2
dξ . (4)

This is also a natural generalisation in terms of complex functions, since (as a
function of bothx andy), Hyf(x) satisfies Laplace’s equation for any real input
functionf(x), and therefore has an interpretation in terms of an analytic contin-
uation fromy = 0 to y > 0. It seems therefore that inversion ofHy ought to be
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implied by standard results in complex analysis. Nevertheless, it does not appear
straightforward to use either complex analysis or some other natural analytic tools
like Fourier transforms, to find a formula for the real-valued inverse ofHy. This
inverse does not appear to be stated explicitly in [3] or [5], and it is likely that it
must be determined numerically.

A natural partner of the generalised Hilbert transform is the “generalised iden-
tity” Iy such that

Iyf(x) =
1

π

∫ ∞

−∞
f(ξ) y

(ξ − x)2 + y2
dξ , (5)

which is such thatIyf → f asy → 0+, i.e.Iy becomes the identity in that limit.
Then

[Hy + iIy] f(x) =
1

π

∫ ∞

−∞
f(ξ)

ξ − z
dξ , = H0f(z) (6)

wherez = x + iy. This further indicates a connection to analytic function theory,
and to singular integral equations in the complex domain [3]. Integrals equivalent
to bothHyf(x) andIyf(x) are introduced by Titchmarsh ([5], p.123) and are
used to derive properties of the ordinary Hilbert transform by lettingy → 0.

2 Applications

There is an obvious application anywhere that Laplace’s equation occurs. In
hydrodynamic terms,Hyf(x) is the velocity potential for a distribution ofx-
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directed dipoles of strength proportional tof(x) per unit length along thex-
axis, and similarlyIyf(x) is a distribution ofy-directed dipoles. Alternatively,
H0f(z) = Hyf(x) + iIyf(x) as defined by equation (6) is the complex velocity
induced by a distribution of sources of strength2f(x).

For example, according to thin-airfoil theory [4], a symmetric airfoil is gener-
ated in a unit stream of fluid of unit density by a distribution of sources of strength
equal to thex-derivative of its thickness. Hence an airfoil of thickness2f(x)
yields a pressure fieldp(x) = Hyf

′(x) at the point(x, y), the small linearised
pressure perturbation due to the thin airfoil being proportional to thex-wise ve-
locity perturbation. There are important applications [2] where one seeks to “de-
sign” an airfoil’s shapef(x) to achieve a certain prescribed pressure distribution
p(x). If that pressure is as measured aty = 0 (which means effectively on the air-
foil itself since it is thin), this design task is simply solved by the explicit inverse
Hilbert transform. However, if one seeks to design an airfoil to achieve a given
pressure distribution at a fixed offsety, this requires inversion ofHy. Note that
in this application, we are more interested in a function whose derivative is the
inverse ofHy than in the inverse function itself, and we shall take that view in the
numerical algorithm to follow.

Another application area where this transform occurs is shallow-water ship
hydrodynamics [7]. Then, for reasons similar to that in thin airfoil theory, the
pressure disturbance caused by a slender ship whose submerged cross-section area
is S(x), moving steadily and slowly (strictly at low Froude number) forward in
water of constant depthh, is given by2hp(x) = HyS

′(x). Again, there is no
trouble in inverting explicitly from the centreline pressure aty = 0 to yield the
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ship shape functionS(x), but there is no equivalent formula for nonzeroy.

3 Some Formal Properties

Various identities follow from applying Cauchy’s theorem to a function which
is analytic in the upper halfz-plane, the contour being boundaries of either that
whole half plane or the strip between the real axis and the liney > 0 constant.
Some of these identities can also be derived by elementary real-variable means.
In fact, most are special cases of the following, which are obtained by iterating
the complex transform defined by (6) with two different values ofy. If a andb are
any two positive real numbers, then it is not hard to show that for anyf(x),

[Ha + iIa] [Hb + iIb] f(x) = 2i [Ha+b + iIa+b] f(x) (7)

and
[Ha + iIa] [Hb − iIb] f(x) = 0 . (8)

All that is needed is to interchange the order of integration. In (7), the inner
integral then has exactly one simple pole in each of the upper and lower half-
planes, and the path of integration can be closed in the upper half-plane, giving an
integral proportional to the residue at that pole. In (8), both poles are in the lower
half-plane, and there is no contribution to the integral.

If we take real and imaginary parts of (7) and (8), the following real operator
identities follow:

Ia+b = IaIb = −HaHb , (9)
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and
Ha+b = IaHb = HaIb . (10)

The particular example

HaHbf(x) =
1

π2

∫ ∞

−∞
dξf(ξ)

∫ ∞

−∞
(ξ − X)(X − x)dX

[(X − ξ)2 + a2] [(X − x)2 + b2]

=
1

π2

∫ ∞

−∞
dξf(ξ)

(−π)(a + b)

(ξ − x)2 + (a + b)2

= −Ia+bf(x)

has been checked directly using Maple.

Although derived assuminga, b > 0, these results also appear to hold with
either or both parameters zero (and a Cauchy principal value interpretation). They
are however false ifa andb take opposite signs. So, for example, if it was legiti-
mate to seta = y > 0 andb = −y < 0, noting thatHy is an even function ofy,
we would obtain the inverseH−1

y = −Hy, which is incorrect unlessy = 0.

If a = b = 0, (9) just verifies the familiar inversion

H0H0 = −I0

for the ordinary Hilbert transform. Witha = y > 0 andb = 0, we connectHy

andIy viaH0, e.g.
HyH0 = H0Hy = −Iy , (11)

and
IyH0 = H0Iy = Hy . (12)
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These results can also be obtained by direct use of Cauchy’s theorem on suitable
contours, and are derived explicitly by Titchmarsh [5, p.124].

With a = b = y, we relate repeated application ofHy or Iy to a single appli-
cation ofI2y, i.e.

HyHy = −IyIy = −I2y , (13)

and similarly
IyHy = HyIy = H2y .

Unfortunately, none of the above yields an explicit inverse forHy although
they do connectHy with Iy and henceH−1

y with I−1
y . Thus we know now that

−H−1
y = H0I−1

y = I−1
y H0 = HyI−1

2y = I−1
2y Hy .

Note again that sinceI2y is not the identity unlessy = 0, H−1
y 6= −Hy.

4 A Computational Algorithm

In keeping with the applications of interest, instead of invertingHy itself, our
aim is to develop algorithms for inversion ofHy(d/dx). That is, giveng(x) =
Hyf

′(x), we require to findf(x). An integration by parts reduces this task to
solving the integral equation

− 1

π

∫ ∞

−∞
f(ξ)

∂

∂ξ

(ξ − x)

(ξ − x)2 + y2
dξ = g(x) . (14)
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Although in some of the applications, we know thatf(x) vanishes identically
outside a certain finite interval, we choose to make no use of that fact, and one
test of the numerical inversion is how well this feature is reproduced by the output
data. However, we do assume in the following that the doubly-infinite range of
integration can be truncated numerically to a finite range.

For example, suppose thatx = xj , j = 0, 1, 2, . . . , N is a suitable grid of
points, where the range(x0, xN ) is sufficiently wide to encompass all sensible
variations in bothf(x) andg(x). Then if we approximatef(ξ) = fj =constant
on thej’th intervalxj−1 < ξ < xj , the integral equation (14) becomes

− 1

π

N∑
j=1

fj

[
(ξ − x)

(ξ − x)2 + y2

]ξ=xj

ξ=xj−1

= g(x) . (15)

Let us now collocate at the midpointx = x̄i = (xi−1 + xi)/2 of the ith interval.
Then we have to solve the set ofN linear equations

N∑
j=1

Aijfj = bi (16)

in N unknownsfj, where

Aij =
xj − x̄i

(xj − x̄i)2 + y2
− xj−1 − x̄i

(xj−1 − x̄i)2 + y2
, (17)

andbi = −πg(x̄i).
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This is a meaningful discretisation for any grid spacings. Let us however
specialise to a uniform gridxj = x0 + j∆x. Then

Aij =
j − i + 1

2

(j − i + 1
2)

2 + Y 2
− j − i − 1

2

(j − i − 1
2)

2 + Y 2
, (18)

whereY = y/∆x. This is a symmetric matrix with positive constant diagonal
elementsAii = 4/(1+4Y 2), and is very easy and economical to set up and invert.
The special caseY = 0 givesAij = 4/(1 − 4(j − i)2), and this corresponds to
inversion of the ordinary Hilbert transform. AtY = 0 all off-diagonal elements
are negative, and this property also holds for allY 2 < 3/4. For generalY , there
is a band of positive elements near the diagonal, but the far off-diagonal elements
approach zero through negative values.

A useful test case isf(x) = (1 − x4)2 for |x| < 1 andf(x) = 0 otherwise.
Then the exact transform off ′(x) is

g(x) = −8

π
<

[
z3(1 − z4) log

z − 1

z + 1
+

8

21
− 8

5
z2 +

2

3
z4 + 2z6

]
. (19)

This complex form follows from (6), and has also been checked against the 20
lines of output provided by Maple for the real-valued integral from (4).

The inversion algorithm can now be tested by checking whether the original
function f(x) is well reproduced by inputting values of the vectorbi computed
from this g(x). This must be done using an interval greater than(−1, 1), since
g(x) is nonzero both inside and outside this interval and indeed tends to zero
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FIGURE 1: Inversion for variousy of the exact transformHyf
′(x), testing numer-

ical ability to recover the original function, namelyf(x) = (1 − x4)2 for |x| < 1
and zero otherwise.
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through positive values like1/x2 as|x| → ∞. However, the accuracy of inversion
seems to be essentially independent of the range(x0, xN ), so long as it comfort-
ably includes(−1, 1); there is no apparent gain from attempting to capture details
of the far field ofg(x).

Figure1 shows results with(x0, xN ) = (−2.5, 2.5) andN = 100 (i.e. ∆x =
0.05) at variousy values. The curve fory = 0 is graphically indistinguishable
from the inputf(x), and the output data takes an everywhere-positive value of less
than 0.001 in|x| > 1 (wheref(x) is zero), decaying as|x| increases. Similarly,
the curve fory = 0.1 is graphically indistinguishable fromf(x), with an error
less than 0.001, but this error is now oscillatory on a grid scale in|x| > 1, the
oscillations decaying in amplitude as|x| increases. This pattern holds for ally
up to about 0.45, after which the grid-scale oscillations suddenly become more
noticeable, e.g. as seen especially inx < 1 for the casey = 0.5. Eventually these
errors become unacceptable, with a clearly random character (e.g. non-symmetric
in x), for y = 0.55 or greater. Figure2 shows on a logarithmic scale the mean
absolute error as a function ofy.

The present (double-precision) algorithm thus seems to be particularly accu-
rate and stable for grid-scaledY values between about 1 and 10, i.e. fory between
∆x and10∆x, where better than 3-figure mean accuracy is achieved in the present
example with∆x = 0.05. It is also similarly accurate for ordinary Hilbert trans-
forms withy = 0 exactly, and although there is some loss of accuracy for small
but nonzeroy, the results for0 < Y < 1 are still acceptable (2 figures instead of
3 in this example). At any fixedy the error decreases rapidly with∆x so long as
y < 10∆x.
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FIGURE 2: Mean error in inversion, as a function ofy.
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On the other hand, aroundy ≈ 10∆x, there is a sudden instability-like loss
of accuracy in the form of rapidly increasing grid-scale oscillations, and the algo-
rithm then fails altogether for largery values beyond12∆x. This eventual failure
asy increases is not surprising and probably inevitable, since the matrixAij loses
conditioning as the kernel of the transform it approximates loses singularity. There
is thus a real limitation on the achievable accuracy, since at any fixedy, instability
will eventually occur as we try to increase accuracy by decreasing∆x. The point
at which this instability occurs is sensitive to round-off errors, and in particular
occurs at much lower values ofy ≈ 3∆x if the computations are performed in
single-precision arithmetic. Meanwhile, however, the range ofy over which the
method works well in double precision seems to be quite useful.
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