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Abstract

Integral equations that give the electromagnetic response of a thin
disk situated beneath an inhomogeneous conductive overburden are
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derived, and expressions for the electric fields in the overburden and
on the disk are given. The equations obtained can be used to estimate
unknown parameters such as, the conductance and the depth of burial
of the disk, as well as the thickness of the overburden. The estimation
of the above parameters is important in the identification of subsurface
structures. An inversion procedure is outlined whereby the optimal
values for these parameters is obtained by an iterative technique.
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1 Introduction E3

1 Introduction

Many techniques have been used in exploration geophysics to obtain informa-
tion about the structure of the ground from surface measurements. Among
these, the analysis of electromagnetic field data is of great interest because
it is far less expensive than most other investigation methods. The inter-
pretation of electromagnetic data is frequently done assuming the subsurface
to consist of horizontal layers, where each layer has a constant electrical
conductivity. For instance, Ryu et al [12] obtained integral expressions for
the electromagnetic field responses due to a horizontal loop above the sur-
face of a multi-layered half-space. A more realistic model may involve a
half-space with a continuously varying conductivity profile. The linearized
inverse theory of Backus and Gilbert [2, 3] has been used by several authors
to estimate the continuous resistivity profile of the earth (see for example,
Oldenburg [10] and Parker [11]. Lee and Ignetik [9] considered the forward
problem involving a half-space with an exponentially varying conductivity
profile. Buselli and Williamson [5] used airborne electromagnetic data to in-
vert for the salinity profiles using layered models. Rough correlation for the
model parameters were obtained through electric conductivity logs. How-
ever, a more useful model may be nearer the type of profiles used by Kim
and Lee [8] who used the direct current method to consider models where
each layer has an exponentially varying conductivity. Siew and Yooyuany-
ong [13] developed an algorithm to solve the inverse problem for finding the
conductance and the depth of a thin disk embedded within a half-space with
an exponentially varying conductivity, using electromagnetic measurements
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on the earth’s surface.

As remarked in [9], the conductivity profiles in some areas, especially in
coastal plains or sedimentary basins, exhibit a monotonic decreasing char-
acteristic. This variation may sometimes be reasonably approximated by
an exponentially decreasing conductivity profile. In the present paper, we
consider a thin disk, embedded in a resistive host medium for which the con-
ductivity is assumed to be zero. The disk is located beneath a conductive
overburden, with an exponentially varying conductivity profile. The objec-
tive of this paper is to present a technique whereby the electromagnetic ob-
servations obtained from a vertical magnetic dipole above the ground surface
is inverted to determine the thickness of the overburden, the conductance,
and the depth of the disk.

2 Derivation of Electromagnetic Field

Consider a primary alternating source current carried by a coil of radius a, at
z = −h above the surface of the earth (z = 0). The source current density,
with frequency ω, is given by Jsθ = I(ω)aδ(r− a)δ(z + h) exp(iωt)/r, where
I(ω) is the current in the coil, and cylindrical coordinates (r, θ, z), with z > 0
taken vertically downwards and origin below the centre of the coil, are used.
An overburden, with a conductivity given by σp(z) = σ1e

−bz, where b and
σ1 are positive constants, occupies the region 0 ≤ z ≤ d1 (see Figure 1). A
horizontally orientated thin circular body, with a constant conductivity σs,
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Figure 1: physical layout showing the z axis downwards, the source above
z = 0, and the body below z = d2.

is located below the origin in a resistive host medium. The thickness d, of
the body is assumed to be small compared to its radius c (d � c), and the
centre of the body is located beneath the origin at z = d2, (d2 > d1).

By symmetry, there is only an azimuthal component of the electric field,
E. From now on, a time variation exp(iωt) is assumed throughout, and the
governing equations are

iωµ0Hr =
∂E

∂z
, (1)

iωµ0Hz = −1

r

∂(rE)

∂r
, (2)
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and
∂Hr

∂z
− ∂Hz

∂r
= σ(z)E + Jsθ , (3)

where Hr and Hz are the radial and vertical components respectively of the
magnetic field. Assuming the medium is non-magnetic, the magnetic perme-
ability of free space, µ0, is used throughout. Further, the quasi-stationary
approximation has been made. As explained in Grant and West [7, Ch. 16]
this approximation can be made for most earth structures, where the electro-
magnetic phenomenon involves induction only, without propagation effects.
Effectively, this means that the velocity scale associated with the problem un-
der study is small compared to the speed of light and hence the displacement
current term in Maxwell’s equations may be neglected. In equation (3) above,
σ(z) is the conductivity, which is zero in air and in the resistive medium, but
is given by σp(z) and σs respectively in the overburden and in the circular
disk. Eliminating Hr and Hz from the above equations leads to

∂2E

∂z2
+
∂2E

∂r2
+

1

r

∂E

∂r
− E

r2
− k2E = iωµ0Jsθ , (4)

where k2 = iωµ0σ(z). Taking the Hankel transform with respect to r, defined
by

Ẽ(λ, z, ω) =
∫ ∞

0
rJ1(λr)E(r, z, ω) dr ,

equation (4) becomes

∂2Ẽ

∂z2
− (λ2 + k2)Ẽ = iωµ0I(ω)aJ1(λa)δ(z + h) . (5)



2 Derivation of Electromagnetic Field E7

In air, k = 0 and the electric field is given by

Ẽair(λ, z, ω) = −iωµ0aI(ω)J1(λa)e
−λ|z+h|

2λ
+ C1e

λz , z ≤ 0 , (6)

which remains bounded as z → −∞, and C1 is a constant to be determined.

The transformed electric field in the overburden, Ẽove, is obtained from
the homogeneous form of (5) with σ(z) replaced by σp(z). Following Lee &
Ignetik [9], the coordinate transformation ζ = exp(−bz/2) is used to convert
the differential equation to[

ζ2 d
2

dζ2
+ ζ

d

dζ
− (α2ζ2 + ν2)

]
Ẽove = 0 , 0 ≤ z ≤ d1 , (7)

where α2 = 4iµ0σ1ω/b
2 and ν2 = 4λ2/b2. The solution to (7) is

Ẽove = BIν(αζ) + CKν(αζ) , 1 ≤ ζ ≤ ζ1 (8)

where B and C are arbitrary constants, Iν and Kν are the modified Bessel
functions of the first and the second kind of order ν, and ζ1 = exp(−bd1/2).

In the resistive medium beneath the overburden (z ≥ d1), we denote the
electric field by Ehost = Ep + Es, where Ep is the field in the absence of
the circular disk, and Es is the electric field due to the presence of the disk.
Since the conductivity is now zero, except in the circular disk, the electric
fields satisfy the equations

∂2Ep

∂z2
+
∂2Ep

∂r2
+

1

r

∂Ep

∂r
− Ep

r2
= 0 (9)
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and
∂2Es

∂z2
+
∂2Es

∂r2
+

1

r

∂Es

∂r
− Es

r2
− k2

sE = 0 . (10)

where, for convenience, we let k2
s = iωµ0σs on the disk and is zero elsewhere.

Taking Hankel transforms as before, the two equations above become, re-
spectively,

∂2Ẽp

∂z2
− λ2Ẽp = 0 , (11)

and
∂2Ẽs

∂z2
− λ2Ẽs = iωµ0

∫ c

0
σsEdsJ1(λs) ds , (12)

where Ed is the electric field on the disk. σsEd may be viewed as an equivalent
current distribution on the disk. The bounded solution for equation (11) is

Ẽp = A1e
−λz , z ≥ d1 , (13)

where A1 is an arbitrary constant. The transformed electric field due to
the presence of the disk, Ẽs, is obtained from (12) by using the method of
variation of parameters, and the solution may be written as

Ẽs = A2e
−λz − 1

2λ

∫ ∞

z
e−λ(x−z)f(x) dx− 1

2λ

∫ z

d1

eλ(x−z)f(x) dx , (14)

where f(z) = iωµ0

∫ c
0 σsEdsJ1(λs) ds and A2 is a constant. This solution is

bounded as z → ∞ and hence, combining with (13), the solution below the
overburden is given by

Ẽhost = −iωµ0

2λ

∫ ∞

d1

∫ c

0
σssEdJ1(λs) dsG(z; x) dx+Re−λz , (15)
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where R is an arbitrary constant to be determined, and G(z; x) = e−λ|z−x| is
the Green’s function. σsEd is zero except over the thickness d2 − d/2 < z <
d2 + d/2 on the disk. For a thin disk, a Taylor series expansion now yields

Ẽhost(λ, z, ω) = −iωµ0

2λ

∫ c

0
σssEd(s, d2, ω)J1(λs)dsG(z; d2)d+Re−λz . (16)

Let the conductance S = dσs, then (16) becomes

Ẽhost(λ, z, ω) = −iωµ0

2λ

∫ c

0
SsEd(s, d2, ω)J1(λs)dsG(z; d2)+Re−λz , z ≥ d1 .

(17)
The arbitrary constants are now solved by imposing the continuity of E and
∂E/∂z at each of the interfaces giving

B = − 2ν

αβD
[αψKν−1(α) + βγKν+1(β)] ,

C = − 2ν

αβD
[αψIν−1(α) + βγIν+1(β)] ,

C1 = γ − 2ν

αβD
[ψ + βγ {Iν(α)Kν+1(β) + Iν+1(β)Kν(α)}] ,

and

R = ψeλd1 − 2νeλd1

αβD
[γ + αψ {Kν−1(α)Iν(β) + Iν−1(α)Kν(β)}] ,

where β = αζ1,

ψ =
iωµ0e

−λ(d2−d1)

2λ

∫ c

0
sJ1(λs)SEd ds ,
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γ =
iωµ0aI(ω)J1(λa)e

−λh

2λ
,

and D = Kν+1(β)Iν−1(α) −Kν−1(α)Iν+1(β) .

Thus, the electric field in the various regions are

Ẽair(λ, z, ω) = −iωµ0aI(ω)J1(λa)e
−λ|z+h|

2λ
+ γeλz

− 2νeλz

αβD
{ψ + βγ[Iν(α)Kν+1(β) + Iν+1(β)Kν(α)]} ,(18)

Ẽove(λ, z, ω) = − 2ν

αβD
{[αψKν−1(α) + βγKν+1(β)]Iν(αζ)

+ [αψIν−1(α) + βγIν+1(β)]Kν(αζ)} , (19)

and

Ẽhost(λ, z, ω) = −iωµ0

2λ

∫ c

0
sSEdJ1(λs)dse

−λ|z−d2|

+ e−λ(z−d1)

{
ψ − 2ν

αβD
[γ + αψ(Kν−1(α)Iν(β) + Iν−1(α)Kν(β))]

}
.(20)

Another expression that we require later is the electric field on the surface
of the earth which is

Ẽove(λ, 0, ω) = − 2ν

αβD
{ψ + βγ[Kν+1(β)Iν(α) + Iν+1(β)Kν(α)]} . (21)
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If the disk is absent (S = 0) and if we allow d1 to tend to infinity, we
recover from (18) the result obtained in [9] for the response of a halfspace
with an exponentially varying conductivity profile. On the other hand, if the
overburden is absent, we put d1 = 0, β = α, and hence, taking the inverse
Hankel transforms of equation (20), we recover the integral equation for the
response due to a disk in free space, which may be derived from the result
given in Appendix A in [14].

The electric fields due to an oscillating magnetic dipole can readily be
obtained from equations (18) to (21) (see [7] for example). Thus, for a dipole
source of moment M = πa2I(ω) on the surface of the ground (h = 0), we
have γ = iωµ0M/(4π), and hence, the field quantities in the physical domain
are given by

Eair(r, z, ω) = − 4

αb

∫ ∞

0

λ2eλzJ1(λr)

βD
×

{ψ + βγ[Iν(α)Kν+1(β) + Iν+1(β)Kν(α)]} dλ , (22)

Eove(r, z, ω) = − 4

αb

∫ ∞

0

λ2J1(λr)

βD
{[αψKν−1(α) + βγKν+1(β)]Iν(αζ)

+ [αψIν−1(α) + βγIν+1(β)]Kν(αζ)}dλ , (23)

and

Ehost = −iωµ0

2

∫ c

0
sSEd ds

∫ ∞

0
e−λ|z−d2|J1(λr)J1(λs)dλ
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+
∫ ∞

0
λe−λ(z−d1)J1(λr) ×{

ψ − 4λ

βαbD
[γ + αψ(Kν−1(α)Iν(β) + Iν−1(α)Kν(β))]

}
dλ . (24)

On the surface of the ground we have

Eove(r, 0, ω) = − 4

αb

∫ ∞

0

λ2J1(λr)

βD
{ψ + βγ[Kν+1(β)Iν(α) + Iν+1(β)Kν(α)]} dλ .

(25)

In general, the magnitude of the measured electric field tends to be small,
compared to unity, and so it is expedient to scale it by using E∗ = −EL2/γ,
where L is a length scale. (In the subsequent numerical computation L is
taken to be d2.) If Ω is a typical frequency, the non-dimensional quantities are
given by r∗ = r/L, s∗ = s/L, c∗ = c/L, λ∗ = λL, S∗ = Ωµ0LS, ω∗ = ω/Ω,
b∗ = bL and

ψ∗ =
ψ

γ
= −iω

∗e−λ∗(d∗2−d∗1)

2λ∗

∫ c∗

0
s∗S∗E∗

dJ1(λ
∗s∗)ds∗ .

Dropping asterisks from now on, the non-dimensional form of the electric
fields that we will require are

Eove(r, z, ω) = −2iω

b

∫ c

0
sSEd ds

∫ ∞

0

λJ1(λs)J1(λr)e
−λ(d2−d1)

βD
×

[Kν−1(α)Iν(αζ) + Iν−1(α)Kν(αζ)]dλ



2 Derivation of Electromagnetic Field E13

+
4

αb

∫ ∞

0

λ2J1(λr)

D
[Kν+1(β)Iν(αζ) + Iν+1(β)Kν(αζ)]dλ ,

0 < z < d1 , (26)

Ehost(r, z, ω) = −iω
2

∫ c

0
sSEd ds

∫ ∞

0
e−λ|z−d2|J1(λr)J1(λs)dλ

+
iω

2

∫ c

0
sSEd ds

∫ ∞

0
e−λ(z+d2−2d1)J1(λr)J1(λs) ×{

1 − 4λ

βbD
[Kν−1(α)Iν(β) + Iν−1(α)Kν(β)]

}
dλ

+
4

αb

∫ ∞

0

λ2e−λ(z−d1)

βD
J1(λr)dλ , z > d2, (27)

and

Eove(r, 0, ω) = −2iω

αb

∫ c

0
sSEd ds

∫ ∞

0

λe−λ(d2−d1)J1(λs)J1(λr)

βD
dλ

+
4

αb

∫ ∞

0

λ2J1(λr)

D
[Kν+1(β)Iν(α) + Iν+1(β)Kν(α)]dλ . (28)

We note that Iν−1(α) never vanishes since the zeros of Jν−1(w) in the complex
w-plane are all real, see [1, pp.372 & 375]. Also, we note that β < α =√

4iωµ0σ1/|b| � 1 and expanding about β we have

Iν−1(α) = Iν−1(β) + (α− β)

[
Iν(β) +

(ν − 1)

β
Iν−1(β)

]
+ O

[
(α− β)2

]
,
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and

Kν−1(α) = Kν−1(β) + (α− β)

[
−Kν(β) +

(ν − 1)

β
Kν−1(β)

]
+ O

[
(α− β)2

]
.

Hence

D = Kν+1(β)Iν−1(α) −Kν−1(α)Iν+1(β)

∼ 2ν

β2
+

(α− β)

β

[
1 +

2ν(ν − 1)

β2

]
+ O

[
(α− β)2

]
,

which never vanishes. Hence, the integrals in (26), (27) and (28) are all well
defined. The electric field on the disk is determined from (27) by taking
z = d2, thus we have

Ed = −iω
2

∫ c

0
sH(s, ω)ds

∫ ∞

0
J1(λr)J1(λs)dλ

+
iω

2

∫ c

0
sH(s, ω)ds

∫ ∞

0
e−2λ(d2−d1)J1(λr)J1(λs) ×{

1 − 4λ

αbD
[Kν−1(α)Iν(β) + Iν−1(α)Kν(β)]

}
dλ

+
4

αb

∫ ∞

0

λ2e−λ(d2−d1)

βD
J1(λr)dλ , (29)

where H(s, ω) = SEd is the integrated current density on the disk. If the true
depths d1 and d2 are known then equation (28) can be used to estimate the
function H(s, ω), assuming the field on the surface is known. Equation (29)
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can be then used to find the true value of the conductance S. However, in
practice, this may not be the order the two equations are used since, d1, d2

and S are unknown, and usually, an iterative process needs to be employed
to successively find improved estimates starting with initial guesses. When
the estimates for d1, d2 and S are close to their true values, we expect the
electric field to be close to its true value also.

The integrals in (26)–(29) can be all put in the form
∫ ∞
0 λJ1(λr)f(λ)dλ,

where f(λ) is a complex function of λ. Integrals of this form can be evaluated
using an algorithm, due to Chave [4], which is an efficient direct integration
scheme giving numerical results of high accuracy. In his paper, Chave con-
sidered examples where f(λ) is either exponentially decreasing, constant,
slowly increasing or oscillatory. In the current problem the complex function
typically involves the modified Bessel functions of the first and second kind,
of fractional order ν or ν − 1, and the arguments, in each case, are pure
imaginary. The values of the modified Bessel functions are computed using
standard nag routines.

3 An Iterative Procedure

Suppose we have a complex data array
{
E(d)

}
, which is obtained from mea-

surements of the electric field on the surface of the earth. The most popular
method used to obtain such an array is to measure the electric field at a
fixed transmitter/receiver separation spacing r at various frequencies ωi, so
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that the ith entry in the data array is E
(d)
i = E(r, 0, ωi), i = 1, 2, . . . ,

N . Alternatively, the data array may be collected by use of a fixed source
method whereby readings may be taken at various transmitter/receiver spac-
ings ri at a fixed frequency ω. In this case the ith entry in the data array is
E

(d)
i = E(ri, 0, ω). The derivation given here applies no matter which method

is used to generate the data array. If at the jth step we have estimates of
the depths d

(j)
1 , d

(j)
2 and the conductance S(j), these values are used in (29)

to obtain an estimate for H(s, ω). In the numerical scheme, the disk is di-
vided into N rings of thickness ∆ = c/N . If the radius of the ith ring is si,
then (29) is replaced by the linear system

[Uji + δji]Hi = Qj , (30)

where Hi = H(si, ω), δji is the Kronecker delta,

Qj =
4S

αbβ

∫ ∞

0

λ2e−λ(d2−d1)J1(λsj)

D
dλ

and

Uji =
iω∆Ssi

2

∫ ∞

0

[
1 − e−2λ(d2−d1)

]
J1(λsi)J1(λsj)dλ

=
2iω∆Ssi

bα

∫ ∞

0
λe−2λ(d2−d1)J1(λsi)J2(λsj) ×

Kν−1(α)Iν(β) +Kν(β)Iν−1(α)

D
dλ .

Each of the above integrals is evaluated using Chave’s algorithm. The solu-
tion of (30) now gives the distribution of the integrated current density on
the disk.
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Once H(si, ω), i = 1, 2, . . . , N are known, (28) is used to obtain the

calculated electric field array
{
E(j)

}
. From these, we obtain the difference

vector E(j) − E(d). The magnitude of this difference vector is a function
of the difference between the observed and the calculated electric field over
the interval at which readings are taken. It is therefore necessary to obtain
expressions which link the change in the electric field to the changes in the
values of d1, d2 and S. The expression linking a small change in the electric
field due to a change in the conductivity at depth z is given by the Fréchet
kernel derived by Fullagar and Oldenburg [6] and is written in terms of the
transform space as

δẼ(λ, 0, ω) = − iωµ

2λẼ(λ, 0, ω)

∫ ∞

0
Ẽ2(λ, z, ω)δσ(z)dz .

Assuming that d1 and d2 are known, the change in conductivity is linked to
the error in estimating S. In effect, if the conductivity changes by δσ over
the small thickness d, of the disk only, we write

δẼ(λ, 0, ω) = −iωµ0(δS)Ẽ2(λ, d2, ω)

2λẼ(λ, 0, ω)
, (31)

where δS = d δσ. The inversion of (31) gives the change, δE, due to a change
in the conductance. Since E(d) is a constant vector, the change in E(j) at the
jth step is interpreted as the change in the difference vector E(j) −E(d) also.
The vector δE(j)/δS gives an average rate of change of the difference vector
with respect to a change in the conductance. The norm of this rate of change
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vector then gives an estimate of the absolute value of the rate of change of
the difference norm ∆E(j) = ‖E(j) − E(d)‖ with respect to S over the range
of data values used. The expressions linking a small change in the electric
field to the depths d1 and d2 are found by assuming that S(j) is the current
value of the conductance and computing the partial derivatives of (28) with
respect to d1 and d2 after writing H(s, ω) for SEd. These give us the two
expressions for δE, viz

δE
(j)
1 (r, 0, ω)

= −(δd1)2iω

αb

∫ c

0
sH(s, ω)ds

∫ ∞

0
λe−λ(d2−d1)J1(λr)J1(λs) ×{

λ+ b/2

βD
+

b

2D2

[
K ′

ν+1(β)Iν−1(α) −Kν−1(α)I ′ν+1(β)
]}
dλ

− 2(δd1)

α

∫ ∞

0

λ2J1(λri)β

D2

{[
K ′

ν+1(β)Iν(α) + I ′ν+1(β)Kν(α)
]
D

− [Kν+1(β)Iν(α) + Iν+1(β)Kν(α)] ×[
K ′

ν+1(β)Iν−1(α) − I ′ν+1(β)Kν−1(α)
]}
dλ , (32)

and

δE
(j)
2 (r, 0, ω) =

2iω(δd2)

αb

∫ c

0
H(s, ω)sds

∫ ∞

0

λ2J1(λs)J1(λr)e
λ(d1−d2)

βD
dλ .

(33)
As before, we can now obtain estimates for the absolute value of the rate of
change of the difference norm with respect to the changes in d1 and d2.
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4 An Application

The results obtained above can be used to estimate the conductance of a
conductive body of large lateral extent, located at some depths below the
surface of the earth. We will assume that the thickness of the body is small
compared to its lateral extent so that it is regarded as a thin circular disk
with an unknown conductance. Also, we assume that the electric conduc-
tivity of the ground is exponentially decreasing in a manner such that it is
negligible after a certain depth, so that it is modelled by an overburden with
an exponentially varying conductivity profile. The electromagnetic response
on the surface of the earth at a fixed frequency due to a dipole source is
calculated if we know the thickness of the overburden, and the radius and
conductance for the conductive body.

To generate the data set to be used for the inversion process, we now
assume that the disk has a radius of 1000 metres, and is located at a depth of
100 metres beneath an overburden which occupies the first 30 metres from the
ground surface. We assume the overburden to have an electric conductivity
profile given by σ(z) = σ1 exp(−0.537z), and the disk to have a conductance
of 1000 Siemens. In our application, we use the fixed source method, and
the data set is generated by measuring the responses at transmitter/receiver
separation distances from 20 metres to 210 metres in steps of 10 metres.
Random errors up to 3% are superimposed on the scaled electric field from
the forward problem to produce the data set

{
E(d)

}
and the result is given

in Figures 2–3.
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Figure 2: Electric field on the ground surface—In phase component.
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Figure 3: Electric field on the ground surface—Quadrature component.
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The results of the previous section now allow us to use standard optimisa-
tion techniques to estimate the values of d1, d2 and S subject to a convergence
criterion based on the magnitude of the difference norm ∆E. Starting with
guesses for the initial set

{
S(0), d

(0)
1 , d

(0)
2

}
, we estimate the field on the sur-

face of the earth E(0)(r, 0, ω), and hence obtain the difference norm ∆E(0).

If at the jth step we have
{
S(j), d

(j)
1 , d

(j)
2

}
, we calculate ∆E(j), and then

Equations (31), (32) and (33) are used to determine the next estimates for{
S(j+1), d

(j+1)
1 , d

(j+1)
2

}
that are consistent with a decrease in the difference

norm. This process is repeated until either the difference norm reaches a
prescribed value, or has reached its minimum value. In the results presented
here, we have used the method of steepest descent to determine the set of
values for the (j + 1)th step. In terms of computational time, the method is
not very economical, however, it serves our purpose in illustrating how the
equations we have derived can be used to estimate the unknown parameters
of the problem.

Table 1 gives the result of the inversion where four different sets of initial
estimates are used for S(0), d

(0)
1 and d

(0)
2 . At the end of the 5th iteration d1 is

within 1% of its true value, whereas d2 is less than 5.2% out. The variation
of S from its true value is more than 8% out. A comparison of the measured
and calculated electric field at this stage does not bring out the differences
in accuracy for the estimated parameters. Figure 4 shows the error in the
inphase and quadrature components of the estimated electric field at the end
of the fifth iteration, expressed as a percentage of the measured field. This
error is uniformly small over the range of observations, the largest error be-
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i 0 1 2 3 4 5 Optimal
S(i) 10000 5000 2500 1250 929.367 1045.54 997.671
d
(i)
1 10 21.2262 28.5028 31.4246 30.1485 29.7939 30.5838

d
(i)
2 50 74.9652 88.0724 96.5168 99.4842 101.330 99.0250

∆E(i) × 104 1.15464 .902420 .695624 .481025 .080557 .416732
S(i) 253.303 379.954 569.932 854.897 961.759 1081.98 1006.62
d
(i)
1 10 25.3254 29.4879 31.6818 31.3252 29.9951 30.7666

d
(i)
2 50 73.2578 90.9765 101.571 99.8619 99.4178 100.405

∆E(i) × 104 .978361 .612957 .391501 .137377 .062623 .102904
S(i) 10000 5000 2500 1250 937.500 1054.69 1004.22
d
(i)
1 10 24.2669 30.2359 32.3654 30.7354 29.2887 30.6593

d
(i)
2 150 123.341 116.881 103.230 101.300 98.9379 100.859

∆E(i) × 104 1.06123 .829868 .588134 .428356 .074753 .302718
S(i) 253.303 379.954 569.932 854.897 961.759 1081.98 1007.28
d
(i)
1 10 29.6256 34.0411 30.6622 30.2381 29.8612 30.0734

d
(i)
2 150 128.217 112.070 97.0491 100.315 101.758 100.771

∆E(i) × 104 1.29693 .979173 .674960 .446488 .074130 .095032

Table 1: Successive iterates using four initial estimates for
{
S(0), d

(0)
1 , d

(0)
2

}
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Figure 4: Percentage error in the electric field after the fifth iteration.
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ing about 0.06% for the quadrature component. Returning to Table 1, we
note that, in each case, the difference norm has reached a minimum between
the 3rd and 5th iteration. Using the values in the last three iterations, a
simple interpolation is made to determine the optimal values for d1 and d2,
and these values were then used in equations (28) and (29) to calculate the
optimal value for S. These optimal values are given in the last column of
the table. The optimal value for d1, in each case, is within 2.6% of its true
value, whereas d2 is less than 1% out. The optimal value for S differs from its
true value by less than 0.73%. When the same problem is done with exact
data, the corresponding maximum percentage errors in the optimal values
of {S, d1, d2} are found to be 0.9, 1.9 and 0.9 respectively. The relatively
large percentage error in the estimates of the thickness (d1) of the overbur-
den is attributed to the exponential profile used for the conductivity where
the rapid exponential decay does not give a sharp interface. Double preci-
sion is employed throughout in all the numerical routines used, but where
appropriate, only 6 significant figures are kept in the table.

5 Conclusion

The application in the previous section indicates that we have the basis of
a simple method for the inverse problem of determining the thickness of the
overburden, as well as the depth and conductance of a body that is large in its
lateral extent compared to its thickness. The thin disk is located in a resistive
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basement under the inhomogeneous conductive overburden. Very accurate
estimates for the thickness of the overburden, the depth, and the conductance
of the disk is obtained. Although random errors, up to the 3% level have
been superimposed on the data set, the optimal values obtained are all well
within this level. The method is robust with respect to different starting
conditions and it can obviously be adapted to deal with more complicated
layered structures.
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