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Abstract

The Control Parametrization Enhancing Technique (cpet), is ex-
tended to a general class of constrained time-delayed optimal control
problems. A model transformation approach is used to convert the
time-delayed problem to an optimal control problem involving mixed
boundary conditions, but without time-delayed arguments. The cpet

is then used to solve this non delayed problem. Two test examples
have been solved to illustrate the efficiencies of the cpet for time
delayed problems.

Contents

1 Introduction E156

2 The Time-Delayed Optimal Control Problem Class E158

3 Model Transformation E161

4 The Classical Control Parametrization E164

5 Control Parametrization Enhancing Transformation E166

6 Convergence Result E169

7 Numerical Examples E170



1 Introduction E156

8 Conclusions E181

References E184

1 Introduction

A detailed exposition for the control parametrization technique as a basis for
solving various constrained optimal control problems numerically in a uni-
fied fashion is found in [6]. The classical control parametrization method is
a flexible and efficient approach for a large class of optimal control problems.
The central idea of the method relies on a simple and elegant approximation
mechanism. The time horizon is partitioned into several subintervals and the
controls are approximated by piecewise constant (or piecewise linear continu-
ous) functions consistent with the partition. The switching times defined by
the partition are referred to as knots, in line with the classification of these
approximations as order zero (and one) splines. The heights of the piecewise
constant (or linear) functions are now decision variables to be optimized.
Control parametrization can thus be used to approximate an optimal control
problem by a finite dimensional optimal parameter selection problem.

In [3, 4, 7], a transformation, to be referred to as the Control Parametriza-
tion Enhancing Transform (cpet), was introduced to enhance the classical
control parametrization technique. This transform involves the introduction
of an additional piecewise constant control function. Using the cpet, the
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switching times are mapped on to an equally spaced set of knots in a new
time scale. Hence, the transformed problem can be solved readily and accu-
rately by the usual control parametrization technique. Usually cpet is far
superior to the classical control parametrization technique, see [3, 4, 7], and
is particularly so for time optimal control problems.

In this paper, the same class of time-delayed optimal control problems
as in [2] is considered. A model transformation method similar to that used
by Wong [8] is used to convert the time-delayed problem to an optimal con-
trol problem involving mixed boundary conditions, but without time-delayed
arguments. In this form, the problem can easily be solved using the cpet.

Since the cpet can give rise to a larger dimensional search space than
the classical control parametrization method, cpet can produce a better
or at least equal sub-optimal cost. Hence all the convergence results which
have been proved in [2] for the classical control parametrization method also
remain valid for the cpet, when parametrizations are chosen so that the
larger dimensional space contains the lower dimensional space.

Two time-delayed optimal control problems are solved by both the clas-
sical control parametrization method and the cpet. The results illustrate
that the cpet is superior to the classical control parametrization method.
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2 The Time-Delayed Optimal Control Prob-

lem Class

Consider a process described by the following set of differential equations
defined on (0, T ] ;

ẋ(t) = f
(

t, x(t), u(t), x(t − h), u(t − h), z
)

(1a)

where h is a positive constant, with the initial conditions and preconditions
given by

x(0) = x0(z) , (1b)

x(t) = ϕ(t) , t ∈ [−h, 0) , (1c)

u(t) = γ(t) , t ∈ [−h, 0) , (1d)

where x(t) ∈ Rn , u(t) ∈ Rr and z ∈ Rm are respectively the state, the
control and system parameter vectors. The vectors f = [f1, . . . , fn]

�

∈ Rn ,
x0 = [x0

1, . . . , x
0
n]

�

∈ Rn , ϕ = [ϕ1, . . . , ϕn]
�

∈ Rn , and γ = [γ1, . . . , γr]
�

∈
Rr are continuously differentiable with respect to their respective arguments.
Because the software system for computing the final optimal control prob-
lem will be MISER3 [1, 6] two types of constraints on controls and system
parameters are allowable as separate classes of constraints. They are, firstly,
system parameter only constraints,

Hi(z) = 0 , k = 1, . . . , N1 , (2)

Hi(z) ≥ 0 , k = N1 + 1, . . . , N2 , (3)
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and all-time linear control only constraints, the latter not used in this paper.
All controls and system parameters are subject to upper and lower bounds
as follows

uL ≤ u(t) ≤ uU , for all t ∈ [0, T ] , (4)

zL ≤ z ≤ zU . (5)

A measurable function u : [−h, T ] → Rr is called an admissible control if
the constraints (4) are satisfied. Let U be the class of all such admissible
controls. Similarly, z ∈ Rm is called an admissible system parameter vector
if the constraints (2–3) and (5) are satisfied. Let Z denote the set of all such
admissible system parameter vectors. A pair (u, z) ∈ U ×Z is referred to as
an admissible pair. For an admissible pair, let x(·) denote the corresponding
solution of the system (1a–1d).

Constraints involving the state variables or constraints that are nonlinear
in control functions are described in the standard canonical form

Gk(u, z) = 0 , k = 1, . . . , N3 , (6)

Gk(u, z) ≥ 0 , k = N3 + 1, . . . , N4 , (7)

where for each k = 1, . . . , N4 ,

Gk(u, z) = Φk

(

x(τk), z
)

+

∫ τk

0

Lk

(

t, x(t), u(t), x(t−h), u(t−h), z
)

dt . (8)

Here Φk and Lk , k = 1, . . . , N4 , are given real-valued functions which are
continuously differentiable with respect to each of their arguments and τk ∈
(0, T ] is referred to as the characteristic time for the kth constraint.
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An admissible pair (u, z) ∈ U × Z is called a feasible pair if the con-
straints (6) and (7) are satisfied. Let F be the set of all feasible pairs. The
optimal control problem is now formulated as follows:

Problem P: Subject to the dynamical system (1a–1d), find a feasible pair
such that the cost functional

G0(u, z) = Φ0

(

x(T ), z
)

+

∫ T

0

L0

(

t, x(t), u(t), x(t− h), u(t− h), z
)

dt . (9)

is minimized over F . Note the similarity in form of (8) and (9), where τ0 = T .

Remark 1 Consider the continuous state inequality constraint defined as
follows:

c(t, x(t), x(t − h), z) ≥ 0 , for all t ∈ [0, T ] . (10)

Using the ε-τ method given in [6, Chapter 8], this all-time constraint is
approximated by the inequality constraint in canonical form

τ +

∫ T

0

Lε

(

c
(

t, x(t), x(t − h), z
)

)

dt ≥ 0 , (11)

where

Lε(c) =











c , if c < −ε ,

−(c − ε)2/4ε , if − ε ≤ c ≤ ε ,

0 , otherwise.

(12)
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for all sufficiently small ε > 0. It is shown in Lemma 8.3.3 of [6] that there
exists a τ(ε) > 0 such that for each τ , 0 < τ < τ(ε) , if an admissible pair,
(u, z), satisfies the constraint (11) it also satisfies the constraint (10). Thus
optimal control problems involving all-time state inequality constraints of
the form (10) can also be cast in the form of Problem P.

3 Model Transformation

Using a method proposed by Wong [8], a time-delayed problem is converted
into an optimal control problem involving mixed boundary conditions with-
out time delay. To avoid notational complexity, only a scalar time delay
optimal control problem will be considered, so that n = r = 1 . The vector
analogue follows easily. Assume that all characteristic times are greater than
h, the time delay. Let N be an integer such that (N − 1)h < T ≤ Nh . Let
y = [y1, . . . , yN ]

�

and v = [v1, . . . , vN ]
�

, where yi(t) ≡ x
(

(i − 1)h + t
)

and
vi(t) ≡ u

(

(i − 1)h + t)
)

. For notational convenience, the shortened notation

yi for yi(t) and vi for vi(t) will be used. For each (t, y, v, z) ∈ [0, h] × RN ×
RN × R , let the functions Fk , k = 0, . . . , N4 , and fi , i = 1, . . . , N , be
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defined by

Fk(t, y, v, z) = Lk(t, y1, v1, ϕ(t − h), γ(t − h), z)

+

N
∑

i=2

∆k((i − 1)h + t, yi, vi, yi−1, vi−1, z) (13a)

where

∆k(t, p, q, r, s, w) =

{

Lk(t, p, q, r, s, w) , t ∈ [0, τk) ,

0 , t ∈ [τk, Nh] ,
(13b)

f1(t, y, v, z) = f(t, y1, v1, ϕ(t − h), γ(t − h), z) , (13c)

fi(t, y, v, z) = f
(

(i − 1)h + t, yi, vi, yi−1, vi−1, z
)

for i = 2, . . . , N − 1 , (13d)

fN(t, y, v, z) =











f
(

(N − 1)h + t, yN , vN , yN−1, vN−1, z
)

,

for t ∈ [0, T − (N − 1)h] ,

0 , for t ∈ (T − (N − 1)h, h] .

(13e)

Let z̄ ∈ RN−1 be an additional set of system parameters to be used to
equate the new state variables at the initial time point with the appropriate
value at the final time point h. From the equations (13a–13d), see that
Problem P is equivalent to the following non-delayed problem:

minimize�
, � ,¯�

J(v, z, z̄) = Φ0(yN(h), z) +

∫ h

0

F0(t, y(t), v(t), z) dt (14)
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subject to the system

ẏi = fi(t, y(t), v(t), z) , t ∈ [0, h), i = 1, . . . , N , (15a)

y1(0) = x0(z) , (15b)

yi+1(0) = z̄i , i = 1, . . . , N − 1 , (15c)

and the following constraints

Hi(z) = 0 , i = 1, . . . , N1 , (16)

Hi(z) ≥ 0 , i = N1 + 1, . . . , N2 , (17)

uL ≤ v(t) ≤ uU , for all t ∈ [0, h] , (18)

zL ≤ z ≤ zU , (19)

and the canonical constraints for k = 1, . . . , N3 ,

Gk(v, z) = Φk

(

yk̂(τ̂k), z
)

+

∫ h

0

Fk

(

t, y(t), v(t), z
)

dt = 0 , (20)

and for k = N3 + 1, . . . , N4 ,

Gk(v, z) = Φk

(

yk̂(τ̂k), z
)

+

∫ h

0

Fk

(

t, y(t), v(t), z
)

dt ≥ 0 , (21)

where k̂ is the integer such that (k̂ − 1)h ≤ τk ≤ k̂h and τ̂k = τk − (k̂ − 1)h
and

Ḡk(v, z̄) = yk(h) − z̄k = 0 , k = 1, . . . , N − 1 . (22)



4 The Classical Control Parametrization E164

Remark 2 The constraints (15c) and (22) are equivalent to the fixed bound-
ary conditions, describing continuity of the original states yi+1(0) = yi(h) ,
i = 1, . . . , N − 1 .

4 The Classical Control Parametrization

A brief description of the classical control parametrization method is given.
Essentially each component vi(t) of the control is approximated by a zeroth
order or first order spline defined on a set of fixed knots

{0 = ti0, t
i
1, . . . , t

i
pi

= h} .

Note that each component may have a different set of knots and that the
knots are not necessarily equally spaced. Thus the ith component of the
control is

vi(t) =

pi
∑

j=1

σijB
0
ij(t) , (23)

or vi(t) =

pi
∑

j=0

σijB
1
ij(t) , (24)

where B0
ij(t) and B1

ij(t) are the finite support basis functions for the zeroth
order and first order splines respectively. See [1] for further details. After
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control parametrization, the cost function as well as all the constraints can
now be regarded as functions of the parameter vector θ = (σ, ẑ) where

σ = [σ11, . . . , σ1,p1
, σ21, . . . , σ2,p2

, . . . , σN,1, . . . , σN,pN
]

�

, (25)

and where ẑ = [z, z̄] . The corresponding problem is

minimize� G0(θ) (26)

subject to the suitably changed equivalent constraints

Hi(ẑ) = 0 , i = 1, . . . , N1 , (27)

Hi(ẑ) ≥ 0 , i = N1 + 1, . . . , N2 , (28)

Gk(θ) = 0 , k = 1, . . . , N3 , (29)

Gk(θ) ≥ 0 , k = N3 + 1, . . . , N4 , (30)

uL
i ≤ σij ≤ uU

i , j = 1, . . . , N , i = 1, . . . , pi , (31)

zL ≤ z ≤ zU , (32)

Ḡk(θ) = 0 , k = 1, . . . , N − 1 . (33)

The problem posed by (26–33) is now a standard constrained nonlinear
mathematical programming problem solved by means of standard computer
codes [5, e.g.].
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5 Control Parametrization Enhancing Trans-

formation

Consider the new time scale s which varies from 0 to M , where M is an
integer. The transformation from t ∈ [0, h] to s ∈ [0, M ] is defined by the
differential equation

d t(s)

ds
= w(s) , (34a)

with the initial condition
t(0) = 0 , (34b)

where the scalar function w(s) is called the enhancing control. It is a piece-
wise constant function (usually) with possible discontinuities at the pre-fixed
knots s = 0, 1, 2, . . . , M . That is,

w(s) =
M

∑

i=1

wiχi(s) , (35)

where χi(s) is the indicator function defined by

χi(s) =

{

1 , if s ∈ [i − 1, i) ,

0 , otherwise.
(36)

Integrating (34a)

t(s) =

∫ s

0

w(τ) dτ =

i−1
∑

j=1

wj + wi(s − (i − 1)) , s ∈ [i − 1, i] . (37)
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The optimal control function is now written in terms of the new time vari-
able s. Let v̂(s) = v(t(s)) , ŷ(s) = y(t(s)) and ẑ = (z, z̄) , then

x̂(s) =
[

ŷ(s)
�

, t(s)
]

�

(38)

are the new state variables, and

û(s) =
[

v̂(s)
�

, w(s)
]

�

(39)

are the new control variables. The equivalent transformed optimal control
problem is re-stated as

minimize
ˆ

� ,ˆ�
G0(û, ẑ) = Φ0(ŷ(M), z)+

∫ M

0

w(s)F0(t(s), ŷ(s), v̂(s), z) ds , (40)

subject to the dynamical system

dx̂(s)

ds
=

[

w(s)f
(

t(s), ŷ(s), v̂(s), z)
w(s)

]

, s ∈ [0, M ] , (41a)

with initial conditions

ŷ1(0) = x0(z) , (41b)

ŷi+1(0) = z̄i , i = 1, . . . , N − 1 , (41c)

t(0) = 0 , (41d)
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and the following constraints

Hi(z) = 0 , i = 1, . . . , N1 , (42)

Hi(z) ≥ 0 , i = N1 + 1, . . . , N2 , (43)

uL ≤ v̂(s) ≤ uU , for all s ∈ [0, M ] , (44)

zL ≤ z ≤ zU , (45)

and the canonical constraints

Gk(û, z) = 0 , k = 1, . . . , N3 , (46)

Gk(û, z) ≥ 0 , k = N3 + 1, . . . , N4 , (47)

where

Gk(û, z) = Φk

(

ŷk̂(Mk), z
)

) +

∫ Mk

0

w(s)Fk

(

t(s), ŷ(s), v̂(s), z
)

ds , (48)

Ḡk(û, z̄) = ŷk(h) − z̄k = 0 , k = 1, . . . , N − 1 , (49)

Ĝ(û) = t(M) = h . (50)

Here Mk = s(τ̂k) is one of the knot points in [0, 1] . For the new control w(s)
it is necessary that w(s) ≥ 0 , s ∈ [0, M ] , so that the new state t(s) is
monotonic non-decreasing on [0, h] . Appropriate bounds on the enhancing
control values ensure this.

Remark 3 As mentioned in [7], in the transformed problem, only the knots
contribute to the discontinuities of the state differential equations. Thus, all
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locations of the discontinuities of the state differential equations are known
and fixed during the optimization process. These locations will not change
from one iteration to the next during the optimization process.

6 Convergence Result

The basic idea behind the cpet method developed in [7] aims to include the
switching times as parameters to be optimized and at the same time to avoid
the numerical difficulties mentioned in [7]. The cpet method captures the
discontinuities of the optimal control problem if the number of knots in the
partition of the new time horizon is greater than or equal to the number of
discontinuities of the optimal control.

Since the time-delayed problem considered in this paper has almost the
same structure as that considered in [2], all the convergence results of the
classical control parametrization method obtained in [2] remain valid, pro-
vided we make the same assumptions as those given in (A1–A8) of [2]. Since
the enhancing parameters are allowed to vary, the control parametrization
enhancing technique gives rise to a larger search space and hence produces a
better or at least equal sub-optimal cost. Hence, by the squeeze theorem, the
convergence of the problem with an enhancing control is guaranteed. Thus
all the convergence results in [2] remain valid for the cpet problem. Of
course the existence of local optima mean that computed solutions may bear
no resemblance to the solutions of the convergence results.
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7 Numerical Examples

The following example is a standard simple example used to test algorithms
for delay equations and is Example 7.1 of [2].

Example 4

minimize G0(u) = x(2)2 +

∫ 2

0

[

x(t)2 + u(t)2
]

dt ,

subject to the delay differential equation

ẋ(t) = x(t) sin(x(t)) + x(t − 1) + u(t) , t ∈ [0, 2] ,

x(t) = 10 , t ∈ [−1, 0] ,

together with the terminal state equality constraint

Φ1(x(2)) = −119.854 + 22x(2) − x(2)2 = 0 ,

and the continuous state inequality constraint

g1(t, x(t)) = 114.6 − 8t − x(t)2 ≥ 0 , t ∈ [0, 2] .

Classical Control Parametrization Technique Formulation: The
following transformations re-formulate Example 4 into a nondelay problem
to be solved by a Classical Control Parametrization Method, on the interval
[0, 1] :
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Transformation 1:

y1(t) =x(t) , t ∈ [0, 1] , (51)

y2(t) =x(t + 1) , t ∈ [0, 1] , (52)

v1(t) =u(t) , t ∈ [0, 1] , (53)

v2(t) =u(t + 1) , t ∈ [0, 1] . (54)

The resulting non-delayed re-formulation of Example 4 is as follows:

minimize G0(u) = (y2(1))2 +

∫ 1

0

[

y1(t)
2 + y2(t)

2 + u1(t)
2 + u2(t)

2
]

dt ,

subject to the non-delay differential equations on the interval [0, 1]

ẏ1(t) = y1(t) sin(y1(t)) + 10 + u1(t) , y1(0) = 10 ,

ẏ2(t) = y2(t) sin(y2(t)) + y1(t) + u2(t) , y2(0) = z ,

subject to all-time inequality constraints

114.6 − 8t − y2
1(t) ≥ 0 , t ∈ [0, 1] ,

106.6 − 8t − y2
2(t) ≥ 0 , t ∈ [0, 1] ,

together with the terminal state equality constraint

Ḡ1(u, z) = y1(1) − z = 0 ,

Φ1(y2(1)) = −119.854 + 22y2(1) − y2(1)2 = 0 .
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The Control Enhancement Parametrization Technique Formula-

tion: Transformation 1, with a change of scale, re-formulates Example 4
to be solved using the Control Parametrization Enhancement Technique, on
the interval [0, 5] :

minimize J(v) = y2(5)2 +

∫ 5

0

v3(t)
[

y1(t)
2 + y2(t)

2 + v1(t)
2 + v2(t)

2
]

dt ,

subject to the nondelay differential equations on the interval [0, 5]

ẏ1(t) = v3(t) (y1(t) sin(y1(t)) + 10 + v1(t)) , y1(0) = 10 ,

ẏ2(t) = v3(t) (y2(t) sin(y2(t)) + y1(t) + v2(t)) , y2(0) = z ,

ẏ3(t) = v3(t) , y3(0) = 0 ,

subject to all-time inequality constraints

114.6 − 8y3(t) − y2
1(t) ≥ 0 , 106.6 − 8y3(t) − y2

2(t) ≥ 0 ,

together with the terminal state equality constraints

y1(5) = z , y3(5) = 1 , −119.854 + 22y2(5) − y2
2(5) = 0 .

Solving the non-delayed problem by the classical control parametrization
method with 8 piecewise constant control parameters on the interval [0, 1]
gives a minimum value of 331.63 . On the other hand, solving the non-
delayed problem by the cpet with 5 piecewise constant control parameters
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Figure 1: Example 4—Piecewise constant solutions, control parametriza-
tion method.
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Figure 3: Example 4—Piecewise linear solutions, control parametrization
method.
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on the interval [0, 1] gives a minimum value of 330.12 . Using piecewise linear
controls the corresponding values are 331.08 and 328.93 respectively. Thus,
the cpet is superior to the classical control parametrization method. Note
that the cpet computation has effectively used very few control parameters
compared to the non cpet computation, three for piecewise constant and
two for piecewise linear, and has a better objective value in both cases. The
vertical lines on the cpet control function indicate a function value on a
set of (computationally) measure zero. Notice also that if it was necessary
for the control to be continuous, then more constraints have to be used to
do this at the time points which are multiples of h. This is difficult if some
intervals become redundant as seen in Figures 3–4. The dotted line is the
all-time constraint.

In view of the above results, it would be worthwhile to recompute using a
smaller number of control parameters, especially in the piecewise linear case
which seems to indicate that cpet is not necessary. No doubt local minima
are playing a role in the above computation.

Example 5 The following example is an adaption of a standard difficult
problem used to test the classical parametrization technique and is Exam-
ple 7.2 from [2].

minimize G0(u) =

∫ 1

0

[

x1(t)
2 + x2(t)

2 + 0.005u(t)2
]

dt ,
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subject to the delay differential equations, with initial conditions

ẋ1(t) = x2(t − 1/3) , x1(0) = 0 ,

ẋ2(t) = −x2(t) + u(t) , x2(0) = −1 ,

and pre-conditions
x2(t) = −1 , t ∈ [−1/3, 0] ,

together with the terminal state inequality constraint

Φ1(x(1)) = −x2(1) ≥ 0 ,

and the continuous state inequality constraint

g1(t, x(t)) = −x2(t) + 8(t − 0.5)2 − 0.5 ≥ 0 , t ∈ [0, 1] .

Classical Control Parametrization Technique Formulation: The
following transformations re-formulate Example 5 into a nondelay problem
to be solved by a Classical Control Parametrization Method, on the interval
[0, 1/3] :
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Transformation 2:

y1(t) =x1(t) , t ∈ [0, 1/3]

y2(t) =x1(t + 1/3) , t ∈ [0, 1/3]

y3(t) =x1(t + 2/3) , t ∈ [0, 1/3]

y4(t) =x2(t) , t ∈ [0, 1/3]

y5(t) =x2(t + 1/3) , t ∈ [0, 1/3]

y6(t) =x2(t + 2/3) , t ∈ [0, 1/3]

v1(t) =u(t) , t ∈ [0, 1/3]

v2(t) =u(t + 1/3) , t ∈ [0, 1/3]

v3(t) =u(t + 2/3) , t ∈ [0, 1/3]

The resulting non-delayed re-formulation of Example 5 is as follows:

minimize G0(v) =

∫ 1/3

0

[

y1(t)
2 + y2(t)

2 + y3(t)
2 + y4(t)

2 + y5(t)
2 + y6(t)

2

+ 0.005(v1(t)
2 + v2(t)

2 + v3(t)
2)

]

dt ,
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subject to the nondelay differential equations on the interval [0, 1/3]

ẏ1(t) = −1 , y1(0) = 0 ,

ẏ2(t) = y4(t) , y2(0) = z1 ,

ẏ3(t) = y5(t) , y3(0) = z2 ,

ẏ4(t) = −y4(t) + v1(t) , y4(0) = −1 ,

ẏ5(t) = −y5(t) + v2(t) , y5(0) = z3 ,

ẏ6(t) = −y6(t) + v3(t) , y6(0) = z4 ,

subject to the continuous state inequality constraint

g1(t, y(t)) = 8(t − 0.5)2 − 0.5 − y4(t) ≥ 0 ,

g2(t, y(t)) = 8(t − 1/6)2 − 0.5 − y5(t) ≥ 0 ,

g3(t, y(t)) = 8(t + 1/6)2 − 0.5 − y6(t) ≥ 0 ,

together with the terminal state equality constraints

Ḡ1(v, z) = y1(1/3) − z1 = 0 ,

Ḡ2(v, z) = y2(1/3) − z2 = 0 ,

Ḡ3(v, z) = y4(1/3) − z3 = 0 ,

Ḡ4(v, z) = y5(1/3) − z4 = 0 ,

and subject to the terminal state inequality constraint

Φ1 (y(1/3)) = −y6(1/3) ≥ 0 .
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Solving the non-delayed problem by the classical control parametrization
method with 4 piecewise constant control parameters on the interval [0, 1/3]
gives a minimum value of 0.283495511 . On the other hand, solving the non-
delayed problem by the cpet with 4 piecewise constant control parameters on
the interval [0, 1/3] gives a minimum value of 0.280028250 . Once again, see
the cpet is superior to the classical control parametrization method. Using
piecewise linear controls makes it possible to follow the quadratic exactly.

8 Conclusions

Optimal control problems with delay differential equations and a fixed time
horizon have been shown to be computable more efficiently with the cpet

algorithm than the standard control parametrization method. For a small
delay, in comparison to the time horizon, the method of [2] creates a large
number of new state variables, with attendant boundary value constraints.
This disadvantage is tempered somewhat by the existence of MISER3 as a
computational aid to readily compute solutions to constrained optimal con-
trol problems. Variable time delay problems, where the time delay depends
on time or state, still presents an interesting challenge.
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Figure 5: Example 5—Solution by Standard Method
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