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Abstract

We consider the nlp optimization problem

P 7→ inf
x
{f0(x) | fi(x) ≤ bi, i = 1, . . . ,m}

and discuss the duality gap between P and

D 7→ sup
λ≥0

inf
x

{
f0(x) +

m∑
i=1

λi[fi(x)− bi]

}
.
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mailto:lasserre@laas.fr

0See http://anziamj.austms.org.au/V42/E017 for this article and ancillary services,
c© Austral. Mathematical Soc. 2001. Published 21 January 2001.

mailto:lasserre@laas.fr
http://anziamj.austms.org.au/V42/E017


Contents E28

The convex problem D is in fact the dual of a “relaxed” version of P
via “randomization” which permits to give a simple interpretation for
the presence or absence of a duality gap in the general case. Sev-
eral particular cases are also discussed and the case of homogeneous
functions is given special attention.
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1 Introduction

Consider the standard Nonlinear Programming Problem (nlp)

P 7→ inf
x
{f0(x) | fi(x) ≤ bi, i = 1, 2, . . . , m}

where fi : Rn → R, i = 0, 1, . . . , m, are all continuous functions. It is
well-known that

sup D ≤ inf P = inf P∗ (1)

where

P∗ 7→ inf
x

sup
λ≥0

{
f0(x) +

m∑
i=1

λi[fi(x)− bi]

}
(2)

and

D 7→ sup
λ≥0

inf
x
{f0(x) +

m∑
i=1

λi[fi(x)− bi]} (3)
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When permitted, the interchange of “inf” and “sup” operators (that is, the
equivalence of (2) and (3)) characterizes the absence of a duality gap and
optimal solutions (if any) are saddle points of the Lagrangian (see e.g. [8],
[10]). Except for the convex case, i.e. when all the fi are convex (and under a
constraint qualification), there is no systematic approach to decide whether
or not there is a duality gap. Hence, identifying instances for which the
absence of a duality gap is guaranteed is a challenging problem. This is not
surprising for P and D are very different in nature. Solving P is in general a
difficult global optimization problem whereas D is a convex problem, easier to
solve in principle. In particular cases, some authors have obtained interesting
results (see e.g. quadratic and pure quadratic problems in [2], [9], [13] and
the references therein).

The goal of this paper is to provide some insights on this duality gap
issue. We show that both D and P∗ are in fact derived from “relaxed”
versions of P. D is obtained as the dual of a linear “randomized” version PP
of P, the analogue of the familiar “relaxed control” procedure in control
(see e.g. [3], [11], [15]), that yields the concept of “generalized solutions”
(or “Young measures”) to the original problem, whereas P∗ is obtained by
embedding P into a larger (but equivalent) problem. In turn, PP is also
the dual of D and under weak conditions, there is no duality gap between D
and PP. In particular, it is shown that to every optimal solution λ of the dual
problem D, corresponds an optimal “randomized” solution µ to the primal
problem PP (µ may be interpreted as a “generalized” solution to P). In this
approach, the absence of a duality gap between P and D in the convex case
under Slater’s constraint qualification appears as an immediate consequence
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of Jensen’s inequality.

In a sense, PP is a “regularized” (or “convex”) version of P, pretty much
like f ∗∗ is a regularized version of a nonconvex function f with Legendre-
Fenchel transformed f ∗. This “randomization” (or “convexification”) pro-
cedure has been successfully applied to some problems in Control Theory,
Economics (see e.g. [11], [15]). Here, we emphasize the duality point of view.
More precisely, it is shown that under weak conditions, there is no duality
gap between PP and D. In addition, when both D and PP are solvable, there
is a probability distribution µ on the the set X(λ) of global minima of the
Lagrangian L(., λ) (with λ any optimal solution of D), such that

∫
fidµ ≤ bi

i = 1, 2, . . . , m and
∫

f0dµ = max D. In other words, µ is an optimal solu-
tion of a “relaxed” version of P, i.e., when the constraints and the objective
are “averaged out” with respect to a probability measure. In general, this
“averaging procedure” yields generalized solutions with a strictly better cost
than usual solutions. An even finer characterization of optimal generalized
solutions is obtained via Caratheodory Theorem when the set X(λ) is com-
pact.

As a Corollary, there is no duality gap between D and P if and only if
all the global minimizers of P belong to X(λ) and checking the absence of a
duality gap reduces to check whether there is a feasible solution of P in X(λ)
such that a complementary condition holds. For instance, when the fi’s are
all quadratic, first solve D, obtain λ and then check whether there is a feasible
solution x∗ of P that solves a quadratic system of equations/inequations in a
space of smaller dimension (cf. Corollary 4 of Section 2). This is in contrast
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to the trial and error method which consists in first finding a Karush-Kuhn-
Tucker point (x∗, λ∗) of P and checking afterwards whether x∗ is also a global
minimizer of the Lagrangian L(., λ∗).

Some other particular cases are also investigated. For instance, if X(λ)
is a singleton then solving the nonconvex problem P reduces to solving the
convex problem D. The general quadratic case is also investigated. The
dual D is an lmi problem whose dual D∗ is a well-known relaxation of P (see
Boyd and Vandenberghe [6]). The optimal values of PP and D∗ coincide and
optimal solutions of PP with finite support provide a natural interpretation
of the optimal solutions of D∗ in terms of “randomization”.

Finally, the case of homogeneous functions is considered. The dual D
takes a particular form and the solvability of PP is obtained under weak
conditions. In addition, when X(λ) is a one-dimensional cone, then min P =
max D and solving P reduces to solving a convex problem (an lmi problem
in case all the fi’s are quadratic forms).

2 On the duality gap

Consider the following optimization problem in X := Rn:

P 7→ f ∗ := inf {f0(x) | fi(x) ≤ bi, i = 1, 2, . . . , m} (4)
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where fi : X → R, i = 0, 1, . . . , m are all continuous functions. Denote by S
the feasible set of P, i.e.,

S := {x ∈ X | fi(x) ≤ bi i = 1, 2, . . . , m} . (5)

Assumption A: ∀i = 1, 2, . . . , m, there exists xi ∈ S such that fi(xi) < bi.

Note that Assumption A is just Slater’s constraint qualification whenever
the functions fi are convex i = 1, 2, . . . , m.

2.1 The dual D

Consider now the following “relaxation” PP of P:

PP


inf

µ∈M(X),µ≥0

∫
f dµ

∫
[fi(x)− bi] µ(dx) ≤ 0, i = 1, 2, . . . , m,

µ(X) = 1

(6)

where M(X) is the Banach space of signed Borel measures on B (the Borel
σ-field on X), equipped with the total variation norm.

Obviously, PP is a relaxation of P via randomization since for every ad-
missible point x ∈ S, the Dirac measure µ := δx concentrated at the point x,
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is admissible in PP with corresponding value f(x) and therefore, inf PP ≤ f ∗.
In fact, this relaxation is a “convexification” of P, the analogue of the “re-
laxed controls” procedure in control (see e.g. [3], [11], [15] and the references
therein). The advantage of doing this is that the linear problem PP admits
a natural “dual” linear problem D introduced below:

D 7→ sup
λ≥0,γ

{
γ

∣∣∣∣∣ f0(x) +

m∑
i=1

λi[fi(x)− bi] ≥ γ, ∀x ∈ X

}
, (7)

or equivalently

D 7→ sup
λ≥0

inf
x

{
f0(x) +

m∑
i=1

λi[fi(x)− bi]

}
(8)

which the usual “dual” considered in nlp. In fact D and PP are dual of each
other.

More precisely, with w := 1+maxi=1,...,m |fi|, and following Anderson and
Nash [1], let (X ,Y) and (Z,W) be two dual pairs of vector spaces where

X :=

{
µ ∈M(X)

∣∣∣∣∣
∫

w d|µ| <∞, i = 0, 1, . . . , m

}
,

(where |µ| denotes the total variation of µ), and

Y :=

{
f : Rn → R

∣∣∣∣∣ sup
x∈Rn

|f(x)|
w(x)

<∞
}

,
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whereas, W = Z := Rm. The pair (X ,Y) is in duality via

〈µ, h〉 =

∫
h dµ , µ ∈ X , h ∈ Y .

Introducing the linear maps

T : X −→ Z
Y ←− W : T̂

where

µ 7→ Tµ :=


∫

(f1 − b1)dµ
...∫

(fm − bm)dµ

 µ ∈ X ,

and

λ 7→ T̂ λ :=
m∑

i=1

λi[fi − bi] λ ∈ Z,

the linear program PP reads

PP 7→ inf
µ∈X ,µ≥0

{〈f0, µ〉 | Tµ ≤ 0; 〈1, µ〉 = 1},

whereas the linear program D reads

D 7→ sup
(λ,γ)∈Z×R,λ≥0

{γ | γ − T̂ (λ) ≤ f0},
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which is just (7). It is straightforward to check that R + T̂ (Z) ⊆ Y so that
the linear map T1 : X → Z × R defined by µ 7→ T1µ := (Tµ, 〈1, µ〉) is
continuous for the respective weak topologies σ(X ,Y) and σ(Z ×R,W×R)
(see e.g. [7]).

On the other hand, consider now the other following equivalent version
P∗ of P,

P∗ 7→ inf
u≥0,x
{uf0(x) | u[fi(x)− bi] ≤ 0, i = 1, 2, . . . , m; u = 1}.

Equivalently,

P∗ 7→ inf
x

inf
u≥0
{uf0(x) | u[fi(x)− bi] ≤ 0, i = 1, 2, . . . , m; u = 1},

and noting from LP duality that the dual of the LP problem

inf
u≥0
{uf0(x) | u[fi(x)− bi] ≤ 0, i = 1, 2, . . . , m; u = 1},

is just

sup
λ≥0,γ

{
γ

∣∣∣∣∣ f0(x) +

m∑
i=1

λi[fi(x)− bi] ≥ γ

}
,

one obtains the the following equivalent formulation

P∗ 7→ inf
x

sup
λ≥0

{
f0(x) +

m∑
i=1

λi[fi(x)− bi]

}
,

which is (2). We now introduce the following condition:
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Condition B: There exist nonnegative coefficients λi, i = 1, 2, . . . , m, such
that

inf
x∈X

{
f0(x) +

m∑
i=1

λifi(x)

}
> −∞ . (9)

We first consider the solvability of D and the absence of a duality gap be-
tween D and PP, under Assumption A and condition B.

Theorem 1 Let Assumption A and Condition B hold, then

sup D = maxD = inf PP . (10)

The proof is relegated to Appendix A. Of course, the main issue of interest
is to determine when inf PP = inf P = f ∗ holds or to gain some insight into
the presence of a duality gap, i.e. when inf PP < inf P.

For convex problems recall that under Slater’s condition, inf PP = inf P
(see e.g. [10]). However, we provide below a simple proof of this result that
simply uses Jensen’s inequality.

2.2 The convex case

In this section we assume that fi are convex i = 0, 1, . . . , m. Assumption A
becomes Slater’s constraint qualification under which max D = inf P, a well-
known result.
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(i) The fact that inf PP = inf P is in fact an immediate consequence of
Jensen’s inequality. In case X would be a compact convex subset of
Rn, then

∫
x dµ =: Eµ(x) ∈ X is well defined and Jensen’s inequality

applies, that is, ∫
f dµ ≥ f(Eµ(x)) ,

for every continuous convex function f (see e.g. Perlman [12]). There-
fore, to every admissible solution µ of PP, one may associate an admis-
sible solution Eµ(x) of P with a lower cost.

When X := Rn, the proof also uses a compactness argument. For the
problems PPi defined in the proof of Theorem 1, µi defines a probability
measure on Ki with corresponding expectation operator Eµi

. As Ki

is compact and can be chosen convex, the random vector x ∈ Ki is
µ-integrable, and since Ki is convex, Jensen’s inequality is valid and
yields ∫

fk dµi ≥ fk(Eµi
(x)) , k = 0, 1, . . . , m .

In particular,

0 ≥
∫

(fk(x)− bk) µi(dx) ≥ fk(Eµi
(x))− bk , k = 1, 2, . . . , m ,

so that the point y := Eµi
(x) is feasible in P with value f0(y) ≤ γi.

Therefore, inf P = inf PPi for all i. As inf PPi → inf PP = max D we
obtain inf P = max D .
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(ii) The fact that there is no duality gap between PP and D also follows
from Slater’s constraint qualification which is an “interior point” con-
dition for absence of a duality gap (for instance, invoke Theorem 3.13,
p. 55 in Anderson and Nash [1]).

(iii) Assume that x∗ is an optimal solution of P. With λ∗ an optimal solution
of D we obtain,

f0(x
∗) +

m∑
i=1

λ∗
i [fi(x

∗)− bi] ≥ max D = f0(x
∗) ,

which yields

m∑
i=1

λ∗
i [fi(x

∗)− bi] = 0 ,

since fi(x
∗) ≤ bi for all i. Hence, x∗ is a saddle point of the Lagrangian

L(., λ∗). In addition, if the fi are all differentiable,

∇f0(x
∗) +

m∑
i=1

λ∗
i∇fi(x

∗) = 0 , (11)

so that (x∗, λ∗) is a Karush-Kuhn-Tucker (kkt) point of P.

In the general (non convex) case, sup D ≤ inf P. The case where max D =
min PP is of particular interest for we are then able to provide some further
insight on a possible duality gap between P and D. It first requires the solv-
ability of PP.
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Theorem 2 Let Assumption A and Condition B hold. In addition, assume
that

(a) fm(x) is inf-compact, that is, the levels sets {x | fm(x) ≤ r} are com-
pact for every r ∈ R;

(b) |fi(x)|/(M + fm(x)) → 0 as |x| → ∞, for all i = 0, 1, . . . , m− 1, and
some M > 0.

Then PP is solvable and maxD = min PP .

The proof is relegated to Appendix B. The index m in Conditions (a)–
(b) in Theorem 2 is arbitrary and can be any in the set {0, . . . , m}. These
conditions (a)–(b) are particular cases of the property (γ) stated in Balder [3]
in a more general context, that is, (a)–(b) imply that fi, i = 0, 1, . . . , m− 1
have the property (γ) with respect to fm.

Observe that the conditions (a)–(b) rule out the cases where all the fi are
of same nature (e.g. linear, quadratic, . . . ). In this case, ad hoc conditions
must be found to ensure solvability of PP.

2.3 On the duality gap

We now provide, proved in Appendix C, several characterizations of the
optimal solutions of the relaxed version PP of P, when they exist. This will
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help understand the presence of a duality gap between P and D.

Theorem 3 Let Assumption A hold and Condition B be true, then

(a) for every solution µ∗ of PP and every solution λ∗ of D, one has:

f0(x) +
m∑

i=1

λ∗
i fi(x) = min

y∈X

{
f0 +

m∑
i=1

λ∗
i fi

}
µ∗ a.e. (12)

and

λ∗
i

[∫
fi dµ∗ − bi

]
= 0 , i = 1, 2, . . . , m . (13)

In addition, if the fi are all differentiable, then

∇f0(x) +
m∑

i=1

λ∗
i∇fi(x) = 0 , µ∗a.e. (14)

Hence, µ∗ is concentrated on the global minimizers of the Lagrangian
L(., λ∗).

(b) If the set of global minimizers X(λ∗) of the Lagrangian L(., λ∗) is com-
pact, then every optimal solution µ∗ of PP is a convex combination of
at most s + 1 Dirac measures δxk

, xk ∈ X(λ∗), k = 1, . . . , s + 1, where
s is the number of active constraints in PP at µ∗, and

∇f0(xk) +

m∑
i=1

λ∗
i∇fi(xk) = 0 k = 1, . . . , s + 1.
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When PP is solvable, Theorem 3 provides some insight into the absence of
a duality gap when P is solvable, i.e. when max D < min P = f0(x

∗) where x∗

is a global minimizer of P. In this case, there is a probability distribution µ∗ on
the set of global minimizers of the Lagrangian L(., λ∗) such that “averaging
out” with respect to µ∗ yields a better result, i.e., the average values

∫
fidµ∗

satisfy ∫
f0dµ∗ < f(x∗) ;

∫
fidµ∗ ≤ bi , i = 1, 2, . . . , m .

Note in parenthesis that if max D < min P and (x∗, λ) is a kkt point
of P with x∗ a global minimizer, then x∗ is not a global minimizer of the
Lagrangian L(., λ). Indeed, otherwise with γ := f0(x

∗), the point (λ, γ) would
be feasible for D, so that max D = min P, a contradiction. One retrieves
the well-known result that if x∗ and λ∗ are optimal solutions of P and D
respectively, then there is no duality gap if and only if (x∗, λ∗) is a saddle
point of the Lagrangian.

The following result characterizes the absence of a duality gap.

Corollary 4 Let Assumption A and Condition B hold. Let (λ∗, γ∗) be an
optimal solution of D. Then maxD = minP if and only if there exists x∗ ∈
X(λ∗) ∩ S such that

λ∗
i [fi(x

∗)− bi] = 0 , i = 1, 2, . . . , m . (15)
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Proof:

The if part Let γ∗ be the optimal value of D. As x∗ ∈ X(λ∗), x∗ is a global
minimizer of L(., λ∗) so that

f0(x
∗) +

m∑
i=1

λ∗
i [fi(x

∗)− bi] = γ∗ = max D = f0(x
∗) ,

and since x∗ is feasible, we have max D = min P, the desired result.

The only if part Let x∗ be a global minimizer of P. If max D = min P,
then we also have min PP = min P and the Dirac measure δx∗ is solution
of PP. Therefore, from Theorem 3(a) it follows that δx∗(X(λ∗)) = 1,
that is, x∗ ∈ X(λ∗) (hence x∗ ∈ X(λ∗)∩S) and (15) follows from (13).

♠
Corollary 4 is useful in global optimization. A “trial and error” method
to find a global minimizer of P first computes a local minimizer x∗ of P
with associated kkt multiplier λ∗, and then tries to check whether x∗ is a
global minimizer, that is, if it is also a global minimizer of L(., λ∗). On the
contrary, Corollary 4 suggests to first solve D (a convex problem) and then
check whether there exists some x∗ ∈ X(λ∗) ∩ S that satisfies (15). In some
cases, the latter problem also reduces to a convex problem (see next Section
on the general quadratic case).
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If we now denote by ∆ the set of optimal solutions λ of D, we obtain as
a corollary:

Corollary 5 Let Assumption A and condition B hold. If PP is solvable and⋂
λ∈∆

X(λ) = {x∗} (16)

then x∗ is a global minimizer of P and maxD = min P.

Proof: From Theorem 3, let µ∗ be an optimal solution of PP. Since, µ∗ is
concentrated on X(λ) for every λ ∈ ∆, from (16) we must have µ∗ = δx∗ ,
with δx∗ the Dirac measure at x∗. But this implies that x∗ is feasible for P
and min PP = f(x∗) ≤ inf P, and thus, max D = min P. ♠

2.4 The (general) quadratic case

Consider the case where the fi’s are quadratic functions, i.e.,

x 7→ fi(x) := x′Qix + 2c′ix , i = 0, 1, . . . , m ,

where c′ denotes the transpose of a vector c. Denote also by 〈A, B〉 the usual
scalar product trace(AB) for real-valued symmetric matrices.
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Then D has the form

max
λ≥0,γ

γ

Q0 +
m∑

i=1

λiQi � 0

x′
(

Q0 +
m∑

i=1

λiQi

)
x + 2

(
c0 +

m∑
i=1

λici

)′

x ≥ γ +
m∑

i=1

λibi

(the first constraint is necessary for sup D > −∞) or, equivalently,

max
λ≥0,γ

{
γ

∣∣∣∣∣
[

Q0 +
∑m

i=1 λiQi c0 +
∑m

i=1 λici

(c0 +
∑m

i=1 λici)
′ −γ −∑m

i=1 λibi

]
� 0

}

an lmi problem whose dual D∗

D∗ 7→


min 〈Q0, Y 〉+ 2c′0x
s.t. 〈Qi, Y 〉+ 2c′ix ≤ bi , i = 1, 2, . . . , m[

Y x
x′ 1

]
� 0

is a well-known relaxation of P (see e.g. Boyd and Vandenberghe [6] and
the references therein). Under Assumption A and Condition B, max D =
inf PP . Therefore, if max D = min D∗, PP and D∗ have same value. In fact,
the equivalence of D∗ and PP follows from the fact that to each positive



2 On the duality gap E46

semidefinite matrix

[
1 x′

x Y

]
, one may associate a probability measure µ

with first moment vector x and second-order moment matrix Y , that is,

xi =

∫
zi dµ , ∀i = 1, . . . , n ; Y (i, j) =

∫
zizj dµ , ∀i, j = 1, . . . , n ,

for some probability µ. Conversely, for every probability measure µ, its
vector x of first-order moments and its matrix Y of second-order moments

must satisfy

[
1 x′

x Y

]
� 0 . Therefore, the above formulation D∗ is just

an equivalent formulation of PP since for every i = 0, . . . , m,
∫

fi dµ only
involves the first and second-order moments of µ.

Let λ∗ be an optimal solution of D and let {u1, . . . , up} be an orthonormal
basis of N := Ker(Q0 +

∑m
i=1 λ∗

i Qi). Then, x ∈ X(λ∗) if and only if x =
z0 +

∑p
j=1 yjuj, where z0 solves[

Q0 +
m∑

i=1

λ∗
i Qi

]
z0 = −

[
c0 +

m∑
i=1

λ∗
i ci

]
. (17)

Let z0 be a particular solution of (17). Let Hi be the real-valued (p, p)-
symmetric matrix defined by Hi(jk) := u′

jQiuk, 1 ≤ j, k ≤ p, and let
di be the p-vector di(j) := (ci + 2Qiz0)

′uj, 1 ≤ j ≤ p. Then, invoking
Corollary 4, max D = min P if and only if the following systems of quadratic
equations/inequations in Rp:

y′Hiy + d′
iy = bi − z′0Qiz0 − c′iz0 (λ∗

i > 0) (18)

y′Hiy + d′
iy ≤ bi − z′0Qiz0 − c′iz0 (λ∗

i = 0) (19)
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has a solution.

Let m = 2, ci = 0, i = 0, 1, 2 (the pure quadratic case with 2 constraints)
so that z0 = 0, and let λ∗ be such that λ∗

i > 0 for all i = 1, 2. As di = 0 for
all j = 1, 2, checking (18)–(19) is equivalent to checking whether the linear
system

〈Hi, Z〉 = bi , i = 1, 2,

has a positive semidefinite solution Z, an lmi (convex) problem (see e.g.
Corollary 20.3 in Barvinok [4]).

3 The homogeneous case

In this section we specialize the results to the case where the fi are all (pos-
itively) homogeneous polynomials with the same degree p, that is, for every
scalar λ > 0,

fi(λx) = λpfi(x) , ∀x ∈ X , i = 0, 1, . . . , m .

(In fact, it is also true for an arbitrary scalar λ.) A particular case of interest
is when p = 2, i.e., when the fi are all quadratic forms x 7→ fi(x) = x′Qix
for some real-valued (n, n)-symmetric matrices Qi, i = 0, 1, . . . , m.

We first obtain a simplified expression of D, the solvability of PP (re-
member that the assumptions in Theorem 2 are not satisfied here) and show
that there exist optimal solutions of PP with finite support.
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Theorem 6 Let Assumption A and Condition B hold. Then PP is solvable
so that maxD = minPP . The dual D is:

max
λ≥0

{
−

m∑
i=1

λibi

∣∣∣∣∣ f0(x) +
m∑

i=1

λifi(x) ≥ 0, x ∈ X

}
. (20)

In addition, let λ∗ be an optimal solution of D. Then, there exists an optimal
solution µ∗ of PP which is a convex combination of at most m + 1 Dirac
measures at points xj that verify

∇
(

f0 +
m∑

i=1

λ∗
i fi

)
(xj) = 0 , j = 1, 2, . . . , m + 1 . (21)

The proof is relegated to Appendix D. We also obtain the following result
that takes advantage of the fact that X(λ∗) is a cone. Indeed, by homogene-
ity, the ∇fi are all (positively) homogeneous polynomials of degree p− 1, so
that

∇
(

f0 +

m∑
i=1

λ∗
i f

)
(x) = 0 ⇒ ∇

(
f0 +

m∑
i=1

λ∗
i f

)
(αx) = 0 ,

for every scalar α > 0 (and in fact, every scalar α).

Theorem 7 Assume that fi are all (positively) homogeneous polynomials
with degree p, and let Assumption A and Condition B hold. Let λ∗ be an op-
timal solution to the convex problem D such that X(λ∗) is a one-dimensional
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cone, then

maxD = min PP = min P . (22)

In addition, let x0 ∈ X(λ∗) , then x∗ := αx0 with αp = bi/fi(x0) (with λ∗
i > 0)

is a global minimizer of P.

Proof: From Theorem 6, we already know that both D and PP are solv-
able so that max D = min PP . Let x0 be an arbitrary solution in X(λ∗).
From (12) in Theorem 3, every solution µ∗ of PP is a probability measure on
X(λ∗), that is, for every f ∈ L1(µ),∫

f(x) µ(dx) =

∫
f(αx0)ν(dα),

for some probability measure ν on the real line.

From the homogeneity of fi, i = 0, 1, . . . , m, we have∫
fi dµ∗ = fi(x0)

∫
αp dν i = 0, 1, . . . , m.

Therefore, from (13)∫
αpdν =

bi

fi(x0)
whenever λ∗

i > 0 .
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In addition, as µ∗ is admissible

bk ≥
∫

fk(x) dµ∗

= fk(x0)

∫
αp dν , ∀k = 1, 2, . . . , m .

But then the point x∗ := α0x0 with

αp
0 =

bi

fi(x0)
for some λ∗

i > 0 ,

satisfies

fk(x
∗) = fk(x0)α

p
0 =

∫
fk(x) dµ∗ , ∀k = 0, 1, . . . , m ,

which proves that x∗ is feasible and f0(x
∗) = min PP, so that we may con-

clude that x∗ is a global minimizer of P. ♠
In fact, Theorem 7 can be improved. In view of Corollary 5, if ∆ denotes
the set of optimal solutions of D, Theorem 7 is valid if only ∩λ∈∆X(λ) is
one-dimensional.

3.1 Example: Pure quadratic optimization

Consider the following (pure) quadratic optimization problem

P 7→ f ∗ = min
x
{x′Q0x | x′Qix ≤ bi, i = 1, 2, . . . , m} (23)
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where all the Qi, i = 0, 1, . . . , m are real-valued (n, n)-symmetric matrices.
We make the following assumption:

Assumption C:

(i) Qi is positive semi-definite i = 1, 2, . . . , m ;

(ii) Q0 has a unique negative eigenvalue (counting its multiplicity) and,
whenever x 6= 0, Q0x = 0⇒ Qix 6= 0 for all i = 1, 2, . . . , m ;

(iii) There exist nonnegative coefficients λi, i = 1, 2, . . . , m, such that Q0 +∑m
i=1 λiQi is positive semi-definite;

(iv) Slater’s condition holds, i.e., x′
0Qix0 < bi, i = 1, 2, . . . , m for some x0 .

From Theorem 6, the dual problem D associated with P reads:

D 7→ max
λ≥0,γ

{
γ

∣∣∣∣∣ x′Q0x +

m∑
i=1

λi x
′Qix ≥ γ +

m∑
i=1

λibi, ∀x ∈ X

}
. (24)

or, equivalently,

D 7→ max
λ≥0

{
−

m∑
i=1

λibi

∣∣∣∣∣Q0 +

m∑
i=1

λiQi � 0

}
, (25)
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(with “A � B” standing for A− B positive semidefinite) which is called an
“lmi” problem and can be solved efficiently via interior point methods (see
e.g. [6] and the references therein).

Remark 8 This is a particular case of the general quadratic case considered
in Section 2.4, and D has a dual D∗ which reads

D∗ 7→ min
Y ∈Sn; Y �0

{〈Q0, Y 〉 | 〈Qi, Y 〉 ≤ bi i = 1, 2, . . . , m} (26)

where Sn denotes the space of real-valued (n, n)-symmetric matrices. D∗ is a
well-known relaxation of P. The relationship between D∗ and PP which are
both duals of D with same value, is as follows. Let µ∗ be an optimal solution
of PP, and let Y ∈ Rn×n be its matrix of second-order moments, that is,

Y (i, j) :=

∫
zizj dµ∗ ∀i, j = 1, . . . , n.

Then, obviously, Y � 0 and D∗ is an equivalent formulation of PP for∫
fidµ∗ = 〈Qi, Y 〉 for every i = 1, . . . , n. Conversely, every solution Y � 0

of D∗ can be decomposed into a convex combination
∑

k αkxkx
′
k of rank-one

matrices xkx
′
k (with

∑
k αk = 1). The probability measure µ :=

∑
k αkδxk

solves PP.

The following result is an application of Theorem 7 in the pure quadratic
case.

Theorem 9 Under Assumption C, maxD = f ∗ = f0(x
∗) for every global

optimal solution x∗ of P.
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Proof: One may check that C(iii)–(iv) imply that Assumption A and Con-
dition B hold. Moreover, from C(i)–(ii), the null-space N of Q0 +

∑m
i=1 λ∗

i Qi

is at most one-dimensional. The conclusion follows from Theorem 7. ♠
Hence computing a global optimal solution for the non-convex problem P
reduces to solving the convex “lmi” problem D. In fact, P is a “hidden”
convex problem.
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A Proof of Theorem 1

(i) We first prove the solvability of D. In view of Assumption A, P is of
course feasible and therefore we have sup D < +∞. In addition, since
the feasible set of D is not empty, we also have sup D > −∞. Hence,
consider a maximizing sequence {γk, λk

i ≥ 0}, i.e., a sequence such that

f0(x) +

m∑
i=1

λk
i [fi(x)− bi] ≥ γk ∀x ∈ X. (27)

and

γk ↑ sup D. (28)

In particular, with xj as in Assumption A,

f0(xj) +

m∑
i=1

λk
i [fi(xj)− bi] ≥ γk,
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which implies that λj is bounded, otherwise

f0(xj) +
m∑

i=1

λk
i [fi(xj)− bi] → −∞,

in contradiction with γk ↑ sup D. Hence, with a similar argument, all
the λi are nonnegative and bounded above.

Therefore, there exist nonnegative scalars γ∗, λ∗
i , i = 1, 2, . . . , m, and a

subsequence {kj} such that, as j →∞,

γkj → γ∗ and λ
kj

i → λ∗
i , i = 1, 2, . . . , m,

so that, γ∗ = sup D, and obviously (fix x and let j →∞ in (27))

f0(x) +

m∑
i=1

λ∗
i [fi(x)− bi] ≥ γ∗ ∀x ∈ X. (29)

Equivalently,

inf
x

{
f0(x) +

m∑
i=1

λ∗
i [fi(x)− bi]

}
= γ∗ = sup D. (30)

This proves that λ∗ solves D, i.e., sup D = max D .

(ii) We now show that there is no duality gap between PP and D. Under
Slater’s condition, i.e., when there is some x0 ∈ S such that fi(x0) < bi



A Proof of Theorem 1 E57

for all i = 1, 2, . . . , m the absence of a duality gap follows from e.g.
Theorem 3.13, p. 55 in Anderson and Nash. Indeed, Slater’s condition
is just the interior point condition needed in that theorem. However,
under the weaker Assumption A, such an interior point may not exist.

As X := Rn is locally compact separable, consider a nondecreasing
sequence of compact sets Ki ↑ X, i = 0, 1, . . . , such that K0 contains
xj , j = 1, 2, . . . , m, with xj as in Assumption A. Let Di be the opti-
mization problem

Di 7→ sup
λ≥0,γ

{
γ

∣∣∣∣∣ f0(x) +

m∑
k=1

λk[fk(x)− bk] ≥ γ ∀x ∈ Ki

}
,

which is the dual of the optimization problem

PPi 7→


infµ∈M(Ki),µ≥0

∫
f0 dµ∫

[fk(x)− bk]µ(dx) ≤ 0, k = 1, 2, . . . , m

µ(Ki) = 1

In view of Assumption A and B and the fact that Ki is compact, both
Di and PPi are consistent with finite value. In addition, from the
compactness of Ki, and the fact that the restrictions to Ki of fk, k =
0, 1, . . . , m are continuous, there is no duality gap between Di and PPi,
and PPi is solvable. Indeed, the feasible set of PPi is a compact subset
of M(Ki) for the weak* topology σ(M(Ki), C(Ki)) (with C(Ki) the
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space of continuous functions on Ki), and
∫

f0dµ is a continuous linear
functional for that topology. Thus, PPi is solvable. For the absence of
a duality gap it suffices to prove that the set H ⊂ Rm+2, defined by

H :=
{(

Tµ + v, 〈1, µ〉, ∫ f0 dµ
) | v ∈ (Rm)+, µ ≥ 0, µ ∈M(Ki)

}
is closed (see e.g. Theorem 3.9 in [1]), which also follows from compact-
ness arguments.

In addition, with similar arguments as in (i), Di is also solvable. There-
fore, let µi ∈M(Ki) be an optimal solution of PPi and let {λi ≥ 0, γi}
be an optimal solution of Di. From the absence of a duality gap between
PPi and DDi, we have

inf PPi = min PPi = max Di ≥ sup D = max D . (31)

Let i → ∞ so that γi ↓ γ∗ ≥ max D. It suffices to prove that γ∗ =
max D since then, the sequence µi which satisfies∫

f0 dµi = γi ↓ γ∗ ≤ inf PP,

will be a minimizing sequence of PP with limit value γ∗.

Consider the sequence of {λi}. As xj ∈ Ki for all i, we have

f0(xj) +

m∑
k=1

λi
k[fk(xj)− bk] ≥ γi ≥ γ∗ , j = 1, 2, . . . , m. (32)
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Therefore, for each k = 1, 2, . . . , m, the sequence {λi
k} is bounded oth-

erwise (32) yields a contradiction. Therefore, there is a subsequence
{ip} and coefficients λ∗

k, k = 1, 2, . . . , m such that, as p→∞,

λ
ip
k → λ∗

k , k = 1, 2, . . . , m .

Now fix x ∈ X. As Ki ↑ X, there is some p0 such that x ∈ Kip for
every p ≥ p0, and therefore

f0(x) +

m∑
k=1

λ
ip
k [fk(x)− bk] ≥ γip .

Letting p→∞ yields

f0(x) +
m∑

k=1

λ∗
k[fk(x)− bk] ≥ γ∗ .

As x was arbitrary, (λ∗, γ∗) is feasible for D. This and γ∗ ≥ max D
proves that (λ∗, γ∗) is an optimal solution of D.

B Proof of Theorem 2

PP is consistent since P is. Therefore, consider a minimizing sequence {µn}
in M(X), that is, from µn(X) = 1 and µn ≥ 0, a sequence in P(X) that



B Proof of Theorem 2 E60

satisfies ∫
f0 dµn ↓ inf PP;

∫
fidµn ≤ bi , i = 1, 2, . . . , m .

As fm is inf-compact, there is some M > 0 such that x 7→ w(x) := M +
fm(x) ≥ 1 for all x ∈ X. Consider the associated subsequence of measures

ϕn(B) :=

∫
B

w dµn , B ∈ B, n = 1, 2, . . . .

The constraints
∫

fidµn ≤ bi, i = 1, 2, . . . , m read∫
fi

w
dϕn ≤ bi , i = 1, 2, . . . , m,

and
∫

f0dµn ↓ inf PP reads
∫

f0

w
dϕn ↓ inf PP. As the fi are all continuous and

w ≥ 1, under Condition (b), the functions fi/w ∈ C0(X), i = 0, 1, . . . , m−1,
where C0(X) is the Banach space of continuous functions that vanish at
infinity, equipped with the sup-norm, and whose topological dual isM(X).

From
∫

wdµn =
∫

fmdµn + M ≤ bm + M , it follows that the sequence of
measures {ϕn} is norm-bounded, so that by weak* sequential compactness
of the unit ball ofM(X), there is a measure ϕ and a subsequence {ϕnk

} such
that

lim
k→∞

∫
h dϕnk

=

∫
h dϕ , ∀h ∈ C0(X) ,
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and therefore, in particular, as fi/w ∈ C0(X), ∀i 6= m,∫
fi

w
dϕ = lim

k→∞

∫
fi

w
dϕnk

≤ bi , i = 1, 2, . . . , m− 1 . (33)

In addition, ∫
f0

w
dϕ = lim

k→∞

∫
f0

w
dϕnk

= inf PP. (34)

Introduce the measure µ∗ defined by µ∗(B) :=
∫

B
w−1dϕ, B ∈ B, so that (33)–

(34) read ∫
fidµ∗ ≤ bi , i = 1, 2, . . . , m− 1 ;

∫
f0 dµ∗ = inf PP. (35)

We next prove that µ∗ is a probability measure. As w is inf-compact, w−1 ∈
C0(X), so that

µ∗(X) =

∫
w−1dϕ

= lim
k→∞

∫
w−1dϕnk

= lim
k→∞

µnk
(X) = 1.

Therefore, by the Portmanteau Theorem (see e.g. Billingsley [5]), the se-
quence ϕnk

converges “weakly” to ϕ and not only “weak*”, that is,∫
h dϕnk

→
∫

h dϕ , ∀h ∈ Cb(X).
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It remains to prove that
∫

fmdµ∗ ≤ bm. This follows from the definition of
w. Indeed, as fmw−1 ∈ Cb(X), one has∫

fm dµ∗ =

∫
fmw−1 dϕ = lim

k→∞

∫
fmw−1 dϕnk

= lim
k→∞

∫
fm dµnk

≤ bm .

The latter combined with (35) implies that µ∗ is admissible for PP and∫
f0dµ∗ = inf PP, which proves that PP is solvable.

C Proof of Theorem 3

(a) Let (λ∗, γ∗) be an optimal solution of D and let µ∗ be an optimal
solution of PP. From the absence of a duality gap between PP and D
we have:

γ∗ =

∫
f0 dµ∗.

In addition, from

0 ≤ f0(x) +
m∑

i=1

λ∗
i [fi(x)− bi]− γ∗ , ∀x ∈ X ,
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and
∫

(fi(x) − bi)dµ∗ ≤ 0 for all i = 1, 2, . . . , m, integration w.r.t. µ∗

yields

0 =
m∑

i=1

λ∗
i

∫
(fi(x)− bi) dµ∗.

Consequently, from the nonnegativity of each term, one has

λ∗
i

∫
(fi dµ∗ − bi) dµ∗ = 0 , i = 1, 2, . . . , m,

i.e. (13) holds and

0 =

∫ [
f0(x) +

m∑
i=1

λ∗
i [fi(x)− bi]− γ∗

]
dµ∗.

This clearly implies that

0 = f0(x) +

m∑
i=1

λ∗
i [fi(x)− bi]− γ∗, µ∗ a.e.

which yields (12), and (14) follows whenever the fi are all differentiable.

(b) Let X(λ∗) be the compact set of global minimizers of L(., λ∗) and let
µ∗ be an optimal solution of PP. We have just seen that µ∗ is a prob-
ability measure on X(λ∗). Thus, we could have replaced X by X(λ∗).
The space P(X(λ∗)) of probability measures on X(λ∗) is compact and
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convex for the weak* topology of M(X(λ∗)). By the Krein-Milman
Theorem, P(X(λ∗)) is the weak* closure of the convex hull of its ex-
treme points which are Dirac measures (see e.g. [14]).

Let I∗ be such that i ∈ I∗ if and only if
∫

fidµ∗ = bi, i.e., I∗ denotes
the set of active constraint at µ∗.

The optimal value of PP is the same as if we had removed the con-
straints i 6∈ I∗ in PP and replaced the inequality by equality for i ∈ I∗.
Indeed, if by removing the inactive constraints i 6∈ I∗, we obtain a
strictly better solution ν (eventually with

∫
fidν > bi for some i 6∈ I∗)

then there would be a convex combination µ := αν + (1 − α)µ∗ with
α > 0, such that

∫
fidµ ≤ bi for all i 6∈ I∗ and with

∫
f0dµ <

∫
f0dµ∗,

a contradiction.

Let Hi ⊂ M(X(λ∗)), i ∈ I∗ be the hyperplanes
{
µ | ∫ fidµ = bi

}
associated with the active constraints at µ∗. Since the fi are con-
tinuous, the Hi are weak* closed and convex in M(X(λ∗)) so that
P(X(λ∗)) ∩ [∩i∈I∗Hi] is a convex set in M(X(λ∗)), compact for the
weak* topology. In addition, the linear functional

∫
f0dµ is continu-

ous in that topology. Therefore, it attains its minimum at an extreme
point which, by Caratheodory Theorem (see e.g. [4, Th. 28.2, p. 66]),
is a convex combination of at most s + 1 extreme points of P(X(λ∗)),
i.e., s + 1 Dirac measures on X(λ∗).
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D Proof of Theorem 6

From Theorem 1, D is solvable and there is no duality gap, that is max D =
inf PP . Let (λ∗, γ∗) be an optimal solution of D so that γ∗ := max D . As
the fi’s are homogeneous polynomials, a minimizer x∗ of f0 +

∑
i λ

∗
i [fi − bi]

satisfies

∇
(

f0 +
m∑

i=1

λ∗
i fi

)
(x∗) = 0 ,

and using the homogeneity of the fi’s (hence of the ∇fi’s), we obtain(
f0 +

m∑
i=1

λ∗
i fi

)
(x∗) = 0 ,

which in turn yields,

γ∗ = −
m∑

i=1

λ∗
i bi .

Hence, D simplifies to (20).

We now consider the solvability of PP. Let Kn ↑ X be the sequence of
compact sets already considered in the proof of Theorem 1. We already know
that

max Dn = min PPn ↓ inf PP = max D
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(cf. (31)), and

λnk → λ∗, γnk
↓ γ∗ = max D

for some subsequence {λnk , γnk
} of optimal solutions to Dn. Now let xn be a

minimizer of (f0 +
∑m

i=1 λn
i fi) on Kn. We must have(

f0 +

m∑
i=1

λnk
i fi

)
(xnk

) = γnk
+

m∑
i=1

λnk
i bi ≥

m∑
i=1

[λnk
i − λ∗

i ]bi ,

since γnk
↓ γ∗. In addition, given ε > 0, from the convergence of λnk to λ∗ it

follows that (
f0 +

m∑
i=1

λnk
i fi

)
(xnk

) ≥ −ε , (36)

for all k sufficiently large, say k ≥ k0. Moreover, also from γnk
↓ γ∗, it follows

that(
f0 +

m∑
i=1

λnk
i fi

)
(xnk

) ≥
(

f0 +
m∑

i=1

λ
nk+p

i fi

)
(xnk+p

) ≥ −ε , ∀p = 1, 2, . . .

(37)

and as xn ∈ Kn+p for all p = 1, 2, . . . , it follows that(
f0 +

m∑
i=1

λ
nk+p

i fi

)
(xnk

) ≥
(

f0 +
m∑

i=1

λ
nk+p

i fi

)
(xnk+p

) ≥ −ε , ∀p = 1, 2, . . .

(38)
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Now, fix s ≥ k0 and assume that(
f0 +

m∑
i=1

λns
i fi

)
(xns) = −δ < 0 .

Take y = αxns with α > 1 sufficiently large to ensure −αpδ < −ε. From
Kn ↑ X, there is some p0 such that y ∈ Kns+p for all p ≥ p0 and thus,(

f0 +
m∑

i=1

λ
ns+p

i fi

)
(y) ≥

(
f0 +

m∑
i=1

λ
ns+p

i fi

)
(xns+p) p = 1, 2, . . . . (39)

Therefore,(
f0 +

m∑
i=1

λ
ns+p

i fi

)
(y) = αp

(
f0 +

m∑
i=1

λ
ns+p

i fi

)
(xns)

= −αpδ [by homogeneity]

≥
(

f0 +
m∑

i=1

λ
ns+p

i fi

)
(xns+p) [by (38)]

≥ −ε [by (36)],

a contradiction.

Therefore, there is a subsequence nk such that for sufficiently large k,

f0(x) +

m∑
i=1

λnk
i fi(x) ≥ 0 ∀x ∈ Knk

.
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But, as Ki has nonempty interior and 0 ∈ intKi for sufficiently large i, by
homogeneity

f0(x) +

m∑
i=1

λnk
i fi(x) ≥ 0 , ∀x ∈ X .

But then γnk
= −∑m

i=1 λnk
i bi and Dnk

is equivalent to solving

max
λ≥0

{
−

m∑
i=1

λibi

∣∣∣∣∣ f0 +

m∑
i=1

λifi ≥ 0

}
,

which is nothing less than solving D! Thus,

max Dnk
= γnk

= γ∗ = max D, ∀k ≥ k0.

As there is no duality gap between Dn and PPn and both are solvable, from

inf PP = max D =max Dn = min PPn,

it follows that PP is solvable (take as µ∗ an optimal solution of PPnk
).

Finally, as solving PP reduces to solving PPn for some n sufficiently large,
an optimal solution of PP is a probability measure µ∗ on a compact set Kn.
That there is an optimal solution µ∗ which is a convex combination of at
most m+1 Dirac measures at points xi, i = 1, 2, . . . , m+1 then follows with
similar arguments as in the proof of Theorem 3(b). That the xi’s satisfy (21)
follows from the fact that µ∗ must be concentrated on X(λ∗) (cf. (14) in
Theorem 3).
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