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Abstract

The numerical treatment of two-point singular boundary value
problems has always been a difficult and challenging task due to
the singularity behaviour that occurs at a point. Various efficient
numerical methods have been proposed to deal with such boundary
value problems. We present a new efficient modification of the Adomian
decomposition method for solving singular boundary value problems,
both linear and nonlinear. Numerical examples illustrate the efficiency
and accuracy of the proposed method.
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1 Introduction

The Adomian decomposition method (adm), which accurately computes a
series solution, is one of the powerful and reliable methods for solving various
kinds of linear and nonlinear problems arising in applied sciences [1, 2]. This
method provides the solution in a rapidly convergent series solution and
has been successfully applied to a wide class of boundary value problems [2,
3, 4, 5, 6, 7, 8, 9, 10]. The convergence of the decomposition series has
been investigated by several researchers [11, 12]. In this work, we obtain
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approximate solutions of the singular two-point boundary value problems [13]

u ′′(x) + p(x)u ′(x) + q(x)f(u(x)) = r(x), x ∈ (a,b), (1)

subject to the boundary conditions

u(a) = α and u(b) = β , (2)

where at least one of the functions p(x), q(x) and r(x) has a singular point
and a, b, α and β are finite constants. Equation (1) is used to model several
phenomena in important physics and engineering applications, and contains
many well-known models as special cases. When p(x) = 0 and f(u(x)) =
[u(x)]−σ, Equation (1) is known as the generalized Emden–Fowler equation
with negative exponent and arises frequently in applied mathematics [14].
In addition, when p(x) = r(x) = 0 , q(x) = −x−1/2 and f(u(x)) = [u(x)]3/2,
Equation (1) becomes Thomas–Fermi equation [3] which arises in the study
of the electrical potential in the atom. Further, with p(x) = p/x , q(x) = 1
and r(x) = 0 , Equation (1) plays an important role in the analysis of heat
conduction through a solid with heat generation [15].

The numerical treatment of singular boundary value problems (bvps) has
always been a difficult and challenging task due to the singular behaviour that
occurs at a point. Various efficient numerical methods have been proposed
to solve this type of problem [10, 13, 16]. These methods include the homo-
topy analysis method [17], differential transformation method [16], modified
adm [18, 19, 20, 21], and an improved adm [13]. The first two of these
methods obtained analytical and numerical solutions for some linear singular
two-point bvps, the others successfully solved linear and nonlinear singular
two-point bvps. Often the adm may require additional calculations in order
to determine an unknown constant in any of its n-term approximations to
the solution [19] and the accuracy of the method decreases. Accordingly,
it is desirable to have a modification of the decomposition method which
explicitly determines the zeroth component of the solution. One such method
was suggested by Ebaid [13], which is based on the adm and a modification
of Lesnic’s work [4] to create a canonical form of recursive relation with an
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explicitly determined zeroth component. The efficiency and reliability of
this method has been well demonstrated in various singular problems. This
motivates the development of another approach which is presented in this
paper. In this work a new modification of the Adomian decomposition method
is introduced for solving the singular two-point boundary value problem (1)–
(2). We propose a new inverse operator of the differential operator which
easily overcomes the singularity difficulty of the boundary value problem.
The present work focuses on creating a canonical form of recursive relation
which contains all the boundary conditions so that the zeroth component
is explicitly determined without additional computations, as are all other
components. The method proposed in this contribution may be considered as
a further extension of the method by Ebaid [13] and provides a more accurate
approximation than previous methods [8, 13, 22]. Several numerical examples
illustrate the accuracy of the proposed method, and the numerical results
obtained by it and other efficient methods are presented and compared.

2 A new approach

We rewrite Equation (1) in the form

L(u) = r(x) − q(x)f (u(x)) , (3)

where the linear differential operator L is defined by

L[.] = µ(x)−1
d

dx

(
µ(x)

d

dx
[.]

)
, µ(x) = exp

[∫
p(x)dx

]
. (4)

To solve the two-point boundary value problem we propose the inverse opera-
tor L−1 in the form

L−1[.] =

∫ x
a

µ(t)−1
∫ t
c

µ(z)[.]dzdt+ ξ(x)

∫b
a

µ(t)−1
∫ t
c

µ(z)[.]dzdt , (5)
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where the constant c and the function ξ(x) are unknowns and to be determined
such that L−1L(u) is expressed in terms of the given boundary conditions.
Let us discuss this point. On using the proposed inverse operator defined
in (5) we obtain

L−1L(u) = u(x) − η(x), (6)

where

η(x) = u(a) − ξ(x)[u(b) − u(a)]

+ µ(c)u ′(c)

[∫ x
a

µ(t)−1 dt+ ξ(x)

∫b
a

µ(t)−1 dt

]
. (7)

Here, two cases for η(x) are observed from Equation (7) which depend on the
choice of c and ξ(x).

2.1 Case I: µ(c) = 0

If c is a root of the equation µ(x) = 0 , that is, µ(c) = 0 , it then follows that

η(x) = u(a) − ξ(x)[u(b) − u(a)]. (8)

The function ξ(x) that appears in (8) is chosen to be any function which
makes η(x) satisfy the given boundary conditions; that is, ξ(x) satisfies the
conditions

ξ(a) = 0 , ξ(b) = −1 . (9)

With this choice of ξ(x), η(x) in (8) is expressed in terms of the boundary
conditions only, and contain no unknown constants. We have therefore
some freedom in choosing the function ξ(x) for defining new different inverse
operators and η(x) for constructing the different zeroth components of the
solution in the recursive adm relation. This point will be discussed in detail
through examples.
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2.2 Case II: µ(c) otherwise defined

If µ(x) has no zeros, c is chosen so that µ(c) is defined. In this case we
eliminate the term with u ′(c) in order to express η(x) in (7) in terms of the
boundary conditions only by setting∫ x

a

µ(t)−1 dt+ ξ(x)

∫b
a

µ(t)−1 dt = 0 . (10)

Solving this equation for ξ(x), we obtain

ξ(x) = −

∫x
a
µ(t)−1 dt∫b

a
µ(t)−1 dt

. (11)

Therefore, η(x) in Equations (6) and (7) becomes

η(x) = u(a) +

∫x
a
µ(t)−1 dt∫b

a
µ(t)−1 dt

[u(b) − u(a)] . (12)

This η(x) is expressed in terms of the boundary conditions only, and contains
no unknown constants. The current approach overcomes the singularity
difficulty commonly encountered with singular boundary value problems.

With η(x) as described in (8) or (12), upon operating L−1 on Equation (3), it
then follows that

u(x) = η(x) + L−1 [r(x)] − L−1 [q(x)f (u(x))] . (13)

The Adomian decomposition method introduces the solution u(x) and the
nonlinear function f(u) by the infinite series

u(x) =

∞∑
n=0

un(x), (14)

and

f(u) =

∞∑
n=0

An(u0,u1, . . . ,un), (15)
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where An are Adomian polynomials for the nonlinear term f(u(x)). These
polynomials are obtained from

An =
1

n!

[
dn

dλn
f

(
n∑
i=0

λiui

)]
λ=0

, n > 0 , (16)

and the first few are

A0 = f(u0),

A1 = u1f
′(u0),

A2 = u2f
′(u0) +

1

2!
u21f

′′(u0),

A3 = u3f
′(u0) + u1u2f

′′(u0) +
1

3!
u31f

′′′(u0),

A4 = u4f
′(u0) +

(
1

2!
u22 + u1u3

)
f ′′(u0) +

1

2!
u21u2f

′′′(u0) +
1

4!
u41f

(4)(u0).

(17)

The components un(x) of the solution u(x) will be determined recurrently, and
Adomian polynomials can be constructed for various classes of nonlinearity
according to specific algorithms presented by Wazwaz [9]. Substituting (14)
and (15) into (13) yields

∞∑
n=0

un(x) = η(x) + L
−1 [r(x)] − L−1

[
q(x)

∞∑
n=0

An

]
. (18)

According to the standard Adomian decomposition method, we have the
recurrence relation

u0(x) = η(x) + L
−1 [r(x)] ,

un+1(x) = −L−1 [q(x)An(x)] , n > 0 . (19)
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The function η(x) is decomposed into two parts, namely f0(x) and f1(x) such
that η(x) = f0(x) + f1(x). Now we have the following recursive relation for
the modified decomposition method [21]

u0(x) = f0(x),

u1(x) = f1(x) + L
−1 [r(x)] − L−1 [q(x)A0(x)] ,

un+1(x) = −L−1 [q(x)An(x)] , n > 1 , (20)

which is used for the determination of the components un(x) of u(x). When
r(x) = 0 , we obtain the similar but simpler recurrence relation,

u0(x) = f0(x),

u1(x) = f1(x) − L
−1 [q(x)A0(x)] ,

un+1(x) = −L−1 [q(x)An(x)] , n > 1 . (21)

Having determined the components un(x), n > 0 , recurrently, the series
solution of u(x) defined by (14) follows immediately. For numerical purposes,
the n-term approximation to the exact solution u(x) is

φn(x) =

n−1∑
k=0

uk(x). (22)

Based on the remarks made by Wazwaz [21], the success of this modification
depends only on the choice of f0 and f1, and this can be made through trials.
Moreover, by proper selection of the function f0 and f1, the exact solution u
is obtained from very few iterations.

3 Numerical examples

In this section, we consider both linear and nonlinear problems to demon-
strate the efficiency and accuracy of the modified algorithm proposed in this
contribution. Our computation was performed using the Maple package.
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3.1 Example: inhomogeneous Bessel equation

Consider the inhomogeneous Bessel equation [22]

u ′′(x) +
1

x
u ′(x) + u(x) = 4− 9x+ x2 − x3, x ∈ (0, 1), (23)

with boundary conditions

u(0) = 0 and u(1) = 0 . (24)

Observe from Equation (23) that p(x) = 1/x and this gives µ(x) = x . From
Case I discussed in Section 2.1, c is chosen such that µ(c) = 0 ; that is, c = 0 .
ξ(x) is also chosen freely in a way such that the conditions (9) are satisfied;
that is, ξ(0) = 0 , and ξ(1) = −1 . One such choice is ξ(x) = −x . There
are many other functions for such a purpose; for example, the functions of
polynomials type ξ(x) = −xs or −xs(xγ+1)/2 such that s > 0 , γ > −s , and
functions of trigonometric type sin(3πx/2), − sin(πx/2) and − tan(πx/4). It
is difficult to discuss all possible choices of ξ(x); however, the case ξ(x) = −xs

is chosen to illustrate the method of solution. In addition, the effect of s on
the absolute errors will also be discussed. Firstly, note from Equation (8) that
η(x) = 0 , consequently the solution obtained from the modified decomposition
method is evaluated using the following algorithm

u0(x) = 0 ,

u1(x) = L
−1
[
4− 9x+ x2 − x3

]
− L−1 [u0(x)] ,

un+1(x) = −L−1 [un(x)] , n > 1 , (25)

where

L−1[.] =

∫ x
0

t−1
∫ t
0

z[.]dzdt− xs
∫ 1
0

t−1
∫ t
0

z[.]dzdt . (26)

From this recurrence relation, different approximate analytic solutions φn(x, s)
are derived from different values assigned to s. In terms of s, we calculated
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the four-term approximate solution as

φ4(x, s) = u0(x) + u1(x) + u2(x) + u3(x)

= x2 − x3 +
x8

36864
−

x9

99225
−

9xs+4

400(s2 + 6s+ 8)2

+

[
13280− 9256s− 649s2

705600(s+ 2)4

]
xs+2

+

[
−

6929

406425600
−

9

400(s+ 2)4
+

649

705600(s+ 2)2

+
9

400(s2 + 6s+ 8)2

]
xs. (27)

In this four term approximate solution, we note that as s increases, the last
five terms become very small and therefore can be neglected, where 0 < x < 1
implies x8, x9, xs, xs+2, xs+4 � 1 . This shows that as s increases finitely or
infinitely φ4(x, s) becomes close to (x2−x3), which is the exact solution. Note
that as s→ ∞ we have the following limits:

lim
s→∞

[
9xs+4

400(s2 + 6s+ 8)2

]
= 0 ,

lim
s→∞

[
13280− 9256s− 649s2

705600(s+ 2)4

]
xs+2 = 0 ,

lim
s→∞

[
−

6929

406425600
−

9

400(s+ 2)4

+
649

705600(s+ 2)2
+

9

400(s2 + 6s+ 8)2

]
xs = 0 . (28)

Therefore,

lim
s→∞φ4(x, s) = x2 − x3 + 2.71267× 10−5x8 − 1.00781× 10−5x9

≈ x2 − x3, for all x ∈ (0, 1). (29)
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Moreover, it is expected that the accuracy of the approximate solution
increases as the number of terms in the Adomian series increases. The ten
term approximate analytic solutions φ10(x, 1) and φ10(x, 3) are

φ10(x, 1) =

9∑
k=0

uk(x),

= − 2.2× 10−12x + x2 − x3 − 3.5× 10−12x5 + 1.3× 10−12x7

− 3.1× 10−13x9 + 4.7× 10−14x11 − 5.1× 10−15x13

+ 3.8× 10−16x15 − 1.9× 10−17x17 + 2.9× 10−19x20

− 4.8× 10−20x21, (30)

and

φ10(x, 3) = x
2 − x3 + 2.6× 10−17x5 − 5.3× 10−17x7 + 1.2× 10−17x11

− 1.5× 10−17x13 + 4.6× 10−18x15 − 1.5× 10−19x17

− 4.7× 10−19x19 + 2.9× 10−19x20 − 4.7× 10−20x21, (31)

which are also in excellent agreement with the exact solution u(x) = x2 − x3.
Table 1 compares the absolute errors obtained by Ebaid, Cui and Geng [13, 22],
and the modified decomposition method proposed in this contribution at
s = 1 and s = 3 , respectively. Importantly, this table shows the accuracy
increases with increasing s, especially at s = 3 in which a very small absolute
error is obtained, where the error is assumed to be zero for an exponent less
than −16. Hence, |u(x) − φ10(x, 3)| is considered as zero in Table 1. This
clearly shows the improvements and the accuracy we achieved compared to
the methods discussed by Ebaid, Cui and Geng [13, 22].

3.2 Example: linear singular equation

Consider the linear singular equation [22]

x2u ′′(x) − xu ′(x) + u(x) = 0 , 1 6 x 6 2 , (32)
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Table 1: Absolute errors for Example 3.1, where |u(x) − u26| was discussed
by Cui and Geng [22] and |u(x) −Φ10(x)| was discussed by Ebaid [13].
x |u(x) − u26| |u(x) −Φ10(x)| |u(x) − φ10(x, 1)| |u(x) − φ10(x, 3)|

0.0 0 0 0 0
0.1 2.3× 10−5 2.2× 10−5 2.2× 10−13 0
0.2 1.1× 10−5 2.5× 10−5 4.1× 10−13 0
0.3 5.5× 10−5 3.1× 10−5 5.6× 10−13 0
0.4 2.3× 10−4 2.4× 10−5 6.3× 10−13 0
0.5 1.1× 10−4 1.7× 10−5 6.4× 10−13 0
0.6 1.2× 10−4 1.1× 10−5 5.8× 10−13 0
0.7 1.6× 10−4 7.0× 10−6 4.6× 10−13 0
0.8 1.5× 10−4 4.0× 10−6 3.1× 10−13 0
0.9 4.1× 10−5 1.8× 10−6 1.5× 10−13 0
1.0 0 0 3.8× 10−19 0

with boundary conditions

u(1) = 1 and u(2) = 1 . (33)

The exact solution is

u(x) = x−
x ln(x)

2 ln(2)
, 1 6 x 6 2 . (34)

In this example, we have p(x) = −1/x , and this gives µ(x) = x−1 which
has no zeros. The present example follows Case II (§2.2). Accordingly, we
choose c such that µ(c) is defined, that is, c ∈ R − {0}. Equations (11)
and (12) can now be used to compute ξ(x) and η(x) as

ξ(x) = −

∫x
1
µ(t)−1 dt∫2

1
µ(t)−1 dt

=
1

3
(1− x2), (35)

and

η(x) = u(1) +

∫x
1
µ(t)−1 dt∫2

1
µ(t)−1 dt

[u(2) − u(1)] = 1 . (36)
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Table 2: Absolute errors for Example 3.2.
x |u− S7| [8] |u−Φ7| [13] |u(x) − φ7|

1.0 0 0 0
1.1 2.6× 10−8 2.6× 10−8 2.0× 10−10
1.2 5.4× 10−8 5.4× 10−8 3.9× 10−10
1.3 6.8× 10−8 6.8× 10−8 5.4× 10−10
1.4 6.4× 10−8 6.4× 10−8 6.2× 10−10
1.5 4.5× 10−8 4.5× 10−8 6.4× 10−10
1.6 2.0× 10−8 2.0× 10−8 6.0× 10−10
1.7 1.8× 10−9 1.8× 10−8 5.1× 10−10
1.8 1.4× 10−8 1.4× 10−8 3.7× 10−10
1.9 1.4× 10−8 1.4× 10−8 1.9× 10−10
2.0 0 0 0

The decomposition method given in (19) admits the use of the recursive
relation

u0(x) = 1 ,

un+1(x) = −L−1
[
1

x2
un(x)

]
, n > 0 , (37)

where

L−1[.] =

∫ x
1

t

∫ t
c

z−1[.]dzdt+
1

3
(1−x2)

∫ 2
1

t

∫ t
c

z−1[.]dzdt , c ∈ R−{0}. (38)

Table 2 compares the absolute errors obtained using the modified adm with
c = 1 proposed in this contribution, the extended adm [8] and the improved
adm [13]. For the considered example, the present method is much more
accurate than these effective methods [8, 13].
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3.3 Example: nonlinear singular two-point BVP

Consider the nonlinear singular two-point boundary value problem [23, 24]

u ′′(x) +
0.5

x
u ′(x) = eu(x)

(
0.5− eu(x)

)
, x ∈ (0, 1), (39)

subject to the boundary conditions

u(0) = ln 2 and u(1) = 0 . (40)

The exact solution is

u(x) = ln

(
2

x2 + 1

)
. (41)

Proceeding as above, we obtain µ(x) = x1/2, hence c = 0 . According to Case I
(§2.1), ξ(x) is an arbitrary function and to be chosen such that ξ(0) = 0 and
ξ(1) = −1 . As discussed in Example 3.1, the function ξ(x) can be chosen as
ξ(x) = −xs, s > 0 , and the effect of s on the absolute errors will be discussed
later. From Equation (8), η(x) = (1 − xs) ln 2, consequently the solution
obtained from the modified decomposition method is evaluated using

u0(x) = ln 2 ,

u1(x) = − ln 2 xs + L−1 [A0] ,

un+1(x) = L
−1 [An] , n > 1, (42)

where

L−1[.] =

∫ x
0

t−1/2
∫ t
0

z1/2[.]dzdt− xs
∫ 1
0

t−1/2
∫ t
0

z1/2[.]dzdt . (43)

The three term approximate solution is calculated in terms of s as

φ3(x, s) =u0(x) + u1(x) + u2(x)

= ln 2− x2 +
x4

2
+

[
14(−1+ ln 2)

2s2 + 7s+ 6

]
xs+2

−

[
−34+ 40 ln 2+ 7s(−1+ 2 ln 2) + 2s2(−1+ 2 ln 2)

2(2s2 + 7s+ 6)

]
xs. (44)
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Table 3: Absolute errors for Example 3.3, where |u(x) −Ψ3(x)| was discussed
by Kumar and Singh [10] and err(s) = |u(x) − φ3(x, s)|

x |u(x) − Ψ3(x)| err(1) err(3) err(5)
0.0 0 0 0 0
0.1 3.3× 10−7 9.0× 10−3 9.8× 10−5 1.3× 10−6
0.2 2.1× 10−5 1.6× 10−2 7.9× 10−4 2.6× 10−5
0.3 2.3× 10−4 2.0× 10−2 2.6× 10−3 1.4× 10−4
0.4 1.2× 10−3 2.0× 10−2 6.0× 10−3 3.5× 10−4
0.5 4.4× 10−3 1.5× 10−2 1.0× 10−2 5.4× 10−4
0.6 1.2× 10−2 6.4× 10−3 1.6× 10−2 3.9× 10−4
0.7 2.9× 10−2 4.1× 10−3 2.1× 10−2 4.1× 10−4
0.8 5.9× 10−2 1.3× 10−2 2.2× 10−2 1.8× 10−3
0.9 1.1× 10−1 1.3× 10−2 1.6× 10−2 2.6× 10−3
1.0 1.9× 10−1 0 0 0

Observe from this series solution that the last two terms tend to 0 as s increases.
Moreover, the first three terms are exactly those of Taylor series of the exact
solution. We also conclude that the accuracy of the numerical solution
increases as s increases as shown in Table 3 using only three terms. The
accuracy of the numerical solution can be enhanced by increasing the number
of terms in the decomposition series solution.

3.4 Example: Thomas–Fermi equation

Here we consider the Thomas–Fermi equation

u ′′(x) = x−1/2u3/2(x), x ∈ (0, 1), (45)

with the boundary conditions

u(0) = 1 , u(1) = 0 . (46)



4 Important remark E36

Note that no exact solution is known for this singular bvp. In order to solve
Equations (45) and (46), we first note that µ(x) = 1 , which has no zeros.
Choose c so that µ(c) is defined. According to this suggestion, we have

ξ(x) = −

∫x
0
dt∫1

0
dt

= −x , (47)

and

η(x) = u(0) +

∫x
0
dt∫1

0
dt

[u(1) − u(0)] = 1− x . (48)

The modified decomposition method admits the use of the recursive relation

u0 = 1 ,

u1 = −x+ L−1
[
x−1/2A0(x)

]
,

un+1 = L
−1[x−1/2An(x)], n > 1 , (49)

where

L−1[.] =

∫ x
0

∫ t
c

[.]dzdt− x

∫ 1
0

∫ t
c

[.]dzdt , c ∈ R , (50)

and the An are Adomian polynomials for the nonlinear function f(u) = u3/2.
The scheme obtained above is exactly the same as Ebaid’s [13], where rapid
convergence of the resulting approximate solutions was obtained as the number
of terms in the decomposition series solution increased. Thus our method
in this article may be considered an extension of the method presented by
Ebaid [13].

4 Important remark

In the previous section, examples with singular points of regular type are
discussed and the present approach is found effective for handling such kinds
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of singular two-point bvps. However, difficulties arise when applying the pro-
posed approach to the general Bessel differential equation x2u ′′(x)+xu ′(x)+
(x2 − n2)u(x) = 0 , n 6= 0 , when the singular point (x = 0) is an end point
or within the interval of interest, noting that x = 0 remains a regular singular
point. For the purpose of illustration, assume that u(0) = α and u(1) = β are
two boundary conditions for the general Bessel differential equation. On ap-
plying the current approach as shown in the previous examples, the modified
decomposition method admits the use of the recursive relation

u0(x) = α,

u1(x) = (α− β)ξ(x) − L−1
[(
1−

n2

x2

)
u0(x)

]
,

un+1(x) = −L−1
[(
1−

n2

x2

)
un(x)

]
, n > 1 , (51)

where

L−1[.] =

∫ x
0

t−1
∫ t
0

z[.]dzdt+ ξ(x)

∫ 1
0

t−1
∫ t
0

z[.]dzdt , (52)

and ξ(x) is left open and can be specified as illustrated in Example 3.1.
Observe from Equation (51) that the term L−1

[(
n2/x2

)
u0(x)

]
cannot be

evaluated using the inverse operator defined in (52), where the first fold
integration does not exist, and therefore further modification is needed in
this case. Such modification is based on changing the independent variable x
as x = 1 − y . Details are discussed below through an example in which
p(x) = −1/x2, where the singularity at x = 0 is of irregular type.

5 Example of an irregular singularity

Consider the two-point boundary value problem

u ′′(x) −
1

x2
u ′(x) =

1

x2
, u(0) = 1 , u(1) = 0 , (53)
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for which p(x) = −1/x2. We now show the difficulty of applying the standard
procedure discussed in the previous examples. As previously explained, we
should first obtain µ(x). Note that µ(x) = e1/x, hence

ξ(x) = −

∫x
0
µ(t)−1 dt∫1

0
µ(t)−1 dt

=
Γ(0,−1/x) − xe−1/x

1/e− Ei(−1)
, (54)

where Γ(a, z) =
∫∞
z
ta−1e−t dt and Ei(z) = −

∫∞
−z e

−t/t dt are the incomplete
Gamma function and exponential integral function, respectively. Therefore it
is difficult to proceed with the standard procedure due to difficulties arising
from evaluating these integrals.

Instead, we propose a new independent variable y as x = 1−y and accordingly
the present bvp becomes

u ′′(y) +
1

(1− y)2
u ′(y) =

1

(1− y)2
, (55)

u(0) = 0 , u(1) = 1 . (56)

Now it is possible to remove the singularity by using the series substitution
(1− y)−2 =

∑∞
n=0(n+ 1)yn in Equation (55) to give

u ′′(y) +

( ∞∑
n=0

(n+ 1)yn

)
u ′(y) =

∞∑
n=0

(n+ 1)yn. (57)

On applying the improved adm, as suggested Ebaid [13], to Equation (57)
and using the boundary conditions in (56), we obtain the recursive relation

u0(y) = y,

un+1(y) = L
−1

[
(n+ 1)yn −

n∑
k=0

(k+ 1)yku ′
n−k(y)

]
, n > 0 , (58)

where

L−1[.] =

∫y
0

∫ t
c

[.]dzdt− y

∫ 1
0

∫ t
c

[.]dzdt , c ∈ R . (59)
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At n = 0 ,
u1(y) = L

−1 (1− u ′
0(y)) = 0 , (60)

and at n = 1 we obtain

u2(y) = L
−1 [2y− u ′

1 − 2yu
′
0] = 0 . (61)

Proceeding as above we obtain

un(y) = 0 , for all n > 1 . (62)

Therefore, the solution is given only by the zeroth component,

u(y) = y . (63)

In terms of the original independent variable x, we obtain

u(x) = 1− x , (64)

which is the exact solution of the current irregular singular two-point bvp.

6 Conclusions

We presented an efficient modified Adomian decomposition method to solve
linear and nonlinear two-point boundary value problems with a singular
feature. One of the main characteristics of the present approach is that all the
boundary conditions of the problem are included in the recursive relation and
the difficulty of singular problems, due to the existence of a singular point, is
easily overcome. It was demonstrated that the proposed approach can be well
suited to attaining an accurate solution to singular two-point boundary value
problems, both linear and nonlinear. Other types of differential equations
with singular features can also be similarly handled by the proposed method.
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