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A model of weakly vortical interfacial flow
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Abstract

A boundary-integral model is derived to describe two-dimensional,
weakly viscous, quasi-irrotational fluid flow at the interface between
two fluids. Vortical flow is restricted to a thin boundary layer, allow-
ing the interfacial fluid dynamics to be largely generated by a vortex
sheet approximation. A theoretical analysis of the model reveals that
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small-amplitude interfacial waves have only conservative and dissipa-
tive modes of behaviour. In contrast, similar analyses of other models
of weak vorticity reveal non-physical modes which increase in energy.
Numerical simulations of our model demonstrate the appropriate con-
servation of key physical invariants.
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1 Introduction

We examine two-dimensional flow on a vertical cross-section through two fluid
layers. Of special interest is the behaviour of the interfacial boundary layer
of the lower, denser fluid. In comparison, the upper, light fluid is assumed
dynamically insignificant. A physical example of such a situation is the
waves on the free surface of deep water beneath the atmosphere. The fluid
dynamics are irrotational except for a thin, vortical layer at the interface.
Both fluids are assumed to have infinite depth to avoid additional effects from
the vorticity of the bed boundary layer. The assumption of irrotationality
allows the velocity at the interface of the two fluids to be completely specified
by a vortex sheet formulation (Van de Vooren [8]). A difficulty is that, on the
one hand, an imposed condition of zero shear stress at the interface cannot be
satisfied by purely irrotational flow unless it is also inviscid (Lundgren [3]),
whereas on the other hand, the inclusion of viscosity is desirable for modelling
physically realistic effects; for example, viscosity plays a significant role in
chaotic wave dynamics (Holmes [2]). As a compromise, Lundgren [3] derived
a quasi-irrotational, weakly viscous approximation to vortical flow, where
the viscous effects appear as corrections to the time-evolution of the velocity
potential. However, we show in this paper that in two dimensions Lundgren’s
model exhibits a non-physical instability. We derive, instead, a model which



1 Introduction E72

exhibits only conservative and dissipative modes of behaviour.

In Section 2 we consider the dynamics of an effectively incompressible,
weakly viscous fluid, and we record the fundamental variables, equations and
boundary conditions to be solved. In Section 3 we simplify the model by as-
suming that vorticity only occurs within a boundary layer near the interface.
In Section 4 we focus our attention on modelling only the fluid dynamics at
the interface, and derive both an Eulerian form, suitable for a theoretical
investigation of stability, and a Lagrangian form, suitable for a numerical
simulation of the interfacial fluid flow. In Section 5 we use the Eulerian form
of the model to examine the linear stability of small-amplitude perturbations
to a flat interface, and show that our model exhibits only conservative and
dissipative modes of behaviour. In contrast, we also show that the models
of both Lundgren [3] and Ruvinsky et al. [6] produce exponentially growing
non-physical modes. In Section 6 we derive a numerical formulation for the
evaluation of both the irrotational and vortical components of the fluid veloc-
ities at discrete points along the interface. The Lagrangian form of the fluid
dynamical equations then forms the basis for a discrete-time-integrable nu-
merical model. Finally, in Section 7 we use the numerical model to simulate
the behaviour of small-amplitude interfacial waves. We verify that our model
of weak vorticity produces physically consistent behaviour. The linear fluid
dynamics are verified by comparing the numerically computed eigenvalues
with those derived from perturbation analysis. The nonlinear fluid dynam-
ics are verified by plotting the numerical values of four physically invariant
quantities.
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2 Dynamics of a fluid-gas interface

Consider the dynamics of an effectively incompressible, weakly viscous fluid,
such as water, lying below a dynamically inactive gas, such as still air. In
this section, we record the fundamental variables, equations and boundary
conditions to be solved. We start with the two-dimensional form of the
Navier–Stokes equation of fluid motion, viz

∂v

∂t
+ v · ∇v = g − 1

ρ
∇p+ ν∇2v , (1)

where v denotes the fluid velocity, g = −gj the gravitational acceleration,
ρ the constant density of the fluid, p the fluid pressure, and ν the kinematic
viscosity of the fluid. The incompressible fluid flow satisfies the continuity
equation

∇ · v = 0 . (2)

The boundary conditions to use with these differential equations are those
of continuous stress across the interface, and no motion infinitely deep in the
fluid. The Newtonian fluid flow has the stress tensor

σ = −pI + 2ρνe , (3)

where I denotes the identity tensor, and e the rate-of-strain tensor (Batche-
lor [1]). By contrast, the stress within the gas is effectively

σ0 = −p0I , (4)
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for some constant pressure p0. The imbalance of stress acting normally across
the interface must be balanced by surface tension:

(σ̃ − σ̃0) · n = ρςκn , (5)

where n is a unit vector locally normal to the interface, ς = γ/ρ is the scaled
coefficient of interfacial tension, κ is the curvature of the interface, and the
symbol ‘∼’ denotes evaluation at the interface.

For convenience, we define the normal straining force on the fluid at the
interface as

τ̃ = τ̃n = ẽ · n , (6)

just as σ̃ · n is the corresponding normal stress. Consequently, substituting
the fluid stress tensor σ from (3) and the gas stress tensor σ0 from (4) into (5)
gives the pressure of the fluid at the interface as

p̃ = p̃0 + 2ρντ̃ − ρςκ . (7)

Henceforth, the gas pressure p0 is taken to be zero without loss of generality.

Deep within the fluid, the fluid motion is only slight, and diminishes
further with increasing depth. The boundary condition at the hypothetical
“bottom” of the infinitely deep fluid is therefore

v → 0 as y → −∞ . (8)

This completes the exposition of the fundamental variables, equations and
boundary conditions required to specify the fluid–gas dynamical system.
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3 A model of weak vorticity

The model of the previous section is simplified assuming a small but non-
negligible viscosity, which acts to form weakly vortical motion only within
a thin boundary layer at the interface. The fluid velocity v = ui + vj is
written in terms of potentials φ = φ(x, y, t) and ψ = ψ(x, y, t), viz

v = vi + vr , vi = ∇φ , vr = ∇ × ψk , (9)

where vi and vr are the irrotational and rotational components of the veloc-
ity, respectively, and k a unit vector directed orthogonal to the plane of the
fluid flow. The continuity equation (2) then reduces to

∇ · v =
∂u

∂x
+
∂v

∂y
= ∇2φ = 0 , (10)

and the vorticity of the flow is

ω = k · ∇ × v =
∂v

∂x
− ∂u

∂y
= −∇2ψ . (11)

Hence, taking both the divergence and curl of the Navier–Stokes equation (1)
leads to

∇2

(
∂φ

∂t
+

1

2
v · v + gy +

p

ρ

)
= ∇ · v × ωk , (12)

∇2

(
∂ψ

∂t
− ν∇2ψ

)
= v · ∇ω , (13)
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respectively, where use has been made of the vector–tensor identity

v · ∇v =
1

2
∇(v · v) − v × ωk . (14)

The right-hand sides of equations (12) and (13) are further manipulated to
give

∇ · v × ωk = ∇2(v · ∇ × ωk − ψω) + ∇ · ∇2v × ψk

+ 2∇ · (∇ψ · ∇v) × k , (15)

v · ∇ω = −∇2(v · ∇ψ) + (v · ∇ψ)∇2v + 2∇v : ∇(∇ψ) , (16)

where the operator ‘:’ denotes the scalar inner-product of two tensors.

We assume the vortical part of the flow is confined to a thin boundary
layer in the fluid near the interface. For a flow with length scale L and a time
scale T , the dimensionless fluid flow parameter of interest is δ =

√
νT/L,

so that the boundary layer is of depth O(δL), and the normal derivatives
of vortically-related quantities are O(δ−1) times larger than the tangential
derivatives. As a consequence, in the boundary layer vr = O(δL/T ), ψ =
O(δ2L2/T ) and ω = O(1/T ). However, the irrotational flow is not restricted
to the boundary layer, and hence vi = O(L/T ) and φ = O(L2/T ). A scale
analysis of (15) and (16) then supports the approximation

∇ · v × ωk ≈ ∇2(v · ∇ × ωk − ψω) , (17)

v · ∇ω ≈ −∇2(v · ∇ψ) . (18)
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This formulation differs slightly from Lundgren [3] in that we have chosen,

for convenience, to also neglect the isolated term 2∂v
∂y

∂2ψ
∂y2

from 2∇v : ∇(∇ψ).

Integrating (12) and (13) after using (17) and (18) in the right-hand sides
then gives

∂φ

∂t
= v · ∇ × ωk − ψω − 1

2
v · v − gy − p

ρ
, (19)

∂ψ

∂t
= −v · ∇ψ + ν∇2ψ , (20)

respectively, where the arbitrary constants of integration have been set to
zero without loss of generality. These equations define the fluid dynamics in
the boundary layer.

4 Modelling the interfacial flow

The boundary layer fluid dynamical model of the previous section is used
to formulate both an Eulerian and a Lagrangian description of the fluid–gas
interface. The Eulerian model describes temporal changes to properties of
the fluid at fixed points in space, whereas the Lagrangian model describes
changes to the properties of fluid “particles” which move with the fluid flow
at the interface.

Let the two-dimensional interface be denoted by the curve

ỹ = η(x, t) . (21)
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For the Eulerian model, the motion of the interface is obtained by restating
the position–velocity relationship as the kinematic velocity relationship, viz

D̃x

Dt
= ṽ ⇔ ∂η

∂t
= ṽ − ũ

∂η

∂x
, (22)

where D/Dt represents the material derivative ∂
∂t

+ v · ∇. Now, since the
fluid pressure of the interface is given by equation (7), then equations (19)
and (20) are evaluated at the interface as

∂̃φ

∂t
=

1

2
ṽ · ṽ − ṽ · ∇̃φ− ψ̃ω̃ − gη − 2ντ̃ + ςκ , (23)

∂̃ψ

∂t
= −ṽ · ∇̃ψ − νω̃ , (24)

respectively, where use has been made of v ·∇×ωk = v ·v−v ·∇φ, from (9).
This Eulerian model is used in the next section to investigate the stability of
small-amplitude perturbations to interfacial waves.

The Lagrangian model is now obtained by reformulating the Eulerian
model in terms of fundamental variables evaluated solely at the interface.
Thus, for example, the chain rule for horizontal derivatives gives

∂ũ

∂x
=

∂̃u

∂x
+
∂̃u

∂y

∂η

∂x
=
∂̃u

∂x
+

(
∂̃v

∂x
− ω̃

)
∂η

∂x
, (25)

∂ṽ

∂x
=

∂̃v

∂x
+
∂̃v

∂y

∂η

∂x
=
∂̃v

∂x
− ∂̃u

∂x

∂η

∂x
, (26)
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from (11) and (10), respectively. By simultaneous solution, we have1 +

(
∂η

∂x

)2
 ∂̃u
∂x

=
∂ũ

∂x
− ∂ṽ

∂x

∂η

∂x
+ ω̃

∂η

∂x
, (27)

1 +

(
∂η

∂x

)2
 ∂̃v
∂x

=
∂ũ

∂x

∂η

∂x
+
∂ṽ

∂x
+ ω̃

(
∂η

∂x

)2

. (28)

Likewise, the chain rule for total temporal derivatives gives

dq̃

dt
=

∂̃q

∂t
+
∂̃q

∂x

dx̃

dt
+
∂̃q

∂y

dỹ

dt
, (29)

for an arbitrary quantity q(x, y, t) evaluated at the interface ỹ = η(x, t).
Hence, the Lagrangian model of weakly vortical interfacial dynamics is

D̃x

Dt
≡ dx̃

dt
= ũ , (30)

D̃y

Dt
≡ dỹ

dt
= ṽ , (31)

D̃φ

Dt
≡ dφ̃

dt
= −gη +

1

2
ṽ · ṽ + ςκ− 2ντ̃ − ψ̃ω̃ , (32)

D̃ψ

Dt
≡ dψ̃

dt
= −νω̃ . (33)

This Lagrangian model forms the basis of the numerical investigation in
Section 7 of the fluid dynamics at the interface.
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5 Stability of the weakly vortical model

We use the Eulerian formulation of the previous section to prove that our
model exhibits linear modes of behaviour which either conserve or dissipate
energy. In comparison, we show that the related models of Lundgren [3] and
Ruvinsky et al. [6] exhibit non-physical modes which gain energy.

The stability of a system of PDE’s is primarily determined by the eigen-
values of its linearisation. These eigenvalues are obtained by an analysis
of small-amplitude perturbations to the flat interface. Let the small quan-
tity ε � 1 be representative of the size of the perturbation, such that η, φ,
ψ, u and v are O(ε). Now, for an arbitrary quantity q(x, y, t), let q̄ denote
q(x, 0, t). This allows us to express q̃, the value of q on the interface, in terms
of quantities evaluated on y = 0, viz

q̃
.
= q̄ +

∂q

∂y
η +

1

2!

∂2q

∂y2
η2 +

1

3!

∂3q

∂y3
η3 + · · · . (34)

Thus, for example, the interfacial curvature has the expansion

κ =
∂2η

∂x2

1 +

(
∂η

∂x

)2
−3/2

.
=

∂2η

∂x2
+ O(ε2) . (35)

In order to derive equivalent expansions for ω̃ and τ̃ , first note from (6) that
the normal and tangential components of the normal straining force τ̃ are

n · ẽ · n = τ̃ , s · ẽ · n = 0 , (36)
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respectively. The rate-of-strain tensor e at the interface is

ẽ =


∂̃u
∂x

1
2

(
∂̃u
∂y

+ ∂̃v
∂x

)
1
2

(
∂̃v
∂x

+ ∂̃u
∂y

)
∂̃v
∂y

 =


∂̃u
∂x

∂̃v
∂x

− 1
2
ω̃

∂̃v
∂x

− 1
2
ω̃ − ∂̃u

∂x

 , (37)

where use has been made of ∂̃v
∂y

= − ∂̃u
∂x

from (10), and ∂̃u
∂y

= ∂̃v
∂x

− ω̃ from (11).

Hence, using relations (27) and (28), the simultaneous solutions to (36) are

ω̃ = 2

(
∂ṽ

∂x
− ∂ũ

∂x

∂η

∂x

)1 +

(
∂η

∂x

)2
−1

.
= 2

∂v

∂x
+ O(ε2) , (38)

τ̃ = −
(
∂ũ

∂x
+
∂ṽ

∂x

∂η

∂x

)
.
= − ∂u

∂x
+ O(ε2) . (39)

Now, by retaining only those terms linear in ε, the Eulerian system (22)–(24)
reduces to

∂η

∂t
=

∂φ

∂y
− ∂ψ

∂x
, (40)

∂φ

∂t
= −gη + ς

∂2η

∂x2
+ 2ν

∂2φ

∂x2
+ 2ν

∂2ψ

∂x∂y
, (41)

∂ψ

∂t
= −2ν

∂2φ

∂x∂y
+ 2ν

∂2ψ

∂x2
, (42)

where use has been made of v = ∇φ+ ∇ × ψk.
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As these differential equations have constant coefficients, the stability
analysis need only make use of the Fourier modes, given by

ηk(x, t) = αk(t)e
ikx , (43)

φk(x, y, t) = βk(t)e
ikx+ky , (44)

ψk(x, y, t) = −iξk(t)fk(y)eikx , (45)

for each wavenumber k. These modes satisfy the conditions of fluid incom-
pressibility and no motion infinitely deep in the fluid. Observe that the exact

form of fk(y) is not specified, so that the term 2ν ∂2ψ
∂x∂y

in equation (41) cannot

be evaluated directly. However, it is shown in Section 6.2 that ũr = O(ε2),

and so the problematic term can be neglected, since ∂2ψ
∂x∂y

= O(∂ũ
r

∂x
) = O(ε2),

i.e. f ′
k(0) = O(ε). Substituting the Fourier components into equations (40)–

(42), and equating coefficients, then gives the linear system α̇k
β̇k
ξ̇k

 =

 0 k −k
−g − ςk2 −2νk2 0

0 2νk2 −2νk2


 αk
βk
ξk

 , (46)

which has eigenvalues

λk = 0 , −2νk2 ± i
√
k(g + ςk2) . (47)

The non-zero eigenvalues correspond to waves dissipating due to viscosity.
Thus, our model of weakly vortical flow is consistent with the physical prop-
erties of viscous fluids. The marginal eigenvalues λk = 0 indicate the presence
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of a centre manifold of small-amplitude, nearly-stationary disturbances. A
more detailed nonlinear analysis is required to investigate the true dynamics
of such waves.

In contrast, the weakly vortical model of Lundgren [3], written in two-
dimensional form, is

∂η

∂t
=

(
ṽ − ∂̃ψ

∂s

)1 +

(
∂η

∂x

)2
−1/2

, (48)

dφ̃

dt
= −gη +

1

2
(ũ2 + ṽ2) − 2

∂̃v

∂s
ψ̃ − 2ν

∂̃v

∂n
+ ςκ , (49)

dψ̃

dt
= 2

∂̃v

∂n
ψ̃ − 2ν

∂̃v

∂s
, (50)

where the applied shear stress has been neglected. The corresponding linear
system is  α̇k

β̇k
ξ̇k

 =

 0 k −k
−g − ςk2 −2νk2 0

0 2νk2 0


 αk
βk
ξk

 , (51)

and the stability of this model is therefore governed by

λ3
k + 2νk2λ2

k + k(g + ςk2)λk − 2νk3(g + ςk2) = 0 . (52)

For small values of viscosity ν, the eigenvalues are

λk = 2k2ν − 16k5ν3

g + ςk2
+ O(ν5) , (53)
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and

λk = −2k2ν +
8k5ν3

g + ςk2
± i

(
1 +

2k3ν2

g + ςk2

)√
k(g + ςk2) + O(ν4) . (54)

The complex eigenvalues correspond to damped waves with frequencies which
are slightly different to the physical undamped waves. The problem lies
with the real eigenvalues (53), which indicate that some modes will grow
exponentially fast and thus ruin simulations based on the model.

As a further comparison, consider the weakly vortical surface model of
Ruvinsky et al. [6], written as

∂η

∂t
=

∂̃φ

∂y
+ ṽr − ε

∂η

∂x

∂̃φ

∂x
, (55)

c2
∂̃φ

∂t
= −η − 1

2
εc2

∥∥∥∇̃φ
∥∥∥2

+ ς
∂2η

∂x2

1 +

(
ε
∂η

∂x

)2
−3/2

− 2ν
∂̃2φ

∂y2
, (56)

c2
∂̃vr

∂t
= 2ν

∂̃3φ

∂y∂x2
, (57)

where c is a non-dimensional constant proportional to the phase velocity of
gravity-capillary waves, vr is the vertical component of the vortical velocity,
and ε is a small parameter which governs the size of the quadratic terms.
Hence, linearisation is achieved by setting ε = 0, which results in α̇k

β̇k
ξ̇k

 =
1

c2

 0 c2k −c2k
−g − ςk2 −2νk2 0

0 2νk2 0


 αk
βk
ξk

 . (58)
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The stability of this new system is governed by

λ3
k +

2νk2

c2
λ2
k +

k(g + ςk2)

c2
λk − 2νk3(g + ςk2)

c4
= 0 . (59)

Again expanding in small values of viscosity, the eigenvalues are

λk =
2k2ν

c2
− 16k5ν3

c4(g + ςk2)
+ O(ν5) , (60)

and

λk = −2k2ν

c2
+

8k5ν3

c4(g + ςk2)

± i

(
1 +

2k3ν2

c2(g + ςk2)

)√
k(g + ςk2)

c2
+ O(ν4) . (61)

Observe from (60) that the model of Ruvinsky et al. [6] therefore has the
same type of non-physical, unstable dynamics as the model of Lundgren [3].
In contrast, we have shown that our model is consistent with the dissipation
of energy expected of weakly viscous fluids.

6 Numerical velocity calculations

The Lagrangian model of Section 4 forms the basis of a numerical scheme for
integrating the fluid dynamical system. Here we adopt and expand upon the
algorithms described in detail by Roberts [5], and Mercer and Roberts [4].
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In outline, let the spatial and temporal variation of the interface be
parametrised by a variable s and time t, respectively, and denote any ar-
bitrary quantity evaluated at the interface, say q̃ = q(x, η(x, t), t), by its
capital letter, say Q(s, t). The relevant interfacial variables are then given
by x̃ = X(s, t), ỹ = Y (s, t), φ̃ = Φ(s, t) and ψ̃ = Ψ(s, t). We further use an
overdot ‘˙’ to denote ∂

∂t
at fixed s, and a prime to denote ∂

∂s
at fixed t. The

Lagrangian model (30)–(33) then becomes

Ẋ = U , (62)

Ẏ = V , (63)

Φ̇ = −gY +
1

2
(U2 + V 2) + ςK − 2νT − ΨW , (64)

Ψ̇ = −νW , (65)

respectively. Observe that the interfacial vorticity is

W = 2 (V ′X ′ − U ′Y ′)
(
X ′2 + Y ′2)−1

, (66)

from equation (38); the magnitude of the interfacial normal straining force
is

T = −U ′

X ′ −
V ′

X ′
Y ′

X ′ , (67)

from equation (39); and the interfacial curvature is

K = (X ′Y ′′ − Y ′X ′′)
(
X ′2 + Y ′2)−3/2

, (68)
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from equation (35).

The following two sub-sections describe how to evaluate the irrotational
and rotational parts, respectively, of the complex interfacial velocity V. Once
both these quantities have been determined, the horizontal and vertical com-
ponents, U and V , are found from U−iV = V i+Vr. The associated variables
W , T and K are then computed from equations (66)–(68). Finally, the inter-
face at later times are found by numerically integrating the fluid dynamical
equations (62)–(65).

6.1 Irrotational velocity calculations

The fluid flow is approximately irrotational due to the assumption of weak
vorticity. Hence, the complex velocity V = U − iV is decomposed as V =
V i +Vr, where V i is the irrotational part and Vr is the rotational or vortical
part, with Vr � V i. This so-called quasi-irrotational flow means that V is
modelled principally by a vortex sheet along the interface (Van de Vooren [8]),
with an additional small correction for vorticity. Following Roberts [5], the
vortex sheet engenders the complex velocity potential function

f(z) = φ+ iψc = − i

2π

∫ ∞

−∞
a(σ, t) log [z − Z(σ, t)] dσ , (69)

where z = x + iy, Z = X + iY , ψc is a harmonic function conjugate to φ
(and not the vortical potential ψ), and a(s, t) is the vortex strength at the
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point on the interface parametrised by s. The infinite integral is replaced by
a finite integral by assuming N -periodic flow. The irrotational velocity V i of
the lower fluid at a point Z = Z(s, t) on the interface is then

V i = f ′(Z) = − i

4π
C
∫ N

0
a(σ, t) cot

[
Z − Z(σ, t)

2

]
dσ +

a

2Z ′ . (70)

where use has been made of the Mittag–Leffler expansion (Spiegel [7]), and
the Cauchy principal value integral (Spiegel [7]). The complex velocity V i is
related directly to the velocity potential Φ via

Φ′ + iΨ′
c =

∂f(Z)

∂s
= f ′(Z)Z ′ = V iZ ′ , (71)

since f̃(z) = f(Z) = Φ + iΨc from equation (69). Hence, multiplying equa-
tion (70) by Z ′ and taking the real part gives

Φ′ =
1

4π
C
∫ N

0
a(σ, t) =

{
Z ′ cot

[
Z − Z(σ, t)

2

]}
dσ +

a

2
. (72)

In order to make the numerical model tractable, the continuous interface
is discretised into N points, parametrised by replacing s ∈ [0, N) by k =
0, 1, . . . , N − 1. Observe that k = N is equivalent to k = 0 for an N -periodic
interface. The integrals are then approximated by summations over these
grid-points, replacing σ by j = 0, 1, . . . , N − 1. However, observe that the
integrands in both equations (70) and (72) become singular at Z = Z(k, t)
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whenever σ = k. It was shown by Roberts [5] that these singularities are
removable, giving

Vk = − i

4π

N−1∑
j = 0
j 6= k

aj cot
[
Zk − Zj

2

]
+

ak
2Z ′

k

− i

4π

{
akZ

′′
k

Z ′
k
2 − 2a′k

Z ′
k

}
, (73)

and

Φ′
k =

1

4π

N−1∑
j = 0
j 6= k

aj=
{
Z ′
k cot

[
Zk − Zj

2

]}
+
ak
2

+
1

4π
=
{
akZ

′′
k

Z ′
k

}
, (74)

where Zk denotes Z(k, t), etcetera. Hence, the irrotational velocities at the
interface are now calculated by:

1. using a discrete Fourier transform (FFT) to efficiently and accurately
compute the spatial derivatives Z ′

k, Z
′′
k , and Φ′

k;

2. solving the linear system (74) for k = 0, 1, . . . , N − 1 to find the vortex
strengths ak(t);

3. using an FFT to calculate a′k;

4. evaluating equation (73) to find the irrotational velocities V ik.

The above approach allows the irrotational velocities on the interface to be
uniquely determined.
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6.2 Vortical velocity calculations

Recall from the previous section that the vortical flow, governed by the po-
tential Ψ, is weak in comparison to the irrotational flow. That is, the complex
vortical velocity Vr is small, i.e. Vr � V i. In order to derive a formula for the
numerical calculation of Vr, first consider the theoretical model of Section 3.

Observe, from the chain rule, that

∂ψ̃

∂x
=

∂̃ψ

∂x
+
∂̃ψ

∂y

∂η

∂x
= −ṽr + ũr

∂η

∂x
, (75)

where ur = ∂ψ
∂y

and vr = −∂ψ
∂x

from equation (9). Now observe that the
normal component of the vortical velocity is

ṽr · n = (ũri + ṽrj) · 1

S

(
−∂η
∂x

i + j

)
=

1

S

(
ṽr − ũr

∂η

∂x

)
, (76)

where, for convenience,

S =

√√√√1 +

(
∂η

∂x

)2

. (77)

Hence, we deduce that

ṽr · n = − 1

S

∂ψ̃

∂x
. (78)
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Similarly, the tangential component of the vortical velocity is

ṽr · s = (ũri + ṽrj) · 1

S

(
i +

∂η

∂x
j

)
=

1

S

(
ũr + ṽr

∂η

∂x

)
. (79)

In contrast to the normal component, the tangential component does not
obey a physically–based condition such as (76). We are therefore free to
arbitrarily assign such a condition to ensure unique solutions for ũr and ṽr;
for simplicity, set

ṽr · s = 0 . (80)

Simultaneously solving (78) and (80) for ũr and ṽr then gives

ũr =
1

S2

∂ψ̃

∂x

∂η

∂x
, ṽr = − 1

S2

∂ψ̃

∂x
. (81)

Observe that small perturbations of size ψ̃, η = O(ε) have the consequence
that ũr = O(ε2) and ṽr = O(ε). This property was used in Section 5 to
eliminate the term ∂ur

∂x
from the perturbation model, which retained only

terms linear in O(ε).

Finally, in terms of the numerical model, observe that the vortical velocity
components become

U r =
Ψ′Y ′

X ′2 + Y ′2 , V r = − Ψ′X ′

X ′2 + Y ′2 , (82)
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respectively. Hence, the complex vortical velocity Vr is

Vr = U r − iV r =
iΨ′Z ′∗

Z ′Z ′∗ , (83)

where Z ′ = X ′ + iY ′, and the asterisk denotes complex conjugation. By
simplification and rearrangement, observe that

iΨ′ = VrZ ′ , (84)

which is similar in form to equation (71), viz

Φ′ + iΨ′
c = V iZ ′ , (85)

for the complex irrotational velocity.

7 Numerical verification of the model

The numerical model of the previous section predicts the time-evolution of
fluid quantities evaluated at discrete points on the interface with reasonable
accuracy and efficiency. A fourth-order Runge–Kutta scheme is used here
to integrate the numerical model. We verify our earlier theoretical predic-
tion that small-amplitude wave perturbations to a flat interface exhibit only
conservative or dissipative fluid dynamics.

For this simulation, walls are imposed at x = 0 and π, corresponding
to the discrete points k = 0 and k = M = N/2 along the interface; hence,
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X0 = 0 and XM = π, respectively. Assuming the fluid remains in constant
contact with the walls, i.e. there is no cavitation within the fluid at the walls,
then the necessary boundary conditions are

u = 0 at x = 0 , π ⇒ U0 = UM = 0 , (86)

The required N -periodicity of the interface is now ensured by reflectional
symmetry about k = M and k = 0, such that

XN−k = 2π −Xk , YN−k = Yk , (87)

ΦN−k = Φk , ΨN−k = −Ψk , (88)

UN−k = −Uk , VN−k = Vk , (89)

for k = 0, 1, . . . ,M . The short-term stability of the interface is now deter-
mined by computing the eigenvalues of the approximate linearisation matrix,
obtained from the time-derivative routine of the numerical model using small
perturbations to a flat interface. Here we use a total of N = 16 discrete
points to represent the symmetrically reflected fluid. The sawtooth instabil-
ity is eliminated, as per Roberts [5], by temporarily doubling the number of
discrete points along the interface in the velocity calculations, and zeroing
the highest Fourier coefficient.

Table 1 shows the eigenvalues computed for purely inviscid gravity waves,
in comparison to the corresponding theoretical values obtained from the per-
turbation expansions of Section 5. Overall there is excellent agreement. The
fact that the numerical model exhibits a non-zero eigenvalue λ0 is due to an
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Table 1: Eigenvalues (using N = 16) for small-amplitude, free interfacial
waves (ν = 0, ς = 0), verifying that λk = ±i√gk to numerical accuracy.

Theoretical Model Numerical Model
k <(λk) =(λk) <(λk) =(λk)
0 0.00000000 0.00000000 0.00000019 0.00000000
1 0.00000000 1.00000000 0.00000008 1.00000000
2 0.00000000 1.41421356 0.00000007 1.41421356
3 0.00000000 1.73205081 0.00000005 1.73205081
4 0.00000000 2.00000000 0.00000004 2.00000000
5 0.00000000 2.23606798 0.00000002 2.23606798
6 0.00000000 2.44948974 0.00000001 2.44948975
7 0.00000000 2.64575131 0.00000000 2.64575131
8 0.00000000 2.82842712 0.00000000 2.82842713

insignificant departure from incompressibility of the liquid, which is explained
later. That the other eigenvalues have slightly positive real-parts is attributed
to the use of numerical finite differences for derivatives. Similarly, Table 2
shows the eigenvalues obtained for inviscid capillary-gravity waves. Again
there is excellent agreement with the theoretical eigenvalues (47). Lastly,
Table 3 shows the eigenvalues obtained for weakly vortical gravity waves,
which are again in excellent agreement with the theoretical eigenvalues (47).
Observe that the numerical damping rate of wavenumber k = 8, given by the
real part of λ8, is half the theoretical rate. This is most likely an artefact of
the way we suppress the sawtooth instability.
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Table 2: Eigenvalues (using N = 16) for inviscid (ν = 0) capillary-gravity

waves, verifying that λk = ±i
√
k(g + ςk2) to numerical accuracy.

Theoretical Model Numerical Model
k <(λk) =(λk) <(λk) =(λk)
0 0.00000000 0.00000000 0.00000019 0.00000000
1 0.00000000 1.15022047 0.00000008 1.15022045
2 0.00000000 2.14104111 0.00000007 2.14104109
3 0.00000000 3.42362272 0.00000005 3.42362270
4 0.00000000 4.96713764 0.00000004 4.96713765
5 0.00000000 6.73616295 0.00000002 6.73616295
6 0.00000000 8.70457007 0.00000001 8.70457008
7 0.00000000 10.85317675 0.00000000 10.85317677
8 0.00000000 13.16736620 0.00000000 13.16737070
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Table 3: Eigenvalues (using N = 16) for weakly vortical gravity (ς = 0)
waves, verifying that λk = −2νk2 ± i

√
gk to numerical accuracy.

Theoretical Model Numerical Model
k <(λk) =(λk) <(λk) =(λk)
0 0.00000000 0.00000000 0.00000019 0.00000000
1 -0.00172853 1.00000000 -0.00172845 1.00000000
2 -0.00691412 1.41421356 -0.00691406 1.41421356
3 -0.01555677 1.73205081 -0.01555672 1.73205081
4 -0.02765649 2.00000000 -0.02765645 2.00000000
5 -0.04321326 2.23606798 -0.04321324 2.23606798
6 -0.06222709 2.44948974 -0.06222708 2.44948975
7 -0.08469799 2.64575131 -0.08469798 2.64575131
8 -0.11062592 2.82842712 -0.05531297 2.82788622
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On a longer time-scale, the validity of the numerical model is verified by
computing various quantities which theoretically are invariant. Roberts [5]
defines four such quantities, namely: the mean vertical displacement of the
interface, C; the average volume flux across the interface, Ω; the average
horizontal momentum, I; and the total interfacial energy E. The initial in-
terfacial profile is set to a single wave y = A cosx of amplitude A = 0.125.
The evaluations of the physical invariants are shown in Figure 1, obtained for
inviscid gravity flow. Observe that the average volume flux Ω, shown in Fig-
ure 1(b), is a numerically invariant quantity, apart from random truncation
errors of size 10−13. Similarly, the average horizontal momentum I, shown
in Figure 1(c), is numerically invariant to within an error of size 10−18. Ob-
serve, however, that the mean interfacial position C, shown in Figure 1(a), is
increasing overall with time, with a slope of about 10−11. This indicates that
the numerical model has a negligible departure from strict incompressibility,
which was revealed in Table 1 by the occurrence of a non-zero eigenvalue for
wavenumber k = 0. The slight lack of invariance for C is a direct conse-
quence of using a discrete integration scheme to approximate the continuous
temporal dynamics of the fluid. This same problem also affects the total
energy E, which slowly decreases with time, as shown in Figure 1(d). Since
slope of the line is only about 10−9, however, the total energy is effectively
conserved over this time-scale.
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(a) Mean interfacial height C ver-
sus time t
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(b) Average volume flux Ω versus
time t
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Figure 1: Numerical estimates of four physically invariant quantities, show-
ing that both the average volume flux Ω, (b), and the average horizontal
momentum I, (c), are approximately invariant. The mean displacement C,
(a), is slowly increasing with time, implying a slight lack of incompressibility
of the fluid. The total energy E, (d), slowly decreases with time, indicating
a slight dissipation of energy in the numerically evaluated fluid dynamical
system.



7 Numerical verification of the model E99

(c) Average horizontal momentum
I versus time t
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(d) Change in total interfacial en-
ergy, E −E0, versus time t
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Figure 1: continued
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8 Conclusion

We have derived a boundary-integral model to describe the two-dimensional
dynamics of a weakly viscous, quasi-irrotational fluid at the interface with a
light, dynamically inactive fluid. Vortical flow is restricted to a thin boundary
layer near the interface. This model has the important property of exhibit-
ing only conservative and dissipative modes of linear behaviour for small-
amplitude interfacial waves. In contrast, we have shown that comparable
models of weak vorticity (Lundgren [3], Ruvinsky et al. [6]) exhibit exponen-
tially growing non-physical modes.

Numerical simulations of the interfacial fluid dynamics depended chiefly
on a vortex sheet approximation to the irrotational fluid flow (Roberts [5]),
which enabled the stable and accurate computation of interfacial fluid ve-
locities. The expected behaviour of the model was verified by numerical
analysis of fundamental wave modes, and by the appropriate conservation of
key physical invariants.

References

[1] Batchelor, G.K. (1967): An introduction to fluid dynamics. Cambridge
University Press. E73



References E101

[2] Holmes, P. (1986): Chaotic motions in a weakly nonlinear model for
surface waves. J. Fluid Mech., 162, 365–388. E71

[3] Lundgren, T.S. (1989): A free surface vortex method with weak viscous
effects. Mathematical Aspects of Vortex Dynamics (ed. R.E. Caflisch),
SIAM, Philadelphia, 68–79. E71, E71, E72, E77, E80, E83, E85, E100

[4] Mercer, G.N. and Roberts, A.J. (1992): Standing waves in deep water;
their stability and extreme form. Phys. Fluids A, 4, 259–269. E85

[5] Roberts, A.J. (1983): A stable and accurate numerical method to
calculate the motion of a sharp interface between fluids. IMA J. App.
Math., 31, 13–35. E85, E87, E89, E93, E97, E100

[6] Ruvinsky, K.D., Feldstein, F.I. and Freidman, G.I. (1991): Numerical
simulations of the quasi-stationary stage of ripple excitation by steep
gravity–capillary waves. J. Fluid Mech., 230, 339–353. E72, E80, E84,
E85, E100

[7] Spiegel, M.R. (1964): Theory and problems of complex variables.
Schaum’s Outline Series, McGraw–Hill Book Company. E88, E88

[8] Van de Vooren, A.I. (1980): A numerical investigation of the rolling-up
of vortex sheets. Proc. R. Soc. Lond. A, 373, 67–91. E71, E87


	Introduction
	Dynamics of a fluid-gas interface
	A model of weak vorticity
	Modelling the interfacial flow
	Stability of the weakly vortical model
	Numerical velocity calculations
	Irrotational velocity calculations
	Vortical velocity calculations

	Numerical verification of the model
	Conclusion
	References

