
ANZIAM J. 43 (E) ppE186–E232, 2002 E186

Bin packing and covering with longest items at

the bottom: online version

P. Manyem∗

Received November 8, 2000; revised March 21, 2002

Abstract

We consider the np hard problems of online bin packing and on-
line bin covering while requiring that larger (or longer, in the one-
dimensional case) items be placed at the bottom of the bins, below
smaller (or shorter) items. Bin sizes can be uniform or variable. If vari-
able, the bin sizes are drawn from a finite collection. In uniform sized

∗
ciam, School of Mathematics, University of South Australia, Mawson Lakes, SA

5095, Australia. mailto:Prabhu.Manyem@unisa.edu.au
0See http://anziamj.austms.org.au/V43/E044 for this article and ancillary services,

c© Austral. Mathematical Soc. 2002. Published June 17, 2002; amended August 9, 2002.

mailto:Prabhu.Manyem@unisa.edu.au
http://anziamj.austms.org.au/V43/E044

Contents E187

online bin packing, we prove an upper bound of two on the approxima-
tion ratio for special cases of the problem and provide computational
results for the general case using a variation of the first fit heuristic.
In uniform sized online bin covering, we prove a non-approximability
result and present a modified first fit heuristic. In online variable-sized
bin covering, we show that the approximation ratio guaranteed by our
heuristic is a function of bin lengths.

Contents

1 Background E188

2 Bin Packing E191
2.1 Approximation ratios . E191
2.2 Bin packing: next fit algorithm E192
2.3 Bin packing: first fit algorithm E194
2.4 First Fit: monotonic non-decreasing sizes E197
2.5 First Fit: monotonic non-increasing sizes E197
2.6 First Fit (general case): computational testing E199

3 Bin covering E202
3.1 Approximation ratios . E205
3.2 Bin covering: uniform bin size E206

3.2.1 Algorithm analysis E207
3.2.2 Uniform bin size: non-approximability E208

1 Background E188

3.2.3 Computational testing E215
3.3 Bin covering: variable bin size E217

3.3.1 Woeginger-Zhang heuristic for VSBCG E218
3.4 VSBC: allowing placement changes E219
3.5 VSBC: disallowing placement changes E221

3.5.1 Approximation algorithm for VSBCP E222
3.5.2 Algorithm analysis E223
3.5.3 Approximability . E225

4 Discussion and remarks E226

5 Further research E229

References E229

A Erratum: Correction to the proof leading to Theorem 6 E231

1 Background

In the classical one-dimensional bin packing problem, we consider a list L =
(i : 1 ≤ i ≤ n) of items. The size of item i is ai, where each ai ∈ (0, 1] . The
problem is to pack these n items into unit sized bins such that the number
of bins used is minimized. A feasible solution is one where the sum of the
sizes of the items in each bin is at most equal to the bin size. The variable

1 Background E189

sized bin packing problem is similar to the classical problem stated above,
except that the bin sizes can be different — we are given a collection B of
distinct bin sizes, s1 through sk, where s1 is the largest (or just longest, in
the one-dimensional case) bin size with s1 = 1 . Size sk is the smallest.

In the online version of bin packing, items in L arrive one by one. When
an item i of length ai arrives, it must immediately be assigned to a bin
(and this assignment cannot be changed later), and the next item i + 1 of
length ai+1 becomes known only after item i has been assigned to its bin. A
bin is said to be used if it contains at least one item (of non-zero length).

In all versions of bin packing (Section 2) and bin covering (Section 3), it
is assumed that there is an infinite supply of bins of any size. Hence running
out of bins to place items is never an issue. Bin packing is np-complete in all
its four variations considered here — bin size is either uniform or variable, bin
filling is either online or offline. Coffman et al. [3] provide a comprehensive
review of approximation solutions to bin packing. A more recent review
appears in [4].

Our version of bin packing: The online bin packing version we consider
here imposes an additional requirement: In any bin, for any pair of items
i and j, if the size of j is greater than that of i, then j should be placed in
the bin below i. In other words, longer items should be placed lower in any
bin than shorter items. We call this the lib version, for Longest Item at the
Bottom.

1 Background E190

This notion is generalized. For a given list of items L, if a sequence is
imposed on the placement of items in any bin, how much harder does the
problem become? Alternatively, suppose each item i has a value vi . Then we
could impose the constraint that an item with higher value should be placed
below an item with lower value in any bin.

Our version of bin packing has applications in the transportation industry.
If long items are placed at the bottom inside a truck, transportation is easier.
In terms of weight, if heavier items are placed at the bottom, better stability
of the truck can be achieved, and smaller items will not get crushed by larger
items.

The dual of bin packing is bin covering, where the sizes of items in a
bin should total up to at least the bin size. The online lib variation of bin
covering, which requires placement of longer items below shorter items, is
treated in Section 3.

Organization of this paper: In Sections 2.2 and 2.3, we present the
behaviour of the well-known Next Fit and First Fit algorithms respectively
for the online lib version of bin packing with uniform size bins. Sections 3
and beyond consider the online lib bin covering problem. The organization
of Section 3 is described at the beginning of that section.

2 Bin Packing E191

2 Bin Packing

Problem statement: online LIB uniform sized bin packing: We are
given an infinite supply of unit-sized bins, and n items, each item with size
in (0, 1] . Each item should be placed in a bin assigned to it (on top of items
previously placed in that bin) as soon as it arrives. This placement cannot
be changed later. A feasible solution is one where the sum of the sizes of the
items in each used bin is at most one. The goal is to find a feasible solution
that minimizes the number of used bins. In any used bin, longer items should
be placed below shorter items (the lib constraint).

The online condition essentially reduces to the following online constraint :
In a used bin, if item i is below item j, then i should have arrived prior to j
in the input list L, that is,

[i is below j in a used bin] =⇒ [i < j] . (1)

Similarly, the lib constraint is stated as follows, for a used bin:

[i is below j in a used bin] =⇒ [ai ≥ aj] . (2)

2.1 Approximation ratios

Given an instance of bin packing (a list L), let opt(L) and A(L) be the solu-
tion values obtained by the exact and approximation algorithms respectively.

2 Bin Packing E192

As in [9], we define the asymptotic approximation ratio R∞

A for approximation
algorithm A as

R∞

A = lim
s→∞

sup
L

{

R
(L)
A , opt(L) ≥ s

}

, where R
(L)
A =

A(L)

opt(L)
. (3)

When bin sizes are variable, this generalizes to

R∞

A,B = lim
s→∞

sup
L

{

R
(L)
A,B, opt(L,B) ≥ s

}

, where R
(L)
A,B =

A(L,B)

opt(L,B)
,

(4)
where B is the collection of bin sizes (see Section 1). For a class of inputs C,
RC

A and RC

A,B are similarly defined. Observe that 1 ≤ R∞

A , R∞

A,B ≤ ∞ . The
lower these ratios, the better the approximation algorithm.

2.2 Bin packing: next fit algorithm

The nf (Next Fit) algorithm always maintains a current bin b0, and two
parameters topSize and totalSize, which are the size of the topmost item
in b0, and the sum of the sizes of the items held by b0, respectively. Initially,
the current bin b0 is simply any empty bin, topSize = 1 and totalSize = 0 .
A bin is said to be uncovered if the totalSize of the bin is < 1 .

If an arriving item i has a size of at most 1− totalSize, and topSize >
size(i) = ai , then i is placed in b0 , topSize is set to ai and totalSize is
increased by ai . Otherwise, b0 is closed (never to be opened again), an empty

2 Bin Packing E193

bin is opened and named as the current bin b0 , item i is placed in this (new)
b0 , topSize and totalSize are set to ai .

The running time of the nf algorithm is linear in n, the number of items
in the list. It can be easily shown that the nf algorithm can have a worst case
approximation ratio of θ(n) . Consider the following list L = (i : 1 ≤ i ≤ n),
with the sizes ai of items as follows (0 < ε ≤ 1):

• ai = ε, if i = 1 (mod 4),

• ai = 2ε, if i = 2 (mod 4),

• ai = 3ε, if i = 3 (mod 4), and

• ai = 4ε, if i = 0 (mod 4).

Assume that nε ≤ 1 . As the items arrive in sequence, the nf algorithm
would place them in bins starting from b1 as follows:

b1 : {1} b2 : {2} b3 : {3} b4 : {4, 5}

b5 : {6} b6 : {7} b7 : {8, 9}

b8 : {10} b9 : {11} b10 : {12, 13}

. . . .

(5)

Assuming that n is a multiple of four, the number of bins that the nf al-
gorithm needs, k, is given by (3n/4) + 1 = θ(n) . However, there exists a

2 Bin Packing E194

solution that requires just four bins:

b1 : {1, 5, 9, 13, . . .}

b2 : {2, 6, 10, 14, . . .}

b3 : {3, 7, 11, 15, . . .}

b4 : {4, 8, 12, 16, . . .} .

(6)

Bin bi (1 ≤ i ≤ 4) contains exactly n/4 items, each of size i × ε . Bin b4 is
filled closer to capacity than the other three bins, since each item in b4 is of
size 4ε . The sum of the sizes of items in b4 = (n/4) × (4ε) = nε . Since we
assumed that nε ≤ 1 , all four bins are filled at or below their capacities.

Lemma 1 The asymptotic approximation ratio for the nf algorithm, R∞

nf,
is of the order θ(n) for the online lib version of bin packing.

Obviously, the approximation ratio RA cannot be worse than n for any heuris-
tic A for this problem.

2.3 Bin packing: first fit algorithm

Now consider the behaviour of the First Fit (ff) algorithm for the lib version
of bin packing. When an item i arrives, assume that bins b1 through bm

2 Bin Packing E195

have already been used, in that order. Each such bin bj , 1 ≤ j ≤ m, has
two parameters, topSize(j) and totalSize(j), representing the size of the
topmost item in bj and the sum of the sizes of the items in bj respectively.

The ff algorithm scans b1 through bm in that order. For each bin bj ,
it checks if (i) ai ≤ topSize(j) , and (ii) ai ≤ 1 − totalSize(j) . The
ff algorithm places item i in the first such bin bj that satisfies both the
conditions above and updates topSize(j) as well as totalSize(j) , just as
in the nf algorithm. If no such bin among b1 through bm satisfies these
conditions, the ff algorithm opens a new bin bm+1 in which to place i.

Algorithm 1. First Fit (online LIB bin packing version): Given
items 1, . . . , N with sizes a1, . . . , aN , 0 < ai ≤ 1 for 1 ≤ i ≤ N ; the Running
Time is O(N2) .

1 nBin (number of bins used) = 1;

2 topSize[1] = 1;

3 totalSize[1] = 0;

4 for (item = 1 to N) do

5 allocated[item] = NO;

6 bin = 1;

7 While (bin ≤ nBin AND allocated[item] == NO) do

8 X = (topSize[bin] ≥ size[item]);

2 Bin Packing E196

9 Y = (1-totalSize[bin] ≥ size[item]);

10 if (X == true AND Y == true) then

11 place item in bin;

12 update topSize[bin] and totalSize[bin];

13 allocated[item] = YES;

14 end if

15 bin = bin +1;

16 end While

17 if (allocated[item] == NO) then (item not placed in any bin)

18 nBin = nBin +1; (new, fresh, unused bin)

19 place item in nBin;

20 topSize[nBin] = size[item];

21 totalSize[nBin] = size[item];

22 allocated[item] = YES;

23 end if

24 end for

The behaviour of the ff algorithm is studied for these three mutually
exclusive and collectively exhaustive cases with respect to the sizes of the
items in L:

1. the sizes are mnd (monotonic non-decreasing);

2. the sizes are mni (monotonic non-increasing); and

3. neither of the above.

2 Bin Packing E197

For the first two cases, we prove a worst case upper bound of two on the
approximation ratio. For the last case, we provide computational results
(where the approximation ratios are never worse than two).

2.4 First Fit: monotonic non-decreasing sizes

Here, the item sizes in L are mnd (monotonic non-decreasing). The ff

algorithm works as follows: if an arriving item i is longer than its predeces-
sor i − 1, then it is placed in its own (new) bin bm+1 . Otherwise, if ai = ai−1 ,
then place i on top of i − 1 in bm (unless ai < 1 − totalSize(m), in which
case i is placed in a new bin). The ff algorithm never needs to check bins b1

through bm−1 here. Clearly, an exact algorithm (one that always returns an
optimal solution) can do no better than ff. It follows that the approximation

ratio of the ff algorithm for this class of instances, R
(I)
FF (I for Increasing),

is one.

2.5 First Fit: monotonic non-increasing sizes

Now suppose the item sizes in L are mni (monotonic non-increasing). Here,
even the nf algorithm can guarantee an upper bound of two on the approx-
imation ratio asymptotically.

Let the Space Used (su) factor of a bin be defined as the sum of the sizes

2 Bin Packing E198

of items in the bin.

Observe that if an item with size ≥ 0.5 is placed in a bin, then the bin
is at least half full. That is, for such a bin, the su factor is at least 0.5 .
Since the input is mni, the items in the input with size ≥ 0.5 will be at the
beginning of the input list, and hence the first few bins will have su ≥ 0.5 .
That is, the the bins used in the beginning will naturally have su ≥ 0.5 ,
simply because they contain items of size ≥ 0.5 in them.

What about the bins where all items are of size < 0.5 ? If the item at the
bottom of a bin is of size < 0.5 , then this is true for all items in the bin. We
will attempt to show that except for perhaps the last used bin, all bins will
have an su factor ≥ 0.5 , and hence asymptotically, the approximation ratio
for this input class (mni) is at most two.

Consider a bin b where the item at the bottom, say i, is of size < 0.5 ,
that is, ai < 0.5 . Since the input is mni, this implies that the next item in
the input is of size < 0.5 , that is, ai+1 < 0.5 . Since ai +ai+1 < 0.5 , item i+1
can be placed in the same bin b.

If ai+ai+1 ≥ 0.5 , then we have achieved our goal of obtaining su(b) ≥ 0.5
for this bin b. Otherwise, if ai + ai+1 is still less than 0.5 , the space left in
the bin is greater than half. Since the next item in the input, i+2 , is of size
at most ai+1 , and 0.5 ≥ ai+1 ≥ ai+2 , it follows that i + 2 can comfortably
fit into bin b. This process continues until either no more items can fit into
b, or there are no more items in the input list. If there is an item k (size ak)
that cannot fit into b, then it is of size less than half, and su(b) should be

2 Bin Packing E199

greater than half. This is because su(b) + ak > 1 , and ak < 0.5 .

Thus we have shown that except for perhaps the last used bin, all other
bins have an su factor greater than half. This implies that

Lemma 2 The worst case asymptotic approximation ratio for the mni class
of problem instances in online lib bin packing is at most two, using the nf

heuristic.

2.6 First Fit (general case): computational testing

We now consider the general case where the inputs are neither monotonic
non-increasing or non-decreasing (neither mni nor mnd). In this section, we
provide results of computational testing, since it is still inconclusive whether
the worst case (guaranteed analytical) approximation ratio over all possible
instances for this problem has a constant upper bound.

The simulations were carried out on a 300Mhz Intel PC running RedHat
Linux 5.2 with 512Mbytes memory. The code was written in C and compiled
using gnu’s gcc compiler. Since the exact algorithm runs in exponential time
in the worst case and the ff heuristic runs in polynomial time, we did not
collect statistics on running time. Instead, we focussed primarily on the
approximation ratios. For the exact algorithm, a branch and bound (b & b)
routine was implemented. Lower bounding techniques were used to prune
branches of the b & b tree. At any partial solution, we let

2 Bin Packing E200

1. u = number of bins used thus far;

2. v = sum of sizes of items not yet placed, satisfying at least one of these
three conditions: (i) its size is greater than 0.5 , or (ii) its size is greater
than the topSize of any of the used bins, or (iii) its size is greater than
the empty space in any of the used bins;

3. w = sum of the sizes of bins not yet placed which do not belong to the
categories mentioned above in Case (ii); and

4. x = space left over in used bins.

The lower bound was then computed as u+dve (if x ≥ w), or u+dv+w−xe
(if x < w) .

The number of items in an instance, N , was varied from 10 to 30 in
steps of five. For each N , we performed 1000–5000 runs of the simulation,
depending on the time taken to run.

Table 1 presents results of

• the average RFF (the average ratio),

• the worst RFF (the maximum ratio), and

• the percentage of instances where RFF was one (the lowest possible)
(the percentage of ones).

2 Bin Packing E201

No.(Items) Max.Ratio Ave.Ratio Runs % of Ones Run.Time
10 1.500 1.015 5000 91.24 30 secs
15 1.333 1.020 5000 82.54 46 secs
20 1.250 1.023 5000 74.74 6.5 mins
25 1.273 1.025 5000 67.04 13 hours
30 1.250 1.026 1000 61.3 4 days
35 1.200 1.028 1000 52.3 18 days

Table 1: Bin Packing: approximation ratios for various list sizes

Note that as N increases, there is an overall decrease in the maximum
approximation ratio (column 2). There is a steady increase in the average
ratio (column 3). And most interestingly, in column 5, the percentage of
instances where the ratio is one (the heuristic produces a solution as good as
the exact algorithm) decreases steeply. This decrease is more remarkable in
the case of uniform size bin covering in Section 3.2.3.

The last two observations regarding the percentage of ones suggest that
as the size of the list grows, the ff heuristic is less likely to find an optimal
solution to the problem. This is the likely cause of the increase in average
ratio (although the maximum ratio seems to decrease).

The minimum ratio is of course one for any list size, for any number
of instances. The running times (last column) are not the cpu times, but
the overall time, just to provide an idea of the order of time taken to run

3 Bin covering E202

the instances of the heuristic and the exact (branch and bound) algorithm
combined. Needless to say, this depends on the load on the cpu from other
users.

The numbers in Table 1 suggest that an approximation ratio of less than
two occurs “most of the time”, although it might still be possible that a ratio
greater than two could occur in some rare instances.

Conjecture 3 The worst case asymptotic approximation ratio of the modi-
fied ff heuristic for the online uniform sized lib bin packing problem is at
most two.

3 Bin covering

Problem statement: online LIB uniform sized bin covering: We are
given an infinite supply of unit-sized bins, and n items, each item with size
in (0, 1] . Each item should be placed in a bin assigned to it (on top of items
previously placed in that bin) as soon as it arrives. This placement cannot
be changed later. A bin is covered if the sum of the sizes of the items in the
bin is at least one. The goal is to maximize the number of covered bins. The
solution is feasible

• even if the total sum of item sizes in a bin is greater than one, and

3 Bin covering E203

• only if item(a) is placed below item(b) in a bin whenever size(a) >
size(b) (the lib constraint, Section 1).

As in the previous section, topSize(j) is the size of the item at the top
of bin j, and totalSize(j) is the sum of the sizes of the items in bin j.
When there is no confusion, we shall use topSize and totalSize without
the index j. In a covered bin j, totalSize(j) is at least as high as the size
of bin(j). A unit-sized bin is covered if its totalSize is at least one.

In a covered bin, it is indeed possible for an item to be protruding or
sticking out of the bin. There could also be items that are completely outside
the bin, stacked on top of other items, and yet belonging to the bin — this is
still feasible — however, this only moves the solution away from optimality.
The objective is to find a feasible solution that maximizes the sum of the
sizes of the covered bins — in the case of unit-sized bins, this is the same as
maximizing the number of covered bins.

Two of the earliest works to appear on bin covering were by Assmann [1]
and Assmann et al. [2]. In [2], they provide polynomial time heuristics with
an asymptotic worst case ratio of 4/3 for the offline problem and 2 for the
online problem when all bins are of unit size. Csirik and Totik [5] show that
there can be no polynomial time heuristic that guarantees an asymptotic
approximation ratio better than 2 for online problems with unit-sized bins.
Csirik et al. [6] provide two algorithms for offline bin covering. Woeginger
and Zhang [10] provide a polynomial time heuristic for the online version
with variable sized bins. For a survey of bin covering problems, see [7] and

3 Bin covering E204

(especially for online problems) [8].

This section is organized as follows (see Table 2). Section 3.2 considers
uniform sized online lib bin covering, where all bins are of the same size.
Section 3.3 briefly reviews the algorithm in [10] — this Section (3.3) and
the ones that follow do not require bin sizes to be uniform. All of Section 3
enforces the lib constraint except for subsection 3.3.1.

In Section 3.4, we present the case when shorter items (that were pre-
viously placed) can be removed to make way for longer items and then put
back in the bin. In other words, when an item i (of length ai) arrives, a
bin bj is assigned to it, its position in the bin is determined according to its
length, and the item is placed in its computed position in bj . For example, if
i is determined to be the second longest item in bj , then it is placed second
from the bottom, before the next item i + 1 of length ai+1 ∈ L arrives for
placement. Let this version be named as vsbcA (Variable Sized Bin Cover-
ing, the subscript A for allowing placement changes) — the lib constraint is
still enforced here.

We first observe that vsbcA is as approximable as vsbcG, the online
version of vsbc with no lib constraint. This is then extended to include
all offline problems in one-dimensional bin packing and bin covering which
require that the items be placed in bins in the order of their lengths.

In Section 3.5, we consider the case when an item, once placed, cannot
be removed from the bin. Here an arriving item has to be placed at the top
of its assigned bin. The lib constraint is enforced. Call this version vsbcP

3 Bin covering E205

Subsection Bin Size lib Rearrangement of Items
Enforcement Allowed Within a Bin

3.2 uniform yes no
3.3 variable no no
3.4 variable yes yes
3.5 variable yes no

Table 2: Problems in online bin covering

(P for preventing placement changes). We present results for this case very
similar to those in [10]. The problem considered here is simpler than vsbcG

due to our belief in Conjecture 7 — we assume a discrete set of sizes for items
whose sizes are less than sk, the smallest bin size.

3.1 Approximation ratios

When bin sizes are uniform, (3) is modified as follows, for bin covering:

R∞

A = lim
s→∞

sup
L

{

R
(L)
A , opt(L) ≥ s

}

, where R
(L)
A =

opt(L)

A(L)
. (7)

3 Bin covering E206

Similarly, when bin sizes are variable, (4) is modified to

R∞

A,B = lim
s→∞

sup
L

{

R
(L)
A,B, opt(L,B) ≥ s

}

, where R
(L)
A,B =

opt(L,B)

A(L,B)
.

(8)
As in Section 2.1, 1 ≤ R∞

A , R∞

A,B ≤ ∞ .

3.2 Bin covering: uniform bin size

In this section we provide a variation of the First Fit heuristic to the problem
of online lib bin covering with uniform sized bins (usbc). Let each bin be
of unit size. The algorithm we use here is exactly the same as Algorithm 1
except that line 10 is replaced as follows:

if (topSize[bin] ≥ size[item] AND totalSize[bin] <1) then

since we no longer compare totalSize[bin] with the item size to place an
arriving item. If we consider placing item i on top of item j in bin b, we
proceed with this placement only if ai ≤ aj and the bin is filled below its
capacity (that is, the bin is yet to be covered).

3 Bin covering E207

3.2.1 Algorithm analysis

First observe that if the items arrive in the order of strictly increasing size,
First Fit will place each item in its own separate bin. Clearly this is the best
any algorithm can do. Thus the solution produced by First Fit is optimal for
such an input. If the items arrive in the sequence a1, . . . , an, an+1, . . . , an+m

where the sequence a1, . . . , an+1 is strictly increasing, and an+1 = · · · =
an+m = 1 , the number of bins covered by First Fit as well as an optimal
algorithm is m. When m = 0 , the optimal algorithm covers no bins.

Secondly, assume that a certain bin is uncovered. Let To and Tf be the
initial and final values of totalSize , before and after the placement of item i
respectively. Thus for this bin To < 1 and topSize (the size of an item j
currently at the top of the bin) < 1 . Suppose that placing a new item i on
top of j covers the bin. Since ai (size of i) ≤ topSize , it follows that ai < 1 .
Hence

To < 1 ≤ Tf = To + ai < 1 + ai < 2 , (9)

Aspect Ratio of bin =
Tf

bin size
=

Tf

1
< 2 . (10)

Clearly the aspect ratio should be at least one for a covered bin.

Lemma 4 The Aspect Ratio of a covered bin is in the interval [1, 2) .

3 Bin covering E208

3.2.2 Uniform bin size: non-approximability

It is easy to show that the ff (First Fit) heuristic in Section 3.2 can have
an approximation ratio of θ(n) in the worst case, where n is the list size.
Consider the following input (0 < ε < 1 and nε/3 ≤ 0.1):

0.3, 0.2, 0.1, 0.3, 0.2, 0.1+ ε, 0.3, 0.2, 0.1+2ε, . . . , 0.3, 0.2, 0.2− ε, 1.0 .

The ff algorithm would place this input in bins in the following order, and
thus the number of bins covered is only one (the last bin):

Bin 1: (0.3, 0.2, 0.1) ,
Bin 2: (0.3, 0.2, 0.1 + ε) ,
Bin 3: (0.3, 0.2, 0.1 + 2ε) ,

...
Last-but-one bin: (0.3, 0.2, 0.2 − ε) , and

Last bin: (1.0) .

However, there exists a solution that places all items of size 0.3 together,
and all items of size 0.2 together. Four items of size 0.3 are required to cover
a bin, there are about n/3 such items, and hence the number of bins covered
by the 0.3-sized items is b(n/3)/4c = bn/12c . Similarly, five items of size 0.2
are required to cover a bin, there are about n/3 items in this category, and
thus the number of bins covered is b(n/3)/5c = bn/15c .

3 Bin covering E209

The last item of size 1.0 will be in its own bin. Thus the number of
bins covered is at least bn/15c + bn/12c + 1 = θ(n) . We note that the ff

algorithm covers only one bin for this input.

Lemma 5 The approximation ratio for the ff heuristic for the online uni-
form sized bin covering (usbc) problem with lib is of order θ(n).

It can also be shown that no algorithm for the above problem can guar-
antee an asymptotic approximation ratio less than two. Let i be a positive
integer equal to at least two (i ≥ 2). For each i, let j be an integer in the
interval [1, 2i] . Let the size of an item ei be (1+2i)−1 . Consider the following
series of inputs (lists), one for each (i, j) pair:

List L(i, j) = 1 − ei, . . . , 1 − ei
︸ ︷︷ ︸

i times

, ei, . . . , ei
︸ ︷︷ ︸

j times

.

Henceforth, we simply refer to an item with a size of a1 (a2) as an a1 (a2)
item. For a given i, there are i items of size a1 = 1 − ei in the list L(i, j),
followed by a sequence of j items of size a2 = ei. Since j varies from one
through 2i, there are 2i lists for each i. Let A be an algorithm for usbc.
Since 2(1 − ei) > 1 for any i, two a1 items (of size 1 − ei) are sufficient to
cover a bin, and thus the aspect ratio of such a double stacked bin (a bin
with two a1 sized items) is greater than one. On the other hand, in any list
L(i, j), the j items of size a2(= ei) are insufficient to cover a bin because
jei < 1 for all (i, j) pairs. Also, the aspect ratio of a bin with one a1 item
and one a2 item is exactly one.

3 Bin covering E210

When A is given the input L(i, j), at the end of the sequence of a1 sized
items (items of size 1−ei), let the number of double stacked bins be m. Thus
m bins have been covered so far, and there are i − m uncovered bins, each
with one item of size a1. If and only if j ≥ i − m, these i − m bins will be
covered when A is done.

We divide the problem into two distinct cases (see Table 3).

Case 1: i > j optimal solution: Since the aspect ratio of a bin with one
a2 item and one a1 item is one, an optimal algorithm would maximize the
number of such bins in the solution. However, this is limited by the number
j of a2 items. The optimal solution on such a list L would be:

• b(i − j)/2c double stacked bins, each with two a1 items, and

• j bins, each with one a1 item and one a2 item,

giving an optimal solution value of L∗ = b(i + j)/2c covered bins.

However, the approximation algorithm A can behave in two different
ways, depending on the number of double stacked bins after the arrival of
the ith item (which is the last a1 sized item of the input).

Case 1a: number of double stacked bins m ≤ (i − j)/2 . Recall that
a double stacked bin has two items of size a1 , and is covered. The num-
ber of double stacked items is thus 2m, and the number of single stacked

3 Bin covering E211

a1 items of size 1 − ei is i − 2m . However, out of these i − 2m uncov-
ered bins, only i− j of them can be covered by the a2 items of size ei .
The number of a2 items needed to cover the single stacked a1 items is
insufficient, or just sufficient. Thus, A(L), the number of bins covered
by A , is m + j . The approximation ratio for algorithm A is equal to

RA =
L∗

A(L)
=

b(i + j)/2c

m + j
. (11)

When m = 0 (no a1 item is double stacked), since i/j can be as high
as i (recall that j ∈ [1, 2i]), RA becomes

RA =
b(i + j)/2c

j
≤

1

2
(1 +

i

j
) ≤

1

2
+

i

2
= θ(i) . (12)

At the other extreme, if m = b(i − j)/2c , RA becomes one, since this
is the optimal solution described at the beginning of Case 1.

Thus when m is in the range [0, b(i− j)/2c] , the worst value for RA is
max(1, θ(i)) = θ(i) .

Case 1b: number of double stacked bins m ≥ (i − j)/2 . See that m
cannot be greater than i/2 . This is similar to Case 1a, except that there
are sufficient a2 items to cover the i − 2m number of single stacked
a1 items. Thus A(L) = m + (i − 2m) = i − m . Note that the left over
a2 items cannot cover a bin on their own, since jei < 1 .

3 Bin covering E212

When m = d(i−j)/2e , the solution is the same as the optimal solution
described above with RA = 1 . At the other extreme, when m = bi/2c ,
since j ≤ 2i and j < i (by assumption), RA becomes

RA =
L∗

A(L)
=

b(i + j)/2c

i − m
=

b(i + j)/2c

di/2e
≤

i + j

i
= 1 +

j

i
< 2 . (13)

Hence when m is in the range [d(i − j)/2e, bi/2c] , the worst RA value
is max(1, 2) = 2 .

Case 2: i ≤ j Optimal Solution: Since there is a sufficient number
of a2 items to cover each a1 item, an optimal algorithm would place each
a1 item in its own bin, and then cover each such bin with an a2 item. Thus
the optimal solution has a value of L∗ = i covered bins. The remaining
a2 items, j − i in number, cannot cover a bin.

There is only a single case for the approximation algorithm A, since there
are always sufficient a2 items available to cover the single stacked a1 items.
The analogue of Case 1a does not exist here. Thus, A(L), the number of
bins covered by A, is given by (m) + (i − 2m) = i − m . The approximation
ratio RA is given by i/(i − m) .

If m = 0 (no double stacked items), A(L) = i , and hence this is just
the optimal solution with RA = 1 . At the other extreme, if m = bi/2c , RA

becomes

RA =
L∗

A(L)
=

i

i − m
=

i

bi/2c
≤

i

(i − 1)/2
= 2

i

i − 1
. (14)

3 Bin covering E213

Solution Value RA

Heuristic A L∗ (Optimal) m = 0 m = bi/2c
Case 1a m + j b(i + j)/2c θ(i)
Case 1b i − m b(i + j)/2c < 2
Case 2 i − m i 1 2

Table 3: Asymptotic approximation ratios (deterministic heuristic)

For large i, RA approaches the limit 2 . As defined in (7), R∞

A = 2 .

Table 3 summarizes the results.

Discussion: We have just demonstrated the behaviour of a deterministic
approximation algorithm A on a randomized input. With no prior knowledge
of j, the number of ei in the input, A has to make a deterministic decision on
the number m of bins to be double stacked with a1 items, before the a2 items
start arriving.

Heuristic A can follow one of the following three deterministic strategies.

1. Looking at column 4 in the table, if A decides to single stack all
a1 items, m = 0 , in which case we observe from Table 3 that RA can
be as good as one, but as bad as θ(i). Hence the (worst) approximation
ratio here is RA = θ(i) (and so is R∞

A).

3 Bin covering E214

2. At the other extreme (the last column in the table), if A decides to
double stack all i number of 1− ei items (i− 1 number when i is odd),
RA can be as good as (or as bad as) two. Thus the worst ratio RA (and
hence R∞

A) is two.

3. If A decides that a certain fraction f = 2m/i of a1 items will be double
stacked, then the guaranteed RA (and R∞

A) can be as bad as θ(i) or
two, depending on the values of f and j:

(a) if f ≥ 0.5 , this will fall into Cases 1b or 2 depending on j, and
thus the guaranteed asymptotic approximation ratio R∞

A is two;

(b) if f < 0.5 , all cases (1a, 1b and 2) are possible, which means a
guaranteed R∞

A value of θ(i) .

Thus, of all three strategies for A discussed above, the best strategies are
2 and 3a, since these have the lowest guaranteed approximation ratio R∞

A of
two.

Theorem 6 No (deterministic) approximation algorithm for the Online Uni-
form Sized Bin Covering problem with lib can guarantee an asymptotic ap-
proximation ratio of less than 1.5 (see Appendix A), unless p = np.

Conjecture 7 No approximation algorithm for the Online Uniform Sized
Bin Covering problem with lib can guarantee an asymptotic approximation
ratio that is a constant, unless p = np.

3 Bin covering E215

3.2.3 Computational testing

In light of our observation in Conjecture 7 above, since there is unlikely to
be a polynomial time heuristic that guarantees a constant bound on the ap-
proximation ratio, we carried out simulations to study the performance of the
modified ff heuristic in practice. Again, the focus is on the approximation
ratios rather than the running times.

The tests conducted were similar to those for bin packing (Section 2.6).
The ff and b & b (exact) algorithms were implemented and tested against
each problem instance generated. Unlike bin packing which is a minimiza-
tion problem, bin covering maximizes the objective function. Hence, upper
bounding techniques were used to prune branches of the b & b tree. At any
vertex of the b & b tree, the upper bound was computed prior to travers-
ing any of the sub-trees rooted at this vertex. Thus if the upper-bound test
failed, all these sub-trees were pruned. The sub-tree determines in which of
the used bins (or a new bin) the next item will be placed.

At any partial solution (when not all items in the list have been placed
in bins), let:

1. x = number of bins used;

2. y = number of bins covered;

3. pI[b] = sum of sizes of items that could be placed on top of (used,
uncovered) bin b (allowed by size restrictions);

3 Bin covering E216

4. F = set of used uncovered bins for which pI[b] > 0 ;

5. pB[i] = number of bins in F on top of which item i could be placed
(item i has not been placed yet);

6. nB = sum of the sizes of items yet to be placed, for which pB[i] = 0
(these items have to be placed in new, unused bins);

7. oB = sum of the sizes of items yet to be placed, for which pB[i] > 0
(these items could be placed in bins in F);

8. u = total occupied space in bins in F ; and

9. v = total empty space in bins in F = |F | − u .

The upper bound was then computed as

y + bu + oBc + bnB + u + oB − bu + oBcc if oB ≤ v ,

or y + bnB + oB − vc + |F | if oB > v .

Three different values for N , the number of items in an instance, were
considered: 10, 15 and 20 . For each N , we performed 1000–5000 runs of
the simulation, depending on the time taken for the runs (last column of
Table 4). This table presents results of: (a) the average RFF in column 3;
(b) the worst RFF in column 2; and (c) the percentage of instances where
RFF was one (the lowest possible) in column 4.

3 Bin covering E217

No.(Items) Max.Ratio Ave.Ratio Runs % of Ones Run.Time
10 4.00 1.414 5000 37.42 39 secs.
15 5.00 1.425 5000 12.26 27 minutes
20 3.00 1.417 1000 3.5 3 days

Table 4: Bin covering: approximation ratios for various list sizes

Note that the bin covering exact (branch and bound) algorithm runs
slower than its counterpart for bin packing, which is the reason we were able
to test only instances of shorter list sizes here. The maximum ratio of 5.0 in
the second row of the table rules out a guaranteed approximation ratio less
than 5.0 for the ff heuristic.

Also observe the steep drop in the percentage of ones (the proportion of
the instances where the ff heuristic produces a solution as good as that of
the exact algorithm) with increase in list size — there is also a sharp drop
compared with the values in column 6 of Table 1 for bin packing. This steep
drop, in our opinion, also supports the prediction in Conjecture 7.

3.3 Bin covering: variable bin size

Problem statement: VSBCG (variable sized bin covering problem,
generic version): We are given a collection B of distinct bin sizes s1

through sk, s1 > s2 > · · · > sk, and a list L = (i : 1 ≤ i ≤ n) of items,

3 Bin covering E218

with size ai ∈ (0, 1] . It is assumed that s1 = 1 . A feasible bin cover for
L and B is an assignment of the items in L to a set of bins with sizes in B.
The goal is to find a feasible bin cover that maximizes the sum of the sizes
of the covered bins (and this sum is less than or equal to the sum of the sizes
of the items they hold). The lib constraint is not enforced.

Woeginger and Zhang [10] show that vsbcG is np-hard and provide
heuristics for the problem. Their heuristic is reproduced below for reference.

3.3.1 Woeginger-Zhang heuristic for VSBCG

Let K be the number of bin sizes in B that are strictly greater than 0.5 , and
define

qj = sj/sj+1 , where sj, sj+1 ∈ B and 1 ≤ j ≤ k − 1 ,
Q(B) = {qj : 1 ≤ j ≤ k − 1} .

(15)

Also define
q(B) = max

j
{qj : qj ∈ Q(B)} . (16)

Let m be the smallest non-negative integer to satisfy 2−m−1q ≤ q − 1 . A
partition of (0, 1] into k(m + 1) intervals Ij,l with 1 ≤ j ≤ k and 0 ≤ l ≤ m
is defined as:

• for 1 ≤ j ≤ k − 1 and 0 ≤ l ≤ m , let Ij,l = (bj+1/2l, bj/2l] ;

3 Bin covering E219

• for 0 ≤ l ≤ m − 1 , let Ik,l = (b1/2l+1, bk/2l] ;

• Ik,m = (0, bk/2m] .

The items in the first type of interval above are placed in bins of size bj+1 .
Items in the second and third interval types are placed in bins of size b1 = 1 .
An arriving item is placed in a used uncovered bin corresponding to its
interval. If no such bin is available, the item is placed in a new, unused
bin.

3.4 VSBC: allowing placement changes

Problem: The problem considered here, vsbcA, is similar to vsbcG, ex-
cept that the lib constraint is enforced, and although an arriving item i
can be placed only in the bin to which it is assigned, items in that bin can
be rearranged so that item i is placed in its correct position in the bin as
determined by its length.

The approximation algorithm from [10] presented above only needs to
be slightly modified, by adding an insertion sort routine. When an item i
(length ai) arrives, it is irrevocably assigned to bin bj . Suppose the number
of items in bj including i is p, and let l + 1 be the position of i from the top
of bj according to its length (or, the number of items in bj that are shorter
than i is l). Hence l items need to be taken out of the bin and put back, to

3 Bin covering E220

insert item(i) in its correct position in the bin. Hence the additional time
spent during each arrival from L is 2l .

Now l ≤ n , where n = |L| , and thus the additional time at each arrival
is 2l ≤ 2n . There are n arrivals in all, and this implies an additional time
of O(n2) , polynomial in the size of L. The approximation ratio obtained by
the heuristic in [10] is unaffected by the modification proposed here.

For any given instance (L,B), since our modification to the heuristic
in [10] causes

1. an additional running time of O(n2) that is polynomial in the size of
L, and

2. no change to the approximation ratio obtained,

the results of this section are summarized as follows.

Remark 8 With the modifications proposed above to the approximation al-
gorithm in [10], vsbcA becomes as approximable as vsbcG .

It is easy to see that the sorting algorithm proposed in this section can
be applied to any offline problem in one-dimensional bin packing and bin
covering. The items can be required to be placed in bins in the order of
their lengths, and results similar to Lemma 8 will still apply. The additional

3 Bin covering E221

requirement of lengthwise placement in bins does not degrade the approx-
imability of an offline problem. This can be generalized as follows.

Given an offline problem P in one-dimensional bin packing or bin cover-
ing, and an approximation heuristic A for P , let Pl be the problem modified
from P by requiring that the items in each bin be placed in the order of their
lengths. Let As be the heuristic obtained by applying sorting to the items
in each bin at the end of an application of A. For any given instance of an
item list L and bin sizes B, the approximation ratios obtained by applying
A to P and As to Pl are the same.

Remark 9 Problem Pl is as approximable as P .

3.5 VSBC: disallowing placement changes

Problem: This problem (vsbcP) is similar to vsbcG defined in Section 3.3,
except that the lib constraint is enforced. Unlike vsbcA, rearrangement of
items within bins is not permitted. The sequence in which the items are
placed in a bin is never changed.

An arriving item i of size ai must be placed at the top of its assigned
bin bj unless

• length is an issue (if i is longer than item l previously at the top of bj

before i’s arrival); or

3 Bin covering E222

• bin bj is already covered,

in which two cases, i is assigned to an unused bin. The problem is further
simplified due to Conjecture 7 (see Case 2 below).

3.5.1 Approximation algorithm for VSBCP

We now give an approximation algorithm for this version of vsbc. When an
item i of size ai ∈ L arrives, it is assigned to a bin as follows.

Case 1: (item i is at least as long as the shortest bin sk): Assign i to a
new (unused) bin whose size is the maximum among all bin sizes in B that
are at most as long as i. In other words, assign i to an unused bin of size sx ,
where

sx = max
j

{sj ∈ B : sj ≤ ai} . (17)

Case 2: (item i is shorter than the shortest bin sk): This case is almost the
same as bin covering with uniform bin size (Section 3.2), except that all the
item sizes and the (uniform) bin size are multiplied by a factor of sk. In light
of Conjecture 7 and the accompanying Theorem 6, we simplify the problem
by assuming that item sizes in this case are discrete. In particular, let the
item sizes be elements of a set C = {c1, . . . , cm}, with sk > c1 > · · · > cm .
Only bins of size sk are used here.

3 Bin covering E223

3.5.2 Algorithm analysis

Let
ri = (sk + ci)/sk , where ci ∈ C and 1 ≤ i ≤ m ,
R = {ri : 1 ≤ i ≤ m} ,
qj = sj/sj+1 , where sj, sj+1 ∈ B and 1 ≤ j ≤ k − 1 ,
Q = {qj : 1 ≤ j ≤ k − 1} .

(18)

Define
q = max

j
{qj : qj ∈ Q} , r = max

i
{ri : ri ∈ R} . (19)

Observe that q (r) is at least one.

Case 1: (item i is at least as long as the shortest bin sk): Suppose i is
placed in bin sx . From (18) and (19),

ai

sx

≤
sx−1

sx

= qx−1 ≤ q . (20)

From this, we get
ai ≤ qsx . (21)

The contents of bins in Case 1, C(1), can be broken down into C
(1)
C and C

(1)
O :

∑

i

ai = C(1) = C
(1)
C + C

(1)
O = C

(1)
C , (22)

3 Bin covering E224

where C
(1)
C and C

(1)
O represent the sum of the contents of covered and uncov-

ered bins respectively in Case 1. Observe that the assignment of item i to bx

covers bx . Hence there can be no uncovered bins in this case (thus C
(1)
O is

zero in (22)).

If (21) is summed up over all items i arriving in Case 1, we get, combining
with (22),

C
(1)
C = C(1) =

∑

i

ai ≤ q
∑

sx = qB(1) , (23)

where B(1) is the sum of the sizes of all bins used in Case 1.

Case 2: (ai is shorter than the shortest bin sk): Let β(ci) be the set of bins
that hold items of length ci . At any time, the number of uncovered bins in
β(ci) can be at most one, since an uncovered bin should be covered before
we start filling an unused bin.

Let Ni be the number of covered bins in β(ci) . The totalSize of a
covered bin in β(ci) is less than sk + ci , since at most one item can be

protruding out of a bin. Thus C
(2)
C (i) , the sum of the contents of covered

bins in β(ci) (in Case 2), is bounded by

C
(2)
C (i) ≤ (Ni)(sk + ci) = Niskri = B

(2)
i ri ≤ B

(2)
i r , (24)

where B
(2)
i is the sum of the sizes of all covered bins that hold items of size ci.

The last inequality in (24) follows from (19).

3 Bin covering E225

It follows from the above that C
(2)
C (i) ≤ rB

(2)
i . When we take a summa-

tion of this over all sizes c1 through cm, we get

C
(2)
C =

∑

i

C
(2)
C (i) ≤

∑

i

rB
(2)
i = r

∑

i

B
(2)
i = rB(2) . (25)

Since there are m sizes from c1 through cm , msk is a trivial upper bound on
C

(2)
O , the sum of the sizes of uncovered bins (in Case 2).

Combining the above two upper bounds, we obtain the upper bound on
C(2) as

C(2) = C
(2)
C + C

(2)
O ≤ rB(2) + msk . (26)

3.5.3 Approximability

As mentioned in [10], CC + CO is a trivial upper bound on opt(L,B). We
conclude that

opt(L,B) ≤ (CC) + (CO)

= (C
(1)
C + C

(2)
C) + (C

(1)
O + C

(2)
O)

= C
(1)
C + C

(1)
O + C

(2)
C + C

(2)
O

= C(1) + C(2) .

(27)

Let t = max(q, r) . From (23) and (26), it follows that

opt(L,B) ≤ C(1) + C(2)

≤ qB(1) + rB(2) + msk

≤ tB(1) + tB(2) + msk .
(28)

4 Discussion and remarks E226

Now A(L,B), the value of the solution obtained by the approximation algo-
rithm, is B(1) + B(2). Thus, from (28),

RA,B =
opt(L,B)

A(L,B)
=

t(B(1) + B(2)) + msk

B(1) + B(2)
, (29)

where RA,B is the approximation ratio for algorithm A and given bin sizes
B . From the asymptotic point of view, msk can be treated as a constant.

Theorem 10 For vsbcP , R∞

A,B, the asymptotic approximation ratio, is up-
per bounded by t = max(q, r), where q and r are defined in (18) and (19).

4 Discussion and remarks

In this paper, we have considered problems in one-dimensional bin packing
and bin covering with the additional constraint that the items be placed in
bins in the order of their lengths. The longest item is required to be placed
at the bottom (the lib constraint). All problems considered are np-hard.

In lib bin packing with uniform sized bins, we showed that the Next Fit
algorithm with an input of n items cannot have an RA better than θ(n). We
presented a modified version of the First Fit algorithm for this problem. We
proved an upper bound of 2 for two special cases of the problem, namely,

4 Discussion and remarks E227

if item sizes are monotonic non-decreasing or non-increasing (mnd or mni).
Since the general case remains inconclusive as to whether there is a constant
upper bound on RFF , we have provided results from computational testing
(Section 2.6). In about 20,000 instances of computation for this problem,
the maximum RA was only 1.5 , well within the bound of two foreseen in
Conjecture 3.

Interestingly, in the testing of both bin packing and bin covering problems,
as the problem size increases, the maximum ratio decreases, the average
ratio increases, and the percentage of instances where the heuristic produces
a solution as good as the optimal solution drops (the drop is steep in bin
covering, see Section 3.2.3).

We have provided a similar First Fit heuristic for uniform sized bin cover-
ing with lib. We showed that its worst case approximation ratio is θ(n). In
Theorem 6, we showed another non-approximability result, namely that there
can be no heuristic for this problem that can guarantee an upper bound less
than two unless p = np . Computational results for this problem are pro-
vided in Section 3.2.3, and are similar to those given in Section 2.6. The
worst value of RA obtained in these experiments was 5.0 .

In light of the non-approximability predicted in Conjecture 7, we assume
a simplified problem in the case of online, lib (longest item in the bottom)
vsbc — we assume that item sizes are discrete (as opposed to continuous
item sizes in the case of uniform sized bins) for sizes less than the smallest
bin size. The guarantee on RA achieved here in Theorem 10 is max(q, r),

4 Discussion and remarks E228

where q and r are defined in (18) and (19).

The following observations are made without a formal proof regarding
the online lib bin covering problem:

• What if there exist items in L with size greater than one (the size of
the largest bin)? The best we can do here is to place each item in its
own bin of size s1 = 1 . It is easy to see that no algorithm can do better
than this for items of such size. If the number of such items is |L1| , so
is the number of bins used. The total size of these bins is |L1| , and this
term is added to the numerator and denominator of (29) in computing
the approximation ratio. Therefore, if items in L larger than s1 are too
numerous compared with other items, RA,B in (29) will approach one,
implying optimality of the approximation algorithm.

• Worst Case Input: Suppose the items arrive in the order of strictly
increasing length, for lengths greater than as well as less than sk. In
such a case, the items have to be placed one item per bin. Items of
length < sk will be placed in bins of size sk . For items of length ≥ sk ,
each of these will be placed in an unused bin, and to obtain the best
possible value for the objective function, observe that the item should
be placed as per (17). Thus our algorithm is as good as any other
algorithm for this input.

5 Further research E229

5 Further research

Approximation results need to be uncovered for online versions of all prob-
lems in bin packing and bin covering where it is required that items be placed
in bins in the order of their lengths (or weights). Item lengths can be discrete
or continuous. Bin sizes can be uniform, variable, discrete or continuous.
The algorithms proposed in this paper for variable-sized bin covering should
be computationally tested for their performance. Conjecture 7 is an open
problem that needs resolution — the lower and upper bounding techniques
developed in the branch and bound algorithms could prove valuable in this
context.

Acknowledgements: The author benefited from useful discussions with
Marcsimon Visser of the University of Twente. Thanks to Janos Csirik for
making available his papers. We gratefully acknowledge support from the
Sir Ross and Sir Keith Smith Foundation in Adelaide, South Australia.

References

[1] S.F. Assmann. Problems in Discrete Applied Mathematics. PhD thesis,
Massachusetts Institute of Technology, Cambridge, MA, 1983. E203

References E230

[2] S.F. Assmann, D.S. Johnson, D.J. Kleitman and J.Y.-T. Leung. “On a
Dual Version of the One-dimensional Bin Packing”. Journal of
Algorithms, 5:502–525, 1984. E203

[3] E.G. Coffman, M.R. Garey and D.S. Johnson. “Bin Packing
Approximation Algorithms: A Survey”. In D. Hochbaum, editor,
Approximation Algorithms for np-Hard Problems, pages 46–93. PWS
Publishing Company, Boston, MA, 1996. E189

[4] E.G. Coffman, J. Csirik and G.J. Woeginger. “Approximate Solutions
to Bin Packing Problems”. Technical Report Woe-29, Institut fur
Mathematik B, TU Graz, Steyrergasse 30, A-8010 Graz, Austria,
February 1999. E189

[5] J. Csirik and V. Totik. “On-line Algorithms for a Dual Version of Bin
Packing”. Discrete Applied Mathematics, 21:163–167, 1988. E203,
E232

[6] J. Csirik, J.B. Frenk, M. Labbe and S. Zhang. “Two Simple Algorithms
for Bin Covering”. Acta Cybernetica, 14(1):13–25, 1999. E203

[7] J. Csirik and J.B. Frenk. “A Dual Version of Bin Packing”. Algorithms
Rev., 1:87–95, 1990. E203

[8] J. Csirik and G.J. Woeginger. “On-line Packing and Covering
Problems”. Technical Report SFB-83, Institut fur Mathematik B, TU
Graz, Steyrergasse 30, A-8010 Graz, Austria, 1996. E204

A Erratum: Correction to the proof leading to Theorem 6 E231

[9] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide
to the Theory of np-Completeness. Freeman (New York), 1979. E192

[10] G.J. Woeginger and G. Zhang. “Optimal On-Line Algorithms For
Variable-Sized Bin Covering”. Operations Research Letters, 25:47–50,
1999. E203, E204, E205, E218, E219, E220, E225

A Erratum: Correction to the proof leading

to Theorem 6

In Section 3.2.2, the lower bound mentioned in Theorem 6 should be 1.5 ,
not 2 . The error is due to the fact that only extreme values of m are con-
sidered in Cases 1b and 2 (pages E211–E213).

Heuristic A could adopt different strategies. Here is one strategy that
guarantees an upper bound of 1.5 on the approximation ratio.

Double stack two-thirds of the items in L1 and single stack the remaining
one-third. Again, let i be the number of items in L1 . Observe that at most
i/3 bins can be covered by placing the L2 items on top of L1 items. The
number of (double-stacked) bins covered by L1 items alone is equal to i/3 .
There are several cases here, depending on the value of j (the number of
items in L2):

A Erratum: Correction to the proof leading to Theorem 6 E232

j ≥ i: Optimal algorithm will cover i bins. The heuristic will cover i/3 +
i/3 = 2i/3 bins. Thus the approximation ratio = 1.5 .

i/3 ≤ j < i: Optimal algorithm will cover j + (i − j)/2 = (i + j)/2 bins.
The heuristic will cover i/3+ i/3 = 2i/3 bins. Thus the approximation
ratio = 3(i + j)/4i = 0.75(1 + j/i) < 0.75(2) = 1.5 .

j < i/3: Optimal algorithm will cover j + (i − j)/2 = (i + j)/2 bins. The
heuristic will cover i/3 + j = (i + 3j)/3 bins. Thus the approximation
ratio = (1.5)(i + j)/(i + 3j) ≤ 1.5 .

The guaranteed approximation ratio is the maximum among the three
cases described above, and hence equal to 1.5 as now appears in Theorem 6.

Discussion: The lower bound on the guaranteed approximation ratio for
this problem, uniform sized bin covering with lib, remains at two, since Csirik
and Totik [5] have proven a lower bound of two for the simpler problem (the
non-lib case). Their proof applies to our problem as well.

Acknowledgement: The author thanks Kevin White for bringing the er-
ror to his attention.

	Background
	Bin Packing
	Approximation ratios
	Bin packing: next fit algorithm
	Bin packing: first fit algorithm
	First Fit: monotonic non-decreasing sizes
	First Fit: monotonic non-increasing sizes
	First Fit (general case): computational testing

	Bin covering
	Approximation ratios
	Bin covering: uniform bin size
	Algorithm analysis
	Uniform bin size: non-approximability
	Computational testing

	Bin covering: variable bin size
	Woeginger-Zhang heuristic for VSBCG

	VSBC: allowing placement changes
	VSBC: disallowing placement changes
	Approximation algorithm for VSBCP
	Algorithm analysis
	Approximability

	Discussion and remarks
	Further research
	References
	Erratum: Correction to the proof leading to Theorem 6

