
ANZIAM J. 44 (E) ppE1–E32, 2002 E1

On the behaviour of solutions of the

two-cell cubic autocatalator reaction

model

H. I. Abdel-Gawad∗ K. M. Saad†

(Received 31 October 2001; revised 10 June 2002)

Abstract

Approximate solutions of the initial value problem for
reaction diffusion equations in two regions (cells) are ob-
tained. The system is considered here with two chemical
species, species A and the autocatalyst B. The reaction
is taken to be cubic in the autocatalysis in the first region
with linear exchange through A. In the first region, the
autocatalyst is taken to decay linearly. Approximate so-
lutions are found through the Picard iterative sequence of
solutions. The space and time variations of the concentra-
tion of the species A and B are evaluated in the two regions.
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The oscillation of the concentrations in times has been ob-
served in different locations. This phenomena is stepped
out for relatively large times. Comparison between two con-
secutive solutions is made. The maximum error estimate
is of order 10−3 for some appropriate time period. At this
time level, the solutions obtained are adequate for labora-
tory simulation experiments to open systems. It is observed
that no initiation to travelling waves occurs whenever the
initial values of the concentrations of the reactant (or the
autocatalysts) are not periodic.
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1 Introduction and mathematical

formulation

Chemical and biological reactions in open systems (which allow mass
transport across the reaction boundary) may give rise to complex
phenomena. These phenomena may be multiple stationary-states,
damped oscillations (see [5]), target patterns, spiral waves [10, 11,
22] or strange attractors [8, 9]. These nonlinear phenomena may
be due to feedback through the detailed chemical mechanism or
through departure from the isothermal state [20]. Our aim here
is to study the time and space variation of the concentrations in
isothermal-reaction diffusion processes in two regions. Coupling be-
tween the two regions is assumed by allowing linear diffusive inter-
change by autocatalyst (or the reactant). This is achieved prac-
tically through a semi-permeable membrane interface between the
two regions (cells). For more details see the experimental works
in [6, 7, 19]. We consider an initial value problem where the auto-
catalyst is injected locally into uniform concentrations of the reac-
tant. The initiation and propagation of travelling waves for these
reactions with different orders and different geometries have been
studied in a series of papers [15, 12, 13, 14, 17, 16, 18]. The travel-
ling wave solutions describe the propagation of waves with speed c.
Steady state solutions correspond to taking c = 0 . In general these
solutions are independent of the initial conditions and they may be
valid asymptotically. They may not be realistic solutions. Thus
short-range phenomena are masked by these solutions. A typical
phenomena consists of the oscillation of the concentrations of the
reactant and the autocatalyst in the two regions. We now consider
the following model. In Region I, the reaction is given by a cubic
autocatalyst together with a linear decay of the autocatalyst, to an
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inert product C:

A + 2B → 3B (rate = k1AB2) , and B → C (rate = k2B) .

In Region II, the reaction is given by a pure interchange of the
reactant through the two regions while the autocatalyst concentra-
tion is taken to be zero. Also, it is assumed that A interchanges
from one region to another through mass exchange rate k3 . The
motivation for studying these problems is to investigate the series
of interesting phenomena produced in the propagation of reaction
diffusion waves on coupled membrane interfaces. Here we shall con-
fine ourselves to the one-dimensional model equations which de-
scribe such autocatalytic reactions. They are (see also [17]) for
(X, τ) ∈ (−∞,∞) × [0, T ] :

a1τ = Da1XX − k1a1b
2 + k3(a2 − a1) , (1)

bτ = DbXX + k1a1b
2 − k2b , (2)

a2τ = Da2XX + k3(a1 − a2) . (3)

In (1–3) a1, a2 and b are the concentrations of the reactant A and
the autocatalyst B in the two Regions I and II respectively. The
diffusion coefficients of the species A and B in the two regions are as-
sumed to be the same, namely D . The initial conditions are that A
is a uniform distribution in the two regions while the autocatalyst
is injected locally:

ai(X, 0) = a0 ; b(X, 0) = a0

{

H(X) , −` < X < `
0 , |X| ≥ ` ,

(4)

where H(X) is a nonnegative function which is infinitely differen-
tiable and vanishes as |X| → ` . The boundary conditions are

ai → a0 , b → 0 as |X| → ∞ , t ≥ 0 . (5)
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By the nondimensionalisation

ai = a0αi , b = a0β , t = k1a
2
0τ and x =

(

k1a
2
0

D

)1/2

X ,

the pdes (1–3) become, for (x, t) ∈ (−∞,∞) × [0, T ] ,

α1t = α1xx − α1β
2 + γ(α2 − α1) , (6)

βt = βxx + α1β
2 − kβ , (7)

α2t = α2xx + γ(α1 − α2) . (8)

In the new variables, the initial and the boundary conditions become

αi(x, 0) = 1 , β(x, 0) =

{

hg(x) , |x| < `1

0 , |x| ≥ `1 ,

αi → 1 , β → 0 as |x| → ∞ , t ≥ 0 , i = 1, 2 (9)

where `1 = (k1a
2
0`

2/D)1/2 . The non-dimensional constants k =
k2/(k1a

2
0) and γ = k3/(k1a

2
0) represent the strength of the autocat-

alyst decay and the coupling between the two regions respectively.
Here the function g(x) is taken as

g(x) = e1/(x2−`2
1
) . (10)

Notice that the function β(x, 0) has compact support (or it belongs
to the space C∞

0 ([−`1, `1]) ). Hereafter, we confine ourselves to
the case `1 = 1 . By applying the scalar maximum principle to
the parabolic operator, it has been shown that 0 ≤ αi ≤ 1 and
0 ≤ β ≤ 2 + h , i = 1, 2 . These results have been verified through
numerical calculations [17].
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2 Outline of the method for initial

value problems

In this work, we use the approach developed in [1, 2, 3] to find
approximate solutions to the equations (6–8) for the initial value
problems (ivp). The approach is based on finding the formal exact
solution for the ivp. After the exact solution is found, the Picard
iterative sequence of solutions is constructed. We truncate the Pi-
card iteration at the first and second approximations for the problem
under consideration. We write the set of equations (6–8) as

Ut = M̂U + S(U) , (11)

M̂ =







∂2
x − γ 0 γ
0 ∂2

x − k 0
γ 0 ∂2

x − γ





 , (12)

S(U) =
(

−α1β
2 α1β

2 0
)T

, U =
(

α1 β α2

)T
. (13)

In (11) we consider the vector S as a source term. By using the
results found in [3], the formal exact solution of the set (11–13) for
the ivp is

U(x, t) = UL(x, t) +
∫ t

0
e(t−t1)M̂S (U(x, t1)) dt1 , (14)

where UL(x, t) is the solution of the linear problem which satisfies

ULt(x, t) = M̂UL(x, t) . (15)

The solution of (15) is

UL(x, t) = etM̂U0(x) , (16)

where the vector of initial conditions U0(x) = (1, hg(x), 1)T . We
can easily show that the solution (14–16) satisfies the system (11–
13) and (9).
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The exponential of a matrix of operators in (14,16) is defined by

e−λM̂ij =
1

2πi

∫ c+i∞

c−i∞
e−λZ(ZÎ − M̂ij)

−1dZ , (17)

where (ZÎ − M̂ij)
−1 is the resolvent matrix of operators. In fact the

matrix of operators (ZÎ−M̂ij) may be written as (ZÎ−M̂ij) = (ẐI−
M̂ij) , where Ẑ is an eigenoperator of the matrix of operators M̂ .
The last identity holds because if Z is an eigenvalue of the operator
Ẑ , namely Ẑf = Zf and ZÎf = Zf for all f ∈ C∞ , then we
can write ZÎf = ẐIf . To define an eigenoperator of a matrix of
operators, consider the problem

M̂ f = Mf for all f ∈ C∞ , (18)

where f = (f1, f2, . . . , fm)T and M = (Mij) , i, j = 1, 2, . . . , m is the

matrix which results from operating by M̂ onto f . This holds by
bearing in mind that the operators Mij have constant coefficients.
Also, we consider the eigenvalue problem,

L̂if = λif , i = 1, 2, . . . , m for all f ∈ C∞ . (19)

Definition 1 The operators L̂i are eigenoperators of the matrix of
operators M̂ if λi are the eigenvalues of the matrix M .

In this case, we have

(M̂−L̂iI)f = (M−λiI)f = 0 or |M−λiI| = |fT (M̂−L̂iI)f | = 0 ,
(20)

where I is the identity matrix. By using this definition, the eigen-
operators of the matrix M̂ are ∂2

x , ∂2
x − k , and ∂2

x − 2γ . We now
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construct the Picard iterative sequence of solutions for n = 1, 2, . . .
of

Un(x, t) = U0(x, t) +
∫ t

0
e(t−t1)M̂Sn−1(U(x, t1)) dt1 ,

where U0(x, t) = UL(x, t) , (21)

and Sn−1(U(x, t1)) = S(Un−1(x, t1)) .

Under the initial conditions (9), we can show that the sequence Un

converges uniformly to the exact solution U . Also, it can be shown
that this solution is unique and stable. We mention the following
lemmas and theorems without proof.

Lemma 2 The matrix of operators etM̂ , t > 0 , acts on the space
L1 ∩ C∞ which is closed and bounded.

Lemma 3 The matrix of operators etM̂ , t > 0 , acts on the space
C∞

0 which is in S∞ .

Note: as the initial function β0(β(x, 0)) is in C∞

0 , it can be shown
that the solution of the linear problem, namely βL , is in the space
S∞ (which includes C∞

0 ), the space of rapidly decreasing functions
which are infinitely differentiable. Consequently S0 ≡ S(UL) is in
S∞ .

Theorem 4 If S0 ∈ S∞ , is bounded and Lipschitz continuous, then
the sequence Un in (21) converges uniformly to the exact solution
U for the initial value problem (11–13) and (9).

Theorem 5 Under these conditions, the solution (11–13) is unique
and stable.
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The proofs of these theorems and lemmas follow those in [3]. For
convenience, hereafter, we shall rescale time according to whether
γ < 1 or γ ≥ 1 : we use the transformation t → γt for γ < 1 ; and
t → t/γ for γ > 1 . These two cases are considered respectively.

3 The first approximation to the

solution of the problem for γ < 1

Consider the case when γ < 1 and make the rescaling transformation
t → γt . The set of equations (11–13) becomes

Ut = M̂1U + S1(U) , (22)

M1 = γM , S1(U) = γS(U) , (23)

where M̂ and S(U) are given by (13). The first approximation for
the solution (22–23) and (9–10) is

U1(x, t) = UL(x, t) +
∫ t

0
e(t−t1)M̂1S1(UL(x, t1)) dt1 , (24)

where

S1(UL(x, t1)) =







−γα1L(x, t1)β
2
L(x, t1)

γα1L(x, t1)β
2
L(x, t1)

0





 , (25)

UL(x, t) = etM̂1

(

1 hg(x) 1
)T

. (26)

By substituting (10) into (26) and using the expansion for etM̂1 as
in [3], we have

UL(x, t) =







1
βL(x, t)

1





 , (27)
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βL(x, t) =
he−tγk

2
√

πγt

∫ 1

−1
g(x1) exp

[

−(x − x1)
2

4γt

]

dx1 , (28)

g(x1) = e1/(x2

1
−1) . (29)

By substituting (27) and (28) into (24–26) and after a set of calcu-
lations, we obtain

U1(x, t) = UL(x, t) +
∫ t

0







λ+(t, t1)
ρ(t, t1)
λ−(t, t1)





 f1(x, t, t1) dt1 , (30)

f1(x, t, t1) = h2
∫ 1

−1

∫ 1

−1

g(x1)g(x2)

4π
√

t1(2t − t1)
exp

{

− 1

8γ

[

(x1 − x2)
2

t1

+
(−2x + x1 + x2)

2

2t − t1
+ 16kγ2t1

]}

dx1 dx2 , (31)

λ±(t, t1) =
−1

2

[

1 ± e−2γ2(t−t1)
]

, (32)

ρ(t, t1) = e−kγ(t−t1) . (33)

Most of the results found here have been obtained using Mathemat-
ica. Note that the contribution from the nonlinear coupling between
the reactant and the autocatalyst given by the second term in the
right-hand side of (30) tends to zero uniformly as t → ∞ . Therefore
the Picard iteration scheme converges uniformly. Predominantly,

‖U1 − UL‖ = O(t−1) , ‖U2 − U1‖ = O(t−2) , . . . . (34)

Thus the above results are valid for 0 ≤ t ≤ T , where T is taken ap-
propriately so that the maximum error between the second and first
approximation is of order 10−3. This will be discussed in Section 4.

First, the solutions for α1, β and α2 given by (30–33) are dis-
played against x for different values of t, k, γ and h. In each one
of the following figures, the results for α1, β and α2 are plotted in
parts (a), (b) and (c) respectively.
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• Figure 1 displays solutions for k = 0.05, γ = 0.2 and h = 5 .
The dot-dashed, dashed and solid curves correspond to the
values of t = 10, 50 and 100 respectively. From these figures,
we find that the concentration β is sufficiently small almost
everywhere for t ≥ 100 . On the other hand the concentration
α1 spreads more quickly in comparison with α2 . This reflects
the broadening effect of the nonlinear term in the equation
for α1 . Thus the coupling between the autocatalyst and the
reactant in the first region has the effect of broadening the
domain of reaction. Nevertheless, α2 decreases more rapidly
than does α1 .

• Figure 2 displays solutions for t = 10, γ = 0.2 and h = 5 . The
dash-dotted, dashed and solid curves correspond to k = 0.05 ,
1 and 1.5 respectively. See that by increasing the decay rate k,
the concentrations α1 and α2 are slightly changed. This means
that for high values of the decay rate k (namely for k > 1),
the reaction through coupling between the reactant and the
autocatalyst or the interchange between the two regions is
weak.

• Figure 3 displays solutions for h = 5, t = 10 and k = 0.05 .
The dash-dotted, dashed and solid curves correspond to the
values γ = 0.08, 0.2 and 0.7 respectively. We find that α1

decreases significantly for sufficiently small values of γ in con-
trast to α2 whereas β increases almost everywhere as γ de-
creases. This reflects the dominance of the coupling between
the autocatalyst and the reactant in the first cell when the rate
of interchange of the reactant across the walls is sufficiently
small.

• Figure 4 displays solutions for t = 10, k = 0.05 and γ = 0.2 .
The dash-dotted, dashed and solid curves correspond to h = 3,
5 and 6 respectively. These show that increasing the initial
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Figure 1: The solutions for α1, β and α2 are displayed against x
in (a), (b) and (c) respectively for h = 5, k = 0.05 and γ = 0.2 :
(-·-) t = 10; (- -) t = 50; (—) t = 100 .
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Figure 2: The solutions for α1, β and α2 are displayed against x
in (a), (b) and (c) respectively for h = 5, t = 10 and γ = 0.2 : (-·-)
k = 0.05; (- -) k = 1; (—) k = 1.5 .
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Figure 3: The solutions for α1, β and α2 are displayed against x
in (a), (b) and (c) respectively for h = 5, t = 10 and k = 0.05 : (-·-)
γ = 0.08; (- -) γ = 0.2; (—) γ = 0.7 .
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concentration of the autocatalyst activates the reaction.

In Figures 5–8, the solutions (30–33) are displayed against time t
for different values of x, k, γ and h.

• Figure 5 displays solutions for h = 5, k = 0.05 and γ = 0.5 .
The dash-dotted, dashed and solid curves correspond to x = 3,
4 and 5 respectively. See that α1, β and α2 oscillate with
time. The oscillation is meaningful for small values of x (the
core of the reaction vessel). This phenomena is strong in the
autocatalyst concentration.

• Figure 6 displays solutions for h = 5, x = 5 and γ = 0.5 . The
dash-dotted, dashed and solid curves correspond to k = 0.5,
1 and 1.5 respectively. Observe that the rapid decay of the
autocatalyst has a passive effect on the oscillation phenomena.
For k � 1 , one finds the concentrations decay mainly linearly.

• Figure 7 displays solutions for h = 5, k = 0.05 and x =
5 . The dash-dotted, dashed and solid curves correspond to
γ = 0.4, 0.5 and 0.7 respectively. See that the oscillations are
significant in increasing the rate of interchange of the reactant
between the two regions.

• Figure 8 displays solutions for γ = 0.5, k = 0.05 and x = 5 .
The dash-dotted, dashed and solid curves correspond to h = 4,
5 and 6 respectively. The variation of the initial concentra-
tion of the autocatalyst has a slight effect on the observed
oscillation.

Secondly, consider the case γ > 1 where the results obtained
as given by (30–33) hold but (t, t1) → γ−1(t, t1) . We visualize the
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Figure 4: The solutions for α1, β and α2 are displayed against x
in (a), (b) and (c) respectively for t = 1, k = 0.05 and γ = 0.2 : (-·-)
h = 3; (- -) h = 5; (—) h = 6 .
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Figure 5: The solutions for α1, β and α2 are displayed against t in
(a), (b) and (c) respectively for h = 5, k = 0.05 and γ = 0.5 : (-·-)
x = 3; (- -) x = 4; (—) x = 5 .
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Figure 6: The solutions for α1, β and α2 are displayed against t
in (a), (b) and (c) respectively for h = 5, x = 5 and γ = 0.5 : (-·-)
k = 0.5; (- -) k = 1; (—) k = 1.5 .
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Figure 7: The solutions for α1, β and α2 are displayed against t
in (a), (b) and (c) respectively for h = 5, k = 0.05 and x = 5 : (-·-)
γ = 0.4; (- -) γ = 0.5 (−)γ = 0.7 .
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Figure 8: The solutions for α1, β and α2 are displayed against t in
(a), (b) and (c) respectively for γ = 0.5, k = 0.05 and x = 5 : (-·-)
h = 4; (- -) h = 5; (—) h = 6 .



4 The second approximation and maximum error estimate E21

effects of the high rate of interchange of the reactant A on the
reaction, in the following figures. Figure 9 displays the results (30–
33), with (t, t1) → γ−1(t, t1) against x for k = 0.05, h = 5 and γ = 2 ,
The dash-dotted, dashed and solid curves correspond to t = 10,
50 and 100 respectively. See that the replenishment of the reactant
is mainly the same in the two regions. This is in contrast to the case
of small values of γ . In Figure 10 the results are plotted against t
for k = 0.05, h = 5 and γ = 5 . The dash-dotted, dashed and solid
curves correspond to x = 0.5, 1 and 5 respectively. The oscillation
of the concentrations is weakened for γ > 1 .

4 The second approximation and

maximum error estimate

Notice that the problem under consideration admits some conser-
vation laws for some special values of the parameters k and γ . For
k = 0 , the first conservation law is that the sum of the concentra-
tions satisfies the linear diffusion equation

(∂t − ∂2
x)Φ1 = 0 , Φ1 = α1 + β1 + α2 . (35)

For k = 2γ , we have the second conservation law

(∂t − ∂2
x)Φ2 = 0 , Φ2 = (α1 + β1 − α2)e

−2γt . (36)

We now evaluate Φ1 or Φ2 exactly from (35) and (36) by using the
initial conditions under consideration and as given approximately
in Section 3. We find that the error between the exact and approxi-
mate values for these functions vanishes identically. Thus we are led
to calculate the second approximation and give a maximum error
estimate between the first and second approximations. The second
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Figure 9: The solutions for α1, β and α2 are displayed against x
in (a), (b) and (c) respectively for h = 5, k = 0.05 and γ = 0.2 :
(-·-) t = 10; (- -) t = 50; (—) t = 100 .
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Figure 10: The solutions for α1, β and α2 are displayed against t
in (a), (b) and (c) respectively for h = 5, k = 0.05 and γ = 5 : (-·-)
x = 0.5; (- -) x = 1; (—) x = 5 .



4 The second approximation and maximum error estimate E24

approximation is

U2(x, t) = UL(x, t) +
∫ t

0
e(t−t1)M̂1S1(U1(x, t1)) dt1 , (37)

S1(U1(x, t1)) =









−γα
(1)
1 (x, t1)(β

(1))2(x, t1)

γα
(1)
1 (x, t1)(β

(1))2(x, t1)
0









, (38)

where α
(1)
1 , α

(1)
2 and β(1) are the components of U1 given by (30–33).

By substituting these results into (37) and (38), we get for γ < 1
with t → γt

U2(x, t)

= UL(x, t) +
∫ t

0







λ+(t, t1)
ρ(t, t1)
λ−(t, t1)





 f1(x, t, t1) dt1

+ 2
∫ t

0

∫ t1

0







λ+(t, t1)ρ(t, t1)
ρ(t, t1)ρ(t1, t2)

λ−(t, t1)ρ(t1, t2))





 f2(x, t, t1, t2) dt2 dt1

+
∫ t

0

∫ t1

0







λ+(t, t1)λ+(t1, t2)
ρ(t, t1)λ+(t1, t2)
λ−(t, t1)λ+(t1, t2)





 f3(x, t, t1, t2) dt2 dt1

+ O(β5
L) , (39)

f2(x, t, t1, t2)

= h3
∫ 1

−1

∫ 1

−1

∫ 1

−1

√
γ
∏3

i=1 g(xi)dxi

8
√

π3t2(tt∗ − 2t21)
×

× exp

(

−1

8γt2(tt∗ − 2t21)

{

(tt∗ − 2t21)
[

(x1 − x2)
2

+8kγ2t2(t1 + 2t2)
]

+ 2t2
[

(x3 − x)2(2t1 − t2)

+(x∗ − 2x)2(t − t1)
]}

)

, (40)
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f3(x, t, t1, t2)

= h4
∫ 1

−1

∫ 1

−1

∫ 1

−1

∫ 1

−1

√
2
∏4

i=1 g(xi)dxi

16π2
√

t1t2
√

2t(3t1 − t2) − t1t∗
×

× exp

(

−(x1 − x2)
2

8γt2
+

−1

q

{

2(tt∗ − 2t21)(x
2
3 + x2

4)

+ t1
[

4x2(3t1 − t2) − 4xx∗t1 + (x∗)2(2t − t1)
]

− 4x4t1 [x(2t1 − t2) + x∗(t − t1)] − 4x3 [x4(2t1 − t2)×

× (t − t1) + t1(x(2t1 − t2) + x∗(t − t1))]}
)

, (41)

q = 8γt1(2t(3t1 − t2) − t1t
∗) − 2kγ(t1 + t2) , (42)

where x∗ = x2 + x3 and t∗ = 4t1 − t2 . For γ ≥ 1 the above results
hold but (t1, t2) → γ−2(t1, t2) . After the results (30–33) which are
shown in Figures 1–10, one finds that the maximum or the mini-
mum of the concentrations occurs at x = 0 . Therefore we confine
ourselves to evaluating the error estimate between the first and sec-
ond approximation at x = 0 , namely Ri(t) = |u(2)

i (0, t)−u
(1)
i (0, t)| ,

where ui is α1, β or α2 . The results (30–33) and (39–41) are used to
evaluate the function Ri(t) and the results are shown in Figure 11
for h = 2, k = 0.5 and γ = 0.4 . See that the maximum error os-
cillates, mainly increasing with t up to t ≈ 10 (dimensionless) and
then decreases to some value less than 2 × 10−3 where it saturates.
The error depends significantly on the value of h (or the initial con-
centration of the autocatalyst): it increases with h increasing. The
error remains of the same order for the values of h considered here
up to h = 5 . However, the error estimate depends weakly on the
values of k and γ .

In Figures 1–4 observe that the minimum (or maximum) value
of αi (or β) does not vary with time. This means that no initiation
to travelling waves occurs. In fact, when analysing the set of equa-
tions (6–9), we find that the diffusion term assumes an unbounded
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Figure 11: The maximum error estimate between the second and
the first approximation for α1, β and α2 is displayed against t in
(a), (b) and (c) respectively for h = 2, k = 0.5 and γ = 0.4 .
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propagation speed. The effect of the presence of the linear terms
in αi (or β) is to accelerate or decelerate the reaction, while the
nonlinear coupling terms αiβ

2 play the role of enlarging the domain
of reaction. This is shown in Figures 1–4. For example in Figure 1,
see that the concentration α1 is equal to its initial value (namely 1)
on |x| > 30 . That is, the reaction holds for |x| ≤ 30 . But the
concentration α2 differs from 1 on |x| ≤ 20 . Thus the presence of
the nonlinear coupling term results in an enlarging of the reaction
domain. As no initiation to travelling waves occurs, there exists
no realistic permanent travelling wave solution for (6–9). We think
that a realistic permanent travelling wave is an intrinsic property
of the nonlinear evolution equations. This will be discussed in the
next section.

5 On the existence of realistic

permanent travelling wave solutions

First, consider a single nonlinear evolution equation of the form

ut = F (x, t, u, ux, uxx, . . .) (43)

where F is analytic in its arguments. When the function F is linear
in ux , namely

F = −νux + F ∗(x, t, u, uxx, . . .) , (44)

then in the solution of (43), a travelling wave initiates with a speed
which tends to be ultimately ν. Thus a realistic permanent trav-
elling wave solution (rptws) for (43) exists. The wave travels at
speed ν. Now we exclude this case and suggest the following propo-
sition.
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Proposition 6 A sufficient condition for an evolution equation of
the form (43) to admit a rptws is the existence of a ptws U(z) 6≡ 0
for (43) such that its solution is invariant under the auto-Bäcklund
transformation (abt)

u(x, t) = U(Z) + u(x, t) , u 6≡ 0 , Z = x − ct , (45)

where c is the speed of the travelling wave. But if the abt exists
only with U(z) = 0 , then no rptws exists. It is understood that in
the abt both u and u satisfy (43).

To clarify this proposition, we give some examples. If the func-
tion F in the right-hand side of (43) is

F = uxx + λu(1 − u) , (46)

then (43) and (46) become the Fisher equation. In this case the
solution of these equations is invariant under (45) only when

U(Z)u(x, t) = 0 . (47)

Thus (45) holds when U(z) = 0 and no rptws for (43) and (46)
exists. We mention that the solution u = 0 for (45) yields the
hypothetical ptws u = U(Z) . If the function

F = uxx + uux , (48)

then (43) and (48) yields Burgers’ equation. The condition of in-
variance of the solution of (43) and (48) under (45) is

dU

dz
u + U(z)ux = 0 . (49)

We find that (49) solves for U(z) = U0e
λz and u = g(t)e−λx , where

U0 is an arbitrary constant and g(t) is an arbitrary function. Thus
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Burgers’ equation admits a rptws. Thus a sufficient condition that
the evolution equation (43) admits a rptws is that F is an explicit
function in ux (the advection term). The necessary condition for the
existence of a rptws may arise from the initial or boundary condi-
tions. We note from the problem studied in Section 5 that the set of
equations (6–8) do not verify the sufficient condition for a rptws

to exist. On the other hand, the initial conditions (9) on the infinite
domain are not periodic. Thus no rptws exists. This statement
holds for dynamical systems of infinite size which do not satisfy the
sufficient condition and with non-periodic initial conditions.

For dynamical systems of finite size which do not satisfy the
sufficient condition, the situation is different. Self-oscillations are
induced by periodic boundary conditions [21]. For soft (Dirich-
let) boundary conditions, the modes generated are mainly damp-
ing. The most dominant mode(s) initiate(s) travelling waves. In
this case a rptws exists. For rigid (Neumann) boundary condi-
tions, some modes generated are growing and symmetry breaking
occurs leading probably to chaotic behaviour [4].

6 Conclusions

Solutions of the initial value problem for the two region cubic auto-
catalytic reaction model have been obtained. These solutions have
been found by truncating the Picard iterative sequence of solutions
constructed after the exact ones. We have shown that the concen-
trations of the reactants spread towards the walls of the reaction
vessel as time increases. The spreading of either the reactant or the
autocatalyst depends significantly on γ but weakly on the parameter
values of h and k. It has been also shown that the concentrations
oscillate with time in the core of the reaction vessel for a small
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time period. This phenomenon is shown to be more significant in
the autocatalyst than in the reactant and is moderately affected by
varying the control parameters γ, k and h. We have found that no
initiation to travelling waves occurs whatever the concentrations of
the reactant or the autocatalyst.
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