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Free-surface pressure distributions with

minimum wave resistance
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Abstract

The wave resistance of distributions of excess pressure over a rect-
angular region on the surface of a steady stream is minimised by choice
of spatial variation in pressure. Both unconstrained and constrained
(non-negative) pressures are studied. Results with impressive resis-
tance reductions are provided, both via discretisation to a large num-
ber of step pressures, and via optimisation within a low-order contin-
uous family.
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1 Introduction

Hovercraft [13, 6] travelling over water are supported by fans whose main
role is to exert a downward pressure on the water surface. If we ignore the
detail of the actual air flow, a given hovercraft may be considered to be
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specified by a prescribed excess pressure on the water relative to the ambient
atmospheric pressure. This excess pressure need not be (and in general is
not) uniform over the planform of the hovercraft, and the question posed here
relates to choices of spatial pressure variations that minimise wavemaking
when the hovercraft moves steadily forward on a calm sea. There are other
potential applications of travelling pressure distributions, e.g. to travelling
meteorological disturbances, or even to conventional surface vessels, where
the pressure distribution models the hydrodynamic forces on the vessel’s hull.

We actually seek to minimise the wave resistance, which is a measure of
the total energy in the wave pattern behind the travelling disturbance, and
we do so subject to a fixed total vertical force exerted by the fans, which in
the hovercraft application must balance its weight. The wave resistance is
a quadratic functional of the pressure distribution, so that this optimisation
problem is in principle a straightforward exercise in the calculus of varia-
tions [2], and leads to a linear integral equation to determine the optimum
pressure. We use a step-function discretisation to convert the continuous op-
timisation problem to a quadratic algebraic optimisation problem, which in
the absence of constraints requires only solution of linear algebraic equations.

However, in general the solution of this problem requires pressures that
can take some negative values, and this may not be acceptable in the appli-
cation context. Hence it is also necessary to consider a constrained problem
where the pressures are required to be non-negative. The discretised problem
is then a standard quadratic programming [10] problem, and again solutions
can be found easily.
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Results are given for rectangular disturbance regions, for a range of
speeds. The fundamental character of the discretised optimal solutions, both
unconstrained and constrained, varies dramatically but smoothly with speed.
We also conjecture properties of some near-optimal continuous solutions.

Theoretical and computational attempts have been made to reduce or
eliminate the waves made by ships and other travelling free-surface distur-
bances for as long as there have been theories, and for example the many
papers of Havelock [7] include such studies. For a review including some-
what more recent studies on minimisation of ship wave resistance, see We-
hausen [15, p. 205]. For travelling pressure disturbances, important early
works on minimisation of wave resistance include those of Bessho [1] and
Maruo [8], and more recently Doctors [4] (see also Doctors and Day [5])
has optimised unconstrained families of pressures, involving up to 4 distinct
“subcushion” parameters. The present work can be considered a constrained
extension of [4] to many (e.g. 100) parameters, with indications of conver-
gence toward a continuous optimum.

2 The wave resistance integral

The wave resistance or drag RW of a pressure distribution p(x, y) acting on a
region S of the (x, y) plane while moving forward with speed U is [16, p. 598]

RW =
κ2

2πρU2

∫ π/2

−π/2

sec5 θ|Ω(θ)|2dθ , (1)
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where
Ω(θ) =

∫ ∫

S
p(x, y)eiκx sec θ+iκy sec2 θ sin θ dx dy . (2)

Here ρ is the water density, g the acceleration of gravity, and κ = g/U2.
The water depth has been taken to be infinite, and the water is inviscid
and incompressible. The pressure p(x, y) has been assumed small enough
to generate only small disturbances to a free surface that is initially plane.
The quantity Ω(θ) is proportional to the amplitude of the component of the
wave pattern made by the moving pressure that is propagating at a direction
making an angle θ to the direction of forward motion, and the wave resistance
is a measure of the total energy in this wave pattern.

An equivalent formula is

RW =
κ2

4ρU2

∫ ∫

S
dx dy p(x, y)

∫ ∫

S
dξ dη p(ξ, η) W (κ(x − ξ), κ(y − η)) (3)

where

W (X, Y ) =
2

π

∫ π/2

−π/2

sec5 θ cos(X sec θ) cos(Y sec2 θ sin θ) dθ . (4)

Equation (3) thus defines RW to be a positive definite quadratic functional
in p(x, y), with a symmetric kernel function W (X, Y ).

The net lift force exerted by this pressure distribution is

L =
∫ ∫

S
dx dy p(x, y) (5)
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and we are interested in minimising the drag RW within families of pressure
distributions p(x, y) having fixed values of the lift L. In the absence of
further constraints, this optimisation can proceed directly as in the calculus
of variations [2], which shows that the optimal pressure is proportional to a
solution of the first-kind integral equation

∫ ∫

S
dξ dη p(ξ, η) W (κ(x − ξ), κ(y − η)) = 1 (6)

However, we proceed indirectly, by first discretising the drag formula.

3 Constant-pressure patches

Consider a region S of the (x, y) plane that is subdivided into N patches Sj ,
j = 1, 2, . . . , N , on each of which the pressure is assumed to be constant,
namely p = pj. Then (3) states that

ρU2κ2RW =
N

∑

j=1

N
∑

k=1

Ajkpjpk (7)

where

Ajk =
1

4
κ4

∫ ∫

Sj

dx dy
∫ ∫

Sk

dξ dη W (κ(x − ξ), κ(y − η)) (8)
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The drag has now become an algebraic quadratic form in the N -vector {pj},
with symmetric matrix Ajk. Similarly the lift force is then

L =
N

∑

j=1

pjsj (9)

where sj is the area of the jth patch.

The (unconstrained) problem of drag minimisation within a family of
pressures with equal lift L has thus reduced to a quadratic algebraic op-
timisation problem, and hence pj is proportional to solutions of the linear
equations

N
∑

k=1

Ajkpk = sj . (10)

4 Rectangular patches

The above applies for individual patches of any shape and location. Sup-
pose now for simplicity that the patches are all rectangles, and that the
jth patch Sj has centre (x̄j , ȳj), x-wise length 2aj, and y-wise breadth 2bj .
Then it follows directly from (8) and (4), or (somewhat more easily) indirectly
from (1) and (2), that

Ajk =
16

π

∫ π/2

0

cos θ

sin2 θ
sin αj sin αk sin βj sin βk cos(ᾱj − ᾱk) cos(β̄j − β̄k) dθ

(11)
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where

αj = κaj sec θ , βj = κbj sec2 θ sin θ ,

ᾱj = κx̄j sec θ and β̄j = κȳj sec2 θ sin θ . (12)

The non-dimensional matrix coefficients Ajk can be evaluated by direct nu-
merical quadrature, e.g. using Simpson’s rule. The integrand in (11) oscillates
rapidly as θ → π/2, and many integrand evaluations are required, at least
50,000 for 3-figure accuracy.

For N = 1 (i.e. a single rectangular constant-pressure patch) equation (7)
reduces to ρU2κ2RW = A11p

2
1. In the general case of a region with area S,

we define a mean pressure p0 = L/S, and a drag coefficient

CD =
ρg

2bp2
0

RW . (13)

Then for a single rectangular patch for which p0 = p1, we have 2κbCD = A11.
This formula and computations from it agree with Newman and Poole [9]
and Doctors and Sharma [3]. More generally 2κbCD can be identified with
the series on the right of (7) providing the pressures pj have been normalised
by dividing by their mean p0, which we assume to be the case.

5 Unconstrained optima

The linear algebraic equations (10) can be solved by any convenient code.
This can be done for any region S inside which N rectangular patches can
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be placed. These patches need not fill S, nor need they form a uniform grid.

Nevertheless, it is convenient as our example region in the present paper
to take S to be itself a rectangle of length 2a and width 2b, with a uniform
rectangular grid which in the first instance is assumed to fill S completely. A
typical 20× 20 grid used in our computations has N = 400, with all patches
having aj = a/20, bj = b/20, and uniformly spaced centres. However, as it
can be shown that the optimum pressure distribution possesses both x-wise
and y-wise symmetry, the number of distinct unknowns pj can be reduced to
the 100 in each quadrant of the rectangle.

We have for the present purpose standardised on b/a = 0.5, which is
typical of a hovercraft, and have particularly emphasised the case κa = 1
corresponding to a length-based Froude number of F = U/

√
2ag ≈ 0.71 .

At this Froude number, a single constant-pressure patch has near-maximum
drag, namely CD = 2.265 . On the other hand, our optimised pressure dis-
tribution with 400 patches has CD = 0.259 at F = 0.71, a 9-times reduction!

Although on the face of it, this very low drag is a very promising improve-
ment relative to uniform pressure, the actual pressure distribution shown in
Figure 3 tells a somewhat less satisfactory story. The price paid for substan-
tial drag reduction is wild swings between very large positive and negative
pressures. This pressure distribution is quite unrealistic, and is unlikely to
be achievable in practice for hovercraft, or in other potential applications.
Similar conclusions were arrived at by Doctors and Day [5].

Nevertheless, these results are correctly optimal and exact (within the
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3-figure accuracy of our computations) for the assumed stepwise-constant
pressure distribution. Some distributions with much lower N , while not so
impressive in drag reduction, would be feasible in applications if variations of
pressure consisting of a small number of steps were allowed. For example, the
results for a uniform 4×4 grid prescribe 4 distinct positive pressures (namely
pj = 0.047, 0.390, 1.510, 2.053), and yield CD = 1.633. The general feature
of these low-N results (at least for b/a = 0.5 and κa = 1) is for the pressures
to be high near each end and low in the middle. Doctors and Day [5] have
also studied some low-order step-like pressure distributions, and have noted
that at some speeds negative pressures are a feature of the optima even when
there are only a small number of steps.

As we increase N , some of the more-central pressures take negative values,
which can be considered infeasible, or at least undesirable in applications. An
obvious expedient then is to eliminate some patches that potentially could
yield negative pressures, so less-than-completely filling the bounding rectan-
gular region with patches of positive pressure. Although some satisfactory
trial-and-error results were obtained this way, a systematic quadratic pro-
gramming approach is preferred.

Figures 1–5 also show the pressure distributions producing minimum drag
at some other Froude numbers, i.e. other values of κa, and indicate that the
qualitative features of the optimal pressure distribution vary systematically
with Froude number, or effectively with speed.

At low speeds, the main characteristic of the pressure distribution is the
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Figure 1: Unconstrained optimal step-function pressure distributions for 20×20
grid, at b/a = 0.5 and F = 0.40 .

existence of a strip of positive pressure that runs down the centreline of the
vessel, and is bounded on either side by thin longitudinal strips of negative
pressure. For F = 0.4 (Figure 1), the positive pressure tends to be concen-
trated near the centre of the vessel, and is of scaled magnitude about p = +19.

As the Froude number is increased to about F = 0.47 (Figure 2), the
positive pressure strip running down the centreline increases in length and
the maximum pressure increases to p = +24. The two negative strips become
shorter in length and of greater magnitude, with minima p = −19.

As F is increased further to F = 0.71 (Figure 3), the central positive pres-
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Figure 2: Unconstrained optimal step-function pressure distributions for 20×20
grid, at b/a = 0.5 and F = 0.47 .

Figure 3: Unconstrained optimal step-function pressure distributions for 20×20
grid, at b/a = 0.5 and F = 0.71 .
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sure strip breaks up into two separate sharp positive pressure peaks located
at about 20% of the length from the ends of the vessel, and separated by a
region of relatively small-magnitude negative pressure. The maximum pres-
sure of the positive peaks is now extremely high at about p = +49. At the
same time, the negative pressure strips near the sides of the vessel lengthen
again, and their minimum pressure decreases further to about p = −28. This
is the case κa = 1 discussed above.

Between F = 0.71 and F = 1.0, the region of negative pressure at the
centre of the vessel deepens and becomes more significant, while the nega-
tive strips at the sides of the vessel become shorter and less significant. At
about F = 0.75 the negative-pressure region forms an “I” shape, and at
higher F the side strips disappear altogether. The two regions of large pos-
itive pressure remain situated at about 20% of the length from the ends of
the vessel, each occupying quite a small area. At F = 1 (Figure 4), the max-
imum pressure is about p = +48, while the minimum pressure has dropped
to p = −50 and is located at the centre of the vessel.

Beyond F = 1, the two positive-pressure regions move closer to the ends of
the vessel, until they become concentrated essentially in two transverse strips
at bow and stern. The pressure in these strips varies roughly parabolically
across the full width of the rectangle, reaching a maximum at the centreline
of about p = +28 at F = 1.5 (Figure 5). At the same time, the region of
negative pressure increases in extent, occupying most of the central portion
of the vessel. As the region of negative pressure increases in size, its absolute
magnitude decreases, the minimum pressure reaching p = −8 at F = 1.5.
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Figure 4: Unconstrained optimal step-function pressure distributions for 20×20
grid, at b/a = 0.5 and F = 1.00 .

Figure 5: Unconstrained optimal step-function pressure distributions for 20×20
grid, at b/a = 0.5 and F = 1.50 .
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A plot versus Froude number of the lowest wave resistance coefficient CD

that is achievable on this 20×20 grid is given as the dotted curve in Figure 11.

6 Constrained optima

Since negative pressures can be considered infeasible in applications of the
present optimisation, we must add the non-negativity constraint p(x, y) ≥ 0
to the continuous optimisation problem, or

pj ≥ 0 (14)

to the discretised version.

The problem of minimising the algebraic quadratic form (7) subject to
the equality constraint (9) and the inequality constraint (14) is a standard
one in quadratic programming [10], and there are efficient algorithms for its
solution. In effect these algorithms systematically decide which patches to
eliminate from the optimisation process by setting their pressure to zero.

Figures 6–10 show the resulting optimal non-negative pressure distribu-
tion on the 20 × 20 grid for b/a = 0.5, at five selected speeds. For example,
at κa = 1 or F ≈ 0.71 (Figure 8), the drag is now CD = 0.999 . Although
this is nowhere near as low as was achieved without constraints, it is still
an impressive (better than half) reduction relative to the constant-pressure
baseline CD = 2.265.
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Figure 6: Constrained (non-negative) optimal step-function pressure distribu-
tions for 20 × 20 grid, at b/a = 0.5 and F = 0.40 .

Figure 7: Constrained (non-negative) optimal step-function pressure distribu-
tions for 20 × 20 grid, at b/a = 0.5 and F = 0.47 .
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Figure 8: Constrained (non-negative) optimal step-function pressure distribu-
tions for 20 × 20 grid, at b/a = 0.5 and F = 0.71 .

Figure 9: Constrained (non-negative) optimal step-function pressure distribu-
tions for 20 × 20 grid, at b/a = 0.5 and F = 1.00 .



6 Constrained optima E92

Figure 10: Constrained (non-negative) optimal step-function pressure distribu-
tions for 20 × 20 grid, at b/a = 0.5 and F = 1.50 .

As with the unconstrained pressure case, there is a smooth variation in
the optimal pressure distribution as the speed is varied. The most noticeable
feature of the optimal pressures at all of the speeds shown in Figures 6–10 is
dominant peaks at the bow and stern. At low speeds there is also a significant
central peak. The actual magnitudes of the positive maxima are much less
than those for equivalent unconstrained optima, as is to be expected, and
this is another benefit of the constraint. Although there are other complex
features to the distribution, these involve only very small pressures relative to
these main three peaks, a characteristic that we shall exploit in the following
section.

A plot versus Froude number of the wave resistance coefficient CD for
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these optimal constrained pressures is given as the dashed curve in Figure 11.
Although this is indeed the best result that can be achieved with non-negative
pressure on a 20×20 grid of constant-pressure elements, it is not quite as low
as can be achieved with some continuous non-negative pressure distributions,
as we shall see below.

7 Near-optimal continuous pressures

The structure of the constrained discretised results obtained above suggests
an attempt to minimise wave resistance within a family of continuous pressure
distributions involving three separate positive pressure patches, one at each
end and one in the centre of the rectangle. The end pressures should extend
across the whole width of the rectangle, and decay toward zero as we approach
the sides of the rectangle, but the central pressures need not extend to the
whole width of the rectangle. At most speeds, a parabolic smooth y-variation
was found by experimentation to perform well, whereas little benefit was
found from use of anything other than uniform x-wise pressure within each
separate patch.

Hence we consider the following pressure family.

p(x, y) =















p1

[

1 − (y/(σb))2
]

, |x| < ε1a , |y| < σb ,

p2

[

1 − (y/b)2
]

, (1 − ε2)a < |x| < a ,

0 otherwise,

(15)
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where p1 and p2 are positive constants chosen so that the mean pressure
over the whole rectangle is normalised to unity as usual. Thus only the
ratio p1/p2 is significant, and we choose to measure this in terms of the
fraction φ of the total lift that is borne by the central patch. This family
thus has 4 independent parameters φ, σ, ε1 and ε2. The central patch has
dimensions 2ε1a by 2σb, i.e. ε1 measures its longitudinal and σ its lateral
fractional extent. The parameter ε2 measures the longitudinal fractional
extent of the two end patches, which each have dimensions ε2a by 2b.

We now write down from (1) and (2) the wave resistance RW for this
family, and minimise it with respect to these 4 parameters. In fact, for all
speeds of interest here, our conclusion is that ε2 = 0 is best, so the optimum
longitudinal extent of the end patches is zero, even though they bear finite
load! That is, the best end patches are of large aspect ratio, with large
pressures to compensate for their small chord, and may be called “pressure
lines” by analogy with lifting lines in aerodynamics.

Meanwhile, the relative importance and dimensions of the central patch
change with speed in a systematic smooth manner. There are essentially
three speed ranges at b/a = 0.5.

For F > 0.95, there should be no central patch at all, i.e. we find φ = 0 .
(Actually φ < 0 would perform even better at some speeds in this range,
but this would violate the non-negativity constraint.) The optimal pressure
distribution (within the present family) is thus simply two pressure lines
in tandem, located at bow and stern. The optimal design then has some
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similarity with a vessel supported by forward and aft hydrofoils, each of
large aspect ratio.

For 0.65 < F < 0.95, there should also be a central pressure line, i.e. we
find φ > 0 but ε1 = 0. The values of φ and σ vary with speed in this range,
which includes the speed with maximum wave resistance.

Finally, for 0.40 < F < 0.65, the optimal central patch has ε1 > 0, i.e. is
of finite aspect ratio. At the low end of this range, the central patch has
become dominant, with φ ≈ 1, and extends across the whole width, with
σ = 1. If F < 0.40, so long as p → 0 at the sides of the rectangle, the
wave resistance is so small that further reduction in its magnitude is of little
consequence.

Figure 11 displays our final results as a function of Froude number, for
b/a = 0.5. At each speed, the lowest achievable wave resistance coefficient CD

within this family is plotted in graph (a), and the character of the optimal
pressure distribution indicated via plots of σ in graph (b) and φ in graph (c).
Over a large speed range, this “optimum” has less than half of the corre-
sponding wave resistance [9] for a constant-pressure patch. Even lower wave
resistances are possible within extended families, but we believe that the
present family already does very well. For example, the optimum discretised
wave resistance for the rectangular 20×20 grid (shown as the dashed curve in
Figure 11) is at all speeds a little higher than that shown in the solid curve.

An example suggesting even lower wave resistance is that at very high
speeds, an elliptic variation in pressure with respect to y is guaranteed to
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Figure 11:
(a) Drag coef-
ficient CD versus
Froude number
at b/a = 0.5 for
near-optimum
continuous fam-
ily (solid curve).
(b) Lateral frac-
tional extent σ
of centre patch.
(c) Fraction φ of
total load borne
by centre patch.
Plot (a) also shows
minimised drag for
a 20 × 20 discreti-
sation, constrained
(dashed curve)
and unconstrained
(dotted curve).
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be optimal. This is because in this limit, the wave resistance is given by
a formula identical to that for the induced drag of a lifting surface, and
the well-known Munk optimal elliptic-loading result of aerodynamics (see
Thwaites [12, p. 303]) applies. In fact, we find that elliptic loading is only
preferable to parabolic loading for F > 1.35, and then only by at most
about 10%. There is no theoretical reason why parabolic loading should be
optimal at any speed, but it does seem to perform better than some other
y-variations tried, at least in the range 0.40 < F < 1.35 .

8 Conclusion

Near-optimum positive pressure distributions on a rectangular region with
aspect ratio 0.5 are well behaved and vary smoothly with respect to speed,
while reducing the wave resistance to less than about a half of that for a
uniform pressure patch. Allowing negative pressures would permit even lower
wave resistance (as indicated by the dotted curve in Figure 11), but with
a number of disadvantages, not only that of the infeasibility of negative
pressures in applications. There is a tendency for the unconstrained optimum
pressures to be large and rapidly varying spatially and with respect to speed,
a tendency that is reduced by the non-negativity constraint.

In the present paper we have approached the optimum in two ways, first
by a systematic but still somewhat coarse 100-unknown step-function dis-
cretisation, and secondly by optimising within a special family of continuous



8 Conclusion E98

pressure distributions. We have confidence that the true constrained opti-
mum is close to what each of these methods suggests.

Some results have also been obtained at other aspect ratios b/a. An im-
portant feature of the constrained optimisation in the speed range studied
here is that the optimum positive pressures extend to the corners of the rect-
angle, i.e. that the hovercraft “tries” to be as long and as wide as it can.
We would therefore expect that (with the length held fixed) wider rectangles
would permit lower wave resistance. This is a “high” Froude number conclu-
sion, since it corresponds to the usual aerodynamic preference for wings of
high aspect ratio, and appears to hold over the whole Froude number range
F > 0.4 of interest here. We expect however that in a more ship-like range
with lower Froude numbers and lower b/a values, this trend must reverse and
confirm the usual naval architectural preference for slenderness.

The present paper has emphasised just one output from the hydrody-
namics, namely the wave resistance. Another important output is the actual
free-surface deformation produced by the pressure distribution, both in the
far field where it generates the wave resistance and is potentially environmen-
tally harmful, and in the near field close to or under the pressure patch. The
former is considerably easier to compute, and Doctors and Day [5] have com-
puted far-field waves for their low-order optimum pressures. On the other
hand, the latter is of particular importance in the inverse or design problem
for planing vessels, where the pressure distribution is that created by a given
moving hull of small draft. In a separate study [11] (see also [14]), we have
developed efficient numerical methods for generating this free-surface output,
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both in the near and far field.
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