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Abstract

We investigate the effect of inner tube shape on the flux of medicine

in a Sheiman ultrasonic nebulizer. Using a simple model for the flow of

the aerosol up through the inner tube, we consider the variation in flux

for cylinders of varying cross-section. The optimal shape is found to

be proportional to the shape of the inner jet for any assumed pressure

difference between the upper and lower chambers of the nebulizer.
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1 Introduction

A nebulizer is a device for the reduction of some liquid or particulate drug
into a form to be inhaled. The process creates droplets of the medicine which
are small enough to travel all of the way into the lung without “crashing” into
the walls of either the inhalation tube or the throat. There are two common
methods for doing this. The first involves the propulsion of a jet of air past a
small tube containing the medicine. These so-called air-jet nebulizers draw
the medicine from the small tube where it is carried along by the air into a
chamber from which the liquid droplets can be inhaled. These devices involve
a motor, tubes and an inhalation mask and are rather cumbersome.

The second kind of nebulizer uses ultrasonic radiation passing through a
liquid medicine to cause a jet of liquid that breaks up into droplets which
can then be inhaled in some way. The 1998 Mathematics-in-Industry Study
Group [2] examined a nebulizer which is of the latter type. This device has a
different design to earlier models and consists of upper and lower chambers
separated by an inner tube (see Figure 1). Liquid medicine in the lower
chamber is excited by the ultrasound causing a thin jet, with radius of about
2–3mm and an upward velocity around 1m/s, to travel up through the inner
tube into the upper chamber. This jet begins to break up in the central tube
due to cavitation caused by the ultrasonic excitation and the liquid droplets
formed here are carried along into the upper chamber. The resulting droplet
cloud is forced out through another tube into the mouth of the patient. The
entire process is driven by the pressure differences that arise between the
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Figure 1: Sketch of the Sheiman Ultrasonic Nebulizer

upper and lower chambers and the outside. Droplets of medicine which do
not pass into the inhalation tube drain back from the upper chamber to the
lower and thus are not wasted.

There are a number of aspects to the design of these particular devices
that have advantages over the older models, but there are still a number of
problems that need to be addressed. The major advantage is their compact
size and minimal power requirements. A standard small battery can be used
to power it and it is small enough to be carried in a hand bag. The problems
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relate to the size of the droplets and the absorbance of particulate medicine
into the liquid. A more complete understanding of the processes is required
to address these problems.

The misg was involved in discussing a number of issues. But the issue of
interest to this paper is the design of the central tube to optimise the flow
of air, thereby maximising drug delivery rate. A simple model is used to
consider a range of different shapes for the central tube in an attempt to find
an optimal shape.

2 Liquid Jet Behaviour

The generation of the liquid jet by the ultrasonic radiation is a particularly
interesting problem, but one that we will not consider here. However, the jet
of liquid medicine which sprays up through the middle of the central tube
is important since it is this which “drags” the air upward and creates the
pumping action for the inhalation of the drug. The jet is very narrow and
has quite high velocity. It is important to consider the shape of this jet.

Assuming uni-directional flow of a thin circular jet, and hence a velocity
independent of radial variable r, and ignoring viscosity, the jet must conserve
flux:

Q = πa(z)2vz = πa2
0v0 , z > 0 (1)

where Q is the constant upward flux, vz(a) is the upward velocity (vz = v0
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at z = 0) and a(z) is the radius of the jet (a = a0 at z = 0). The pressure at
the surface must match atmospheric pressure, leading to a condition given
by the Bernoulli equation:

1

2
v2

z + gz =
1

2
v2
0 . (2)

Combining (1) and (2) gives an expression for the radius of the jet at any
height as

a(z) =

(

v0a
2
0

(v2
0 − 2gz)1/2

)1/2

. (3)

By examining the denominator of a(z) in (3), see that this solution is unde-
fined if z = v2

0/2g, so a jet with initial velocity of v0 = 1.2m/s will continue
to a height of about 7 cm. Since for many of the calculations later in the
paper we have chosen the height of the inner tube to be 6 cm, this is not a
problem.

In reality the situation is even more complicated because of cavitation
in the jet itself, and also the presence of air bubbles. To model all of these
factors would be extremely complicated, and our interest here is only to get
a rough idea of the shape of the central jet as an input for modelling the air
flow. Once the jet breaks up, the individual liquid droplets continue to travel
upward, but again this is rather complicated to model, and so we make the
above assumption (3) about its shape.
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3 A model of the flow

Our concern in this paper is the flow of air up through the central tube: is
there a size and shape for the tube that maximises the flow rate? The flow
begins almost immediately that the ultrasonic crystal is initiated and the
liquid jet shoots upward. The cloud of liquid droplets is seen to emerge from
the upper chamber equally quickly. Air is drawn in from the outside through
vents in the lower chamber and there is a consequent flow out through the
mouthpiece from the top chamber.

A model of the outer tube with a narrow, circular cylinder moving rapidly
upward through the middle [2] showed that once the jet is established, viscous
forces would draw the air upward within the required time frame. A steady
flow is established within seconds. Bearing this in mind, we will use a model
of almost uni-directional flow [1]. A rigid stationary outer tube of slowly
varying radius R(z) and length, L, surrounding a smaller “tube” of slowly
varying radius a(z) travelling upward with average velocity vz(r, 0) ≈ 1m/s
will be used to model the process (see Figure 2). (For comparison, a jet
satisfying (3) and having initial velocity v0 = 1.2m/s has an average velocity
up the length of the tube of 0.9027m/s.) Considering the high velocity of
the central jet it is a reasonable assumption that the flow will be almost
uni-directional [1] provided R(z) and a(z) are changing slowly. The liquid
droplets will be assumed to be carried along by the flow of air, and so will
not be explicitly incorporated.
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Figure 2: Model for inner tube design
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A factor of major importance is the pressure in the upper and lower
chambers and outside of the device, and the flow of air in through the vents
and out through the mouthpiece. If the air in the lower chamber is at a
higher pressure than that in the upper, i.e. is aiding the flow of air, then
the best solution will simply be the widest tube that can be fitted, since
the air flux will simply increase with radius. However, since air is drawn
in from the outside at the bottom and is expelled from the top chamber
into the atmosphere, it is clear that the pressure in the bottom chamber is
lower than atmospheric, and the pressure in the upper chamber is higher
than atmospheric, and thus is counter to the desired direction of flow of air
upwards. One would expect that the pressure in the upper chamber would be
lower than atmospheric (since it is moving more quickly) but this is clearly
modified by the presence of the medicinal aerosol mist which also occupies
the upper chamber, modifying the density.

Clearly the flow generated by the upward jet is strong enough to overcome
this adverse pressure gradient, but it does suggest that there may be some
optimal radius for the inner tube. It is evident that once the flow develops,
the pressure in the two chambers will be modified. A full model of this
feedback would be quite difficult especially due to the presence of the mist
and we would lose the simplicity of the current model. So for the moment we
will assume that the pressure gradient is known and calculate the consequent
flow.

Using cylindrical polar coordinates so that the z-axis is aligned with the
jet, with z = 0 corresponding to the centre of the bottom of the tube (see



3 A model of the flow E46

Figure 2), and assuming uni-directional flow, the Navier-Stokes equations
reduce to

dp

dz
= µ

1

r

d

dr

(

r
dvz

dr

)

, (4)

where vz(r, z) is the upward velocity of air and µ is the dynamic viscosity of
air. The r-momentum equation gives simply that the pressure depends on z
only, i.e. p(z), and hence we finish with a differential equation involving the
velocity, vz(r, z) and p(z). The continuity equation then provides an extra
equation, and given the dependence of the variables this can be integrated
to ensure conservation of mass of air moving upward. At any section of the
tube it must be true that

Q = 2π
∫ R(z)

a(z)
vz r dr , (5)

where Q is a constant equal to the flux of air past a particular height. On
the inner boundary of the outer tube, the velocity of air must be zero, and
on the outer boundary of the inner jet, the air is carried along by the liquid.
Thus the boundary conditions on the flow are

{

vz = 0 , r = R(z) ,
vz(r, z) = v(z) , r = a(z) ,

(6)

where v(z) is the upward velocity of the central jet. At this point we have
made no assumptions about the form of R(z), a(z) nor v(z).

The problem is to solve equations (4) and (5) with boundary condi-
tions (6). The drawback of this system is that it is not complete. We still do
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not know the pressure distribution and hence cannot compute dp/dz . Since
dp/dz is constant at a particular value of z, we rearrange (4) and solve for vz

as a function of r and dp/dz at any z. This gives

vz(r, z) = v
log(r/R)

log(a/R)
−

1

4µ

dp

dz

[

(R2 − r2) − (R2 − a2)
log(r/R)

log(a/R)

]

. (7)

Substituting this into equation (5) gives an expression for Q, the (con-
stant) flux as a function of dp/dz and tube radius R, namely

Q = h(R) +
dp

dz
k(R) , (8)

where h(R) =
πv

2

[

(R2 − a2)

log(R/a)
− 2a2

]

and k(R) = −
π

8µ

[

(R4 − a4) −
(R2 − a2)2

log(R/a)

]

.

Clearly, the flux Q will depend on the pressure difference between the two
ends of the tube. We will take the pressure at the top (in the upper chamber)
to be p(L) and that at the bottom (in the lower chamber) to be p(0), where
p(0) < p(L). This assumption will allow us to examine the flow in the tube
for different values of δp = p(L) − p(0).

We begin by considering the flow in a tube of constant radius under the
assumption that the liquid jet is a cylinder of constant radius in order to
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determine if there is an optimal tube radius. We then consider various other
cases and give the jet itself a more realistic shape. We obtain an optimality
condition empirically and then verify its correctness, and use it to find the
optimal tube shape given any assumed shape of the jet. Since we are unable
to compute the actual pressure in the top and bottom chambers using the
current model, we will compute the flow over a range of realistic flows and
compute the optimal design parameters as a function of the pressure drop
between the chambers.

4 Constant cross-sectional radii

If we assume that the tube and jet radii do not depend on z, that is the
equations of the tube wall and the jet boundary are r = R and r = a
respectively (R and a constants), then the flow itself is independent of z, and
hence dp/dz is a constant which we know is positive, that is, in this case

dp

dz
=

δp

L
(9)

where δp = p(L) − p(0). Similarly the jet velocity v(z) is a constant, v0.
Figure 3 shows two velocity profiles vz(r) for fixed values of the parameters,
but two different values of dp/dz. Importantly, for one case, the flow is
upward across the entire width of the tube, but in the other, having a stronger
adverse pressure gradient, a small back flow develops in the tube. Thus the
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Figure 3: Velocity profiles in the tube for two different pressure gradients

air near the outer edge of the tube is actually flowing downward into the
lower chamber.

We are interested to see if there is a particular radius R which will give a
maximum flux Q for a given value of dp/dz. The value of dp/dz is not known
exactly, but we can treat it simply as a parameter of the problem. Figure 4
is a plot of Q versus R for the following realistic values of the parameters:

a = .003 m , v0 = 1 m/s , δp = .0032 Pa/m ,

µ = 1.8 × 10−5 kg/m , L = .06 m . (10)
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Figure 4: Plot of flux Q versus tube radius R

Evidently Q reaches a maximal value when R = 0.021m approximately. In
general we can find such values by differentiating (8) with respect to R and
solving the result put equal to zero. This was done symbolically in Maple,
with all parameters left unevaluated, yielding

Rmax = a · exp

[

1

2
+

1

2
LambertW

(

4µv − dp
dz

a2

edp
dz

a2

)]

, (11)

where LambertW is the Lambert W-function (see [3]). Essentially LambertW
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Figure 5: Plot of optimal radius Rmax against pressure difference δp

is the unique, everywhere analytic, branch of the inverse function of f(x) =
xex + x . It is defined when its argument exceeds −e−1, which here requires
µv > 0 , which is certainly satisfied.

Of greatest interest is the variation of Rmax with respect to dp/dz. With
the parameter values other than δp as in (10), we obtain Figure 5.

See that Rmax increases without limit as δp → 0. On the other hand,
it drops away asymptotically to a small positive value as δp → ∞, and
from (11), the value approached is 0.003, the assumed radius of the inner jet.
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All of this is to be expected. As the adverse pressure gradient reduces, there
is a reduced likelihood of a back flow, and so the optimal radius increases
without limit since a wider tube will accommodate more flow. As dp/dz
increases, however, there is a greater backflow, and so a smaller radius is
necessary to reduce this negative influence on the flux, with the outer tube
approaching the inner jet as the pressure gradient becomes more adverse.

5 Varying cross-sectional radii

Given that there is an optimal constant radius for the tube if the jet is
assumed to be a cylinder of constant radius, a natural question is whether
there is an optimal shape, possibly involving a variable radius. Moreover,
the jet is not a simple cylinder as we have seen and actually spreads out
somewhat from its initial width. To begin to answer this we need to compare
different tube shapes having the same “average” radius, for a given jet shape
so that size and shape issues can be treated independently and an overall
optimum tube shape found. We do this by considering a number of different
parametrized families of tubes, in which one parameter is average radius and
the other is associated with the shape.

Rearranging (8) we obtain dp/dz on its own:

dp

dz
= f + Qg , (12)
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where f = 4µv

(

R2 − a2

log(R/a)
− 2a2

)[

(R4 − a4) −
(R2 − a2)2

log(R/a)

]

−1

,

and g = −
8µ

π

[

(R4 − a4) −
(R2 − a2)2

log(R/a)

]

−1

.

Both f and g are functions of z, since R, a and v are. Note that v is
itself a function of a: the jet velocity reduces as the jet widens in accordance
with the conservation of flux condition, so that v(z) = v0[a0/a(z)]2 from (1),
where we assume v0 = v(0) = 1.2m/s and a0 = a(0) = .003m.

Now, Q must be constant and therefore the pressure difference between
the ends of the tube, δp = p(L) − p(0), is given and hence fixed. Then
integrating both sides of (12) with respect to z from 0 to L and rearranging
gives

Q = (δp − F )/G , (13)

where

F =
∫ L

0
f(R(z), a(z), v(z)) dz , G =

∫ L

0
g(R(z), a(z), v(z)) dz .

In this way, given a(z) and hence v(z) via (1), as well as δp, we view Q
as a function of the cross-sectional shape given by R = R(z). Once R(z) is
chosen, Q is obtained by numerical integration using Matlab.
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6 Some families of tube shapes

Our approach at this point is to consider several families of parametrized
functions Rm(z) (m real). For each family, the m = 0 case represents straight
sides of constant radius R0, but for all values of m, the rule

∫ L
0 Rm(z)dz =

R0L is satisfied; we call such a parametrized family regular. Thus the total
area of a cross-section of the tube taken through the middle along the z-
direction is constant as the shape parameter m changes. The size of the tube
is governed by the value of R0, whereas its shape is determined by m, so that
we should think of each family as being parametrized by both m and R0.
Of course only a certain range of shapes can be represented by a single
parameter: hence the need to consider several families. We return to the
question of the jet shape a(z) shortly.

The classes of tube shape to be considered are as follows.

1. Straight sides, tapering from bottom to top (m > 0) or top to bottom
(m < 0), see Figure 6. Here we assume R(z) is a linear function of z:

R(z) = R0 − m(z − L/2) .

It is easy to see that this family is regular. Note that m is the slope of
the line R = R(z), which passes through the point (L/2, R0).

2. Parabolic convex sides, tapering from bottom to top (m > 0), and
parabolic concave sides, tapering from top to bottom (m < 0). Here we
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Case 4Case 2Case 1 Case 3

Figure 6: Sketch of tube trial shapes

assume Rm(z) = R0 −m(3z2 − L2)/L2. This form of Rm was forced by
the assumption that the family be regular. When m = 0 we obtain R =
R0 and for larger values of m, the function becomes progressively more
convex; similarly for negative values of m.

3. Parabolic convex sides, tapering from top to bottom (m > 0), and
parabolic concave sides, tapering from bottom to top (m < 0). This
time Rm(z) = R0 − m(3(L − z)2 − L2)/L2 .

4. Parabolic sides, symmetric, convex (m > 0) and concave (m < 0). Here
we have Rm(z) = R0 − m(12(z − L/2)2 − L2)/L2 .

We have not yet considered the shape of the inner jet. It turns out that a
Case 2 tube of the form am(z) = a0 − m(3z2/L2), with m = −.0005, gives a
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very good fit to the actual jet function a(z) as in Section 2, better even than
the three-term Taylor series expansion of a(z) about z = 0: see Figure 7. We
use this rather than the actual jet shape as in (3) since it is compared more
directly with the optimal outer tube shape we obtain, especially if this turns
out to be of Case 2 type as we might expect.

Because the Case 2 Rm(z) is a regular family, it follows that the am(z) fam-
ily is also, having average radius a0 − m; a value of m = −.0005 thus gives
an average jet radius of .0035m. For the purpose of calculations, we use the
conservation of flux condition (1) to obtain v(z), so effectively the Bernoulli
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equation (2) is violated (slightly). We use the values of the various parame-
ters as in (10), except that v0 = 1.2m/s now, giving an average velocity for
the jet shape as in (3) of around .9m/s.

For this approximation to a(z), we obtained 3-D plots of Q versus m
and R0 for each of the four cases just discussed: see Figure 8 for Case 2.
In the process we also found the optimal values of R0 and m for each. The
results are as follows:

Case 1: R0 = 2.22 cm, m = −.135, Q = 2.07 × 10−4 m3/s;

Case 2: R0 = 2.24 cm, m = −.0032, Q = 2.08 × 10−4 m3/s;

Case 3: R0 = 2.21 cm, m = .0022, Q = 2.05 × 10−4 m3/s;

Case 4: R0 = 2.15 cm, m = −.0005, Q = 1.98 × 10−4 m3/s.

These results were largely predictable: Case 2 is the closest to the jet shape,
at least for m < 0, followed by Case 1 with m < 0, and Case 3 with m > 0,
whereas no Case 4 tube is similar to the assumed jet shape.

Of more interest is that, of all cases tested, the optimal R(z) is such that
R(z)/a(z) is essentially constant: the optimal tube has

R(z) = .0224 + .0032

[

(

z

L

)2

− 1

]

= .0192 + .0032
(

z

L

)2

,
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whereas a(z) = .003 + .0005(z/L)2, so R(z)/a(z) = 7.47 . By considering
other values for the pressure difference between the ends of the tube, δp,
namely 1.6 × 10−3 Pa and δp = 6.4 × 10−3 Pa and repeating the above pro-
cess, the optimal R(z) again turned out to be a simple multiple of a(z),
although the constant of proportionality varied with δp. We even considered
other less realistic jet shapes and sizes based on our four cases, with v(z) still
determined by the conservation of flux condition (1) but not the Bernoulli
equation (2), and again the optimal R(z) came out to be a multiple of a(z),
although again the constant of proportionality varied with the choice of a(z)
even with δp fixed. For instance, if the jet was taken to be a cylinder of con-
stant cross-sectional radius as in Section 3, the optimal tube shape amongst
all four cases was a cylinder of constant radius equal to that given earlier. On
the other hand, using a(z) as in (3), the apparent optimal R(z) was shown
empirically not to come from any of Cases 1 to 4 but rather from one of the
multiples of a(z) itself.

This leads to an obvious conjecture: that in the optimal situation, R(z)
is always a simple multiple of a(z), if the conservation of flux condition is
assumed but Bernoulli’s equation is not, regardless of the assumed form of
a(z) or the choice of parameters such as δp, v0 and so forth. Note that this
conjectured condition does not correspond to equal areas of cross-section at
different heights.

We mention incidentally that the condition fails if we require instead
that the jet satisfy Bernoulli’s equation but not the conservation of flux

condition, so that v(z) =
√

v2
0 − 2gz from equation (2), independent of a(z).



7 The tube optimality condition E60

For instance, for a Case 1 jet shape of constant radius a0 = .003m, the
optimal Case 1 outer tube R(z) occurs when m = −.149 (and R = 2.17 cm)
rather than m = 0.

Using the jet function a(z) derived from Bernoulli’s equation as in (3),
rather than the best-fit polynomial matching the Case 2 tube shape, would
have made it very difficult to conjecture the optimality condition because the
direct relationship between the inner-jet shape and the tube shape would not
have been so clear.

7 The tube optimality condition

Motivated by this empirical evidence, we consider the proposed optimality
condition in detail. We begin by proving its validity, and then obtain a
general formula for the multiplying constant and hence for R(z), in terms of
the jet shape a(z) and the other parameters including δp.

We prove the optimality condition by first “discretizing” the problem.

Lemma 1 Let f(x) and g(x) be differentiable functions on some open inter-
val I, with f ′(x)/g′(x) one-to-one on I. Let

Q(x1, x2, . . . , xn) =

∑n
i=1 bif(xi) − δ
∑n

i=1 big(xi)
.
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Then the critical points of Q with coordinates in I are exactly points of the
form (x0, x0, . . . , x0), where x0 is a critical point of Q̄(x) = Q(x, x, . . . , x).

Suppose further that f and g are twice differentiable on I, that bi > 0
for all i and that (f ′′(x0)g

′(x0)− g′′(x0)f
′(x0))/g(x0)g

′(x0) < 0 at the critical
point (x0, x0, . . . , x0). Then the critical point is a maximum of Q.

Proof: Denote by Fi the partial derivative of F with respect to xi through-
out.

Let S =
∑n

i=1 bif(xi) and T =
∑n

i=1 big(xi). Then Sj = bjf
′(xj), Tj =

bjg
′(xj), and Q = (S − δ)/T . Hence

Qj =
TSj − Tj(S − δ)

T 2
=

Tbjf
′(xj) − bjg

′(xj)(S − δ)

T 2

and so

Qj = bj
f ′(xj) − Qg′(xj)

T
. (14)

This is zero when

f ′(xj)/g
′(xj) = Q(x1, x2, . . . , xn), (15)

so f ′(xi)/g
′(xi) = f ′(xj)/g

′(xj) for all i, j at any critical point having coor-
dinates in I. Because f ′/g′ is one-to-one, all xj are equal at such a critical
point.
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Note that Q̄(x) = (f(x)− δ/s)/g(x), where s =
∑n

i=1 bi. Hence the point
(x0, x0, . . . , x0) is critical if and only if

f ′(x0)/g
′(x0) = Q(x0, x0, . . . , x0) = Q̄(x0) =

f(x0) − δ/s

g(x0)
,

that is, f ′(x0)g(x0)−g′(x0)f(x0)+δg′(x0)/s = 0. This happens exactly when
Q̄′(x0) = 0 since Q̄′ = (f ′g − g′f + g′δ/s)/g2.

Differentiating (14) with respect to xj once more,

Qjj =
T [bjf

′′(xj) − bjg
′′(xj)Q − bjg

′(xj)Qj ] − Tj [bjf
′(xj) − bjg

′(xj)Q]

T 2

=
bj [f

′′(xj) − g′′(xj)Q − g′(xj)Qj]

T
−

bjQjg
′(xj)

T

which at the critical point (x0, x0, . . . , x0) is (using (15))

Qjj(x0, x0, . . . , x0) =
bj [f

′′(x0) − g′′(x0)Q̄(x0)]

sg(x0)

=
bj [f

′′(x0) − g′′(x0)f
′(x0)/g

′(x0)]

sg(x0)

=
bj [f

′′(x0)g
′(x0) − g′′(x0)f

′(x0)]

sg(x0)g′(x0)
.

Now bj , s > 0 so this is negative exactly when

f ′′(x0)g
′(x0) − g′′(x0)f

′(x0)

g(x0)g′(x0)
< 0 . (16)
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On the other hand, if i 6= j, then differentiating (14) with respect to xi

gives

Qji =
−Tbjg

′(xj)Qi − Ti[bjf
′(xj) − bjg

′(xj)Q]

T 2
,

which is zero at the critical point (x0, x0, . . . , x0) from (14). This means that
the quadratic form

F (x1, x2, . . . , xn) =
n
∑

i,j=1

Qijxixj =
n
∑

i=1

Qiix
2
i ,

and so the Hessian matrix of Q is negative definite at (x0, x0, . . . , x0), and
hence the critical point is a maximum, if (16) holds. ♠

Theorem 2 Suppose we are given the (continuous) jet shape a(z) and all
other parameters including δp. Assume the jet velocity varies according to
the conservation of flux condition (1). Then the optimal choice of R(z) is
unique and is R(z) = ka(z), where

k = exp

[

1

2
+

1

2
LambertW

(

4αµv0a
2
0 − δp

eδp

)]

,

and α =
∫ L
0 a(z)−4 dz.

Proof: Let k(z) = R(z)/a(z), defined on the interval [0, L] since a(z) > 0.
Now R(z) > a(z), so k(z) > 1 on [0, L]. The choice of R(z) that optimizes Q
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corresponds to a choice of k(z) defined on [0, L], and having image contained
in I = (1,∞).

Now from equations (1) and (13), we have that Q = (F−δp)/(−G), where
F =

∫ L
0 b(z)c(k(z)) dz and −G =

∫ L
0 b(z)d(k(z)) dz, with b(z) = a(z)−4,

c(k) =
4µv0a

2
0[2 log(k) − (k2 − 1)]

(k2 − 1)2 − (k4 − 1) log k
(17)

and d(k) =
8µ

π

[

(k4 − 1) −
(k2 − 1)2

log k

]

. (18)

We shall think of all parameters as fixed and view Q as a function of k(z).
If we restrict to constant k(z), we call the resulting function of a real vari-
able Q̄(k). Thus

Q̄(k) =
c(k) − δp/α

d(k)
, (19)

where α =
∫ L
0 a(z)−4 dz.

Now let P be a partition 0 = z0 < z1 < z2 < · · · < zn = L of [0, L] and
let

QP (x1, x2, . . . , xn) =

∑n
i=1 bic(xi) − δp
∑n

i=1 bid(xi)

where xi > 1, and bi = b(zi)(zi − zi−1) so that the two sums are in fact
Riemann sums converging to the corresponding integrals F and −G in Q
as the fineness of P tends to zero. Let f(P ) denote the fineness of the
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partition P , so that f(P ) = max{|zi − zi−1| : i = 1, 2, . . . , n}. Thus for any
choice of k(z),

QP (k(z1), k(z2), . . . , k(zn)) → Q(k(z)) as f(P ) → 0 . (20)

Analogous to Q̄, we define Q̄P (k) = QP (k, k, . . . , k) for k > 1 . Note that

Q̄P (k) =

∑n
i=1 bic(k) − δp
∑n

i=1 bid(k)
,

so letting sP =
∑n

i=1 bi,

Q̄P (k) =
c(k) − δp/sP

d(k)
. (21)

Then from (20), for any constant k,

Q̄P (k) → Q̄(k) as f(P ) → 0 . (22)

Note that (21) is (19) with α replaced by sP . Then using Maple to differen-
tiate F (k) = [c(k) − δp/β]/d(k) with respect to k and solving the result set
equal to zero gives

k = exp

[

1

2
+

1

2
LambertW

(

4βµv0a
2
0 − δp

eδp

)]

, (23)

the unique critical point of F . This is real providing

4βµv0a
2
0 − δp

eδp
> −

1

e
,
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Figure 9: Plot of h = c′/d′

that is, 4βµv0a
2
0 > 0, and β = α or sP is positive so this is satisfied.

Now c′(x)/d′(x) is strictly increasing on I = (1,∞) as seen in the Matlab
plot Figure 9 (and this is easily provable in any case) and so is one-to-one.
From the lemma, a critical point of QP with all coordinates in I must have
the form (x0, x0, . . . , x0) and corresponds exactly to a critical point x0 of Q̄P .
Hence the unique critical point has x0 = k as given by (23).

Now c and d are twice differentiable on I and bi > 0 for all i. Letting
h = (c′′d′ − d′′c′)(d/d′), we see that h = (c′/d′)′(d′/d). From Figure 9,
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Figure 10: Plot of d(k) versus k

(c′/d′)′ > 0 on I, but also d > 0 and strictly decreasing on I, as can be seen
from the Matlab plot Figure 10, so d′/d < 0; hence h < 0 on I. Thus the
critical point is a maximum of QP from the lemma; call it (KP , KP , . . . , KP ).
Hence KP is also a maximum of Q̄P .

Similarly there is a unique critical point K for Q̄, and it will be a maxi-
mum because KP is a maximum of Q̄P and because of the similarity between
(19) and (21). It remains to show that k(z) = K is optimal for Q.
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Because k in (23) is evidently a continuous function of β, we have

KP → K as f(P ) → 0 , (24)

Suppose there exists a choice of k(z) on [0, L] which is non-constant, and
gives a value of Q greater than K: thus

Q(k(z)) − Q̄(K) = β > 0 . (25)

Now choose a partition P of [0, L] which is such that k is not constant on
the zi, and is sufficiently fine that

|QP (k1, k2, . . . , kn) − Q(k(z))| <
β

4
, (26)

|Q̄P (KP ) − Q̄P (K)| <
β

4
(27)

and

|Q̄P (K) − Q̄(K)| <
β

4
. (28)

Taken separately, the first of these is possible by (20), the second by (24) and
the continuity of Q̄P on I with respect to k, and the third by (22); to ensure
all three hold at once for P , it is necessary that f(P ) be no bigger than the
minimum of the three f(P )’s needed to guarantee each separately. Then

QP (k1, k2, . . . , kn) − QP (KP , KP , . . . , KP )

= QP (k1, k2, . . . , kn) − Q̄P (KP )



8 Optimizing the outer tube for various pressure differences E69

>

[

Q(k(z)) −
β

4

]

−

[

Q̄P (K) +
β

4

]

by (26) and (27)

= Q(k(z)) −
β

2
− Q̄P (K)

> Q(k(z)) −
β

2
−

[

Q̄(K) +
β

4

]

by (28)

= Q(k(z)) − Q̄(K) −
3β

4
by (25)

=
β

4
,

contradicting the optimality of (KP , KP , . . . , KP ) for Qp. Hence there is no
non-constant k(z) giving a higher value of Q than K. Certainly there is
no constant value since K was the largest constant value, so K is in fact
the optimal choice of k(z) to optimize Q, and so there is indeed exactly one
optimal tube, R(z) = ka(z), with k as in the theorem statement. ♠

8 Optimizing the outer tube for various pres-

sure differences

The job of finding the optimal tube given a(z) was completed by the previous
section: if R(z) = ka(z) (k some constant), then (23) gives k as a function
of α, δp and the other parameters. Note that the value of k is not directly
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Figure 11: Optimal multiplying constant k versus δp for actual jet

dependent on a(z) but rather on α, the integral of a(z)−4 over [0, L]. (Of
course, the optimal R(z) is dependent on a(z).) Also note that the expression
for k in (23) has a very similar form to (11), obtained in the seemingly very
special case in which the inner jet was assumed to be a cylinder. In fact
(11) is obtained from (23) by replacing α by L/a4

0 and p by Ldp/dz.

With the usual values for the parameters and the actual jet shape

a(z) =

(

v0a
2
0

(v2
0 − 2gz)1/2

)1/2

as in (3), it turns out that α = 4.38 × 108 m−3 from Matlab. (This value
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Figure 12: Flux versus pressure difference δp for actual jet

was used for all Matlab plots in the theorem proof.) A plot of k against δp
for this case (or indeed any other inner jet a(z) for which α has this value)
appears in Figure 11. Note the similarity to Figure 5 in Section 4 which it
generalises.

As in Section 4, k increases without limit as δp → 0 , but drops away to
some constant value as δp → ∞. From (23), the value approached is

exp
[

1

2
+

1

2
LambertW

(

−
1

e

)]

= 1 ,

consistent with the findings of the fourth section.
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Figure 13: Optimal tube size and shape for actual jet

A plot of optimal Q against δp is given in Figure 12.

For the case in which δp = 3.2 × 10−3 Pa, the optimum flow occurs
when k = 6.28, with Q = 2.01 × 10−4 m3/s, consistent with earlier findings.
This optimal arrangement is depicted in Figure 13.

It is important to note that for a tube with given average radius, the
optimal shape is not necessarily just a multiple of the jet shape. It is only at
the global maximum of flux that this is true. Figure 8 shows the effects of
both m and R0 on the flux, and it is clear that the maximum is not correlated
directly to either of these two parameters, but rather to some combination.
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9 Conclusions

We have shown that the optimal shape of the inner tube is defined by a
function that is a constant multiple of the function defining the jet shape.
Moreover, this constant can be explicitly given as a function of the pressure
difference across the tube δp, two constants associated with the jet shape a(z)
(namely a0 = a(0) and α =

∫ L
0 a−4 dz), and the initial jet velocity, v0. How-

ever, it is not true that the optimal shape for a tube of some given average
radius is simply the shape of the central jet, it is only true at a particular
radius. Fortunately, Figure 8 shows that the flux is not particularly sensi-
tive to small variations in the parameters of the tube close to the optimal
value, and so we would expect that a shape close to optimal would still be
reasonably efficient in the delivery of the aerosol.

Note that no consideration has been made of the effect that the tube shape
or radius has on the pressure in the upper and lower chambers. However,
it would seem likely that the pressure differential would increase as the flux
increases, slightly off-setting the benefits of the optimal tube. This is a more
difficult problem due to the presence of the aerosol mist and may change the
results slightly, although it is unlikely that the general finding will change.
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