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Abstract

In recent years, engineers, economists, and military com-
manders amongst others have placed increasing emphasis
on decision making under conditions of uncertainty. Much
of life involves making choices under uncertainty, that is,
choosing from some set of alternative courses of action in
situations where we are uncertain about the actual conse-
quences that will occur for each course of action being con-
sidered. It is the field of Decision Analysis that is concerned
with the making of rational, consistent decisions, notably
under conditions of uncertainty. That is, Decision Analysis
helps the decision maker to analyse a complex situation with
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many different alternatives, states and consequences and to
choose the best alternative in light of the information avail-
able. The objective of Decision Analysis is to choose a course
of action consistent with the basic preferences and knowledge
of the decision maker. In this paper we investigate the prob-
lem of decision making for the direction of resources within
a network of support. This network seeks to mimic how
logistic support might be delivered in a military area of op-
erations. It is shown that transitions in the state variables
depend upon the status of the network at the end of the pre-
vious cycle, the physical distribution decisions taken in the
current and previous cycle and the demand for support expe-
rienced in the current cycle. By using control theory we are
able to formulate the above problem as an optimal control
problem, that is, the state variables X(t) are governed by
a certain transition function F , and we are seeking the de-
cision stream (optimal controller) for physical distribution
actions such that a given Combat Power Cost function is
optimised. This latter function is fashioned on some con-
temporary measures of effectiveness adopted for military lo-
gistics. Furthermore, the problem of decision making under
uncertainty is also studied by using robust optimal control
techniques to formulate the effects of changing situational
awareness. A simple case study is given to show the poten-
tial of the proposed techniques.
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1 Introduction

Armies worldwide are devoting much time to the consideration of
future warfare, what technologies might be involved, what doctrine
might be employed, and generally what the nature of warfare might
be in the timeframe of 2020 and beyond. These considerations con-
cern not only how armed forces might undertake operations but also
how they might support them. It is this latter element that is the
concern of logistics.

Contemporary military thought suggests that, in comparison to
current methods, logistic support for this future warfare will become
more networked in nature and that management of dynamic system
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behaviour will be needed in order to maximise performance. Based
on its application in other problem domains, our proposition is that
in this more dynamic and networked environment optimal control
would have some beneficial application.

In researching this topic we could not locate any examples of
optimal control applied to decision support of logistic networks or
general military logistic operations. Therefore, our principal mo-
tivation in this paper is to demonstrate and promote the use of
optimal control to formulate and investigate the performance of mil-
itary logistic networks. This is in anticipation that it could play a
part in future logistic network command and control systems. In
investigating this particular application of optimal control we also
wish to include some contemporary performance measures and what
we present here, we believe, is a small but useful start to this line
of inquiry.

By way of preview the first part of this paper provides a brief
discussion of the general topic of decision analysis and some of the
available mathematical techniques. We then address the particular
problem domain of military logistics and the application of opti-
mal control.

It is important to mention that the optimal control approach we
used to study the problem of logistic support decision making in this
paper has the advantages of transforming a large network problem
to a standard optimal control problem described by a state-space
model, which can then be solved using some existing techniques
and results. Also, to analyse the time-delay effect and modeling
uncertainty in such a state-space model is much easier, and arguably
more complete, with our adopted approach in comparison to other
Operations Research techniques that might be employed.
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2 Decision analysis

2.1 The nature of decision analysis

Operations Research seeks the determination of the best (optimum)
course of action of a decision problem under the restriction of lim-
ited resources. Although mathematics and mathematical models
represent a cornerstone of Operations Research, there is more to
problem solving than the construction and solution of mathematical
models. Specifically, decision problems usually include important
intangible factors that cannot be translated directly in terms of the
mathematical model. Foremost amongst these factors is the pres-
ence of the human element in almost every decision environment.
Indeed, decision situations have been reported where the effect of
human behaviour has so influenced the decision problem that the
solution obtained from the mathematical model is deemed impracti-
cal. Therefore, a decision model is merely a vehicle for summarising
a decision problem in a manner that allows systematic identification
and evaluation of all decision alternatives of the problem. The deci-
sion model can hopefully provide insight and sharpen the intuition
of the decision maker, who, in making a decision, must also account
for the intangible factors outside the model.

All decision problems have certain general characteristics. These
characteristics constitute the formal description of the problems and
provide the structure for generating solutions. In this regard, de-
cision problems may be represented by a model in terms of the
following elements:

The Decision Maker is responsible for making the decision.

Alternative Courses of Action. An important part of the de-
cision maker’s task, over which the decision maker has con-
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trol, is the specification and description of the alternatives.
Given that the alternatives are specified, the decision involves
a choice among the alternative course of action.

Events are the scenario or states of the environment not under the
control of the decision maker that may occur. Under condi-
tions of uncertainty, the decision maker, does not know for
certain which event will occur.

Consequences (also called payoffs, outcomes, benefits or losses),
which must be assessed by the decision maker, are measures
of the net benefit, or payoff, received by the decision maker.
The consequences that result from a decision depend not only
on the decision, but also on the event that occurs. Thus there
is a consequence associated with each action-event pair.

2.2 Available approaches for decision analysis

There are many powerful tools available to help decision analysis,
for example, decisions based on prior information, expected value
of perfect information, decision trees, multicriteria decision analysis,
sequential decisions, game theory, Bayesian networks, etc, see [18,
19, 15, 16, 17, 30, 12] and the references therein. Since the 1990s,
Bayesian networks and decision graphs have attracted a great deal
of attention as frameworks for building normative systems. Baysian
networks provide formalism for reasoning about partial beliefs under
the condition of uncertainty [12]. They have the following features:

• all entities concerned are represented as random variables;

• a graphical structure describes the dependence relations be-
tween entities; and



2 Decision analysis E88

• conditional probability distributions specifies our belief about
the strengths of the relations.

For a given number of observations, the probability of different
events or hypotheses are computed to help the decision analysis.

Decision trees are concerned with multistage decision processes
in which dependent decisions are made in tandem, that is, future
decisions will depend on the decision taken now. Multicriteria de-
cision analysis approaches seek to take explicit account of multi
(often conflicting) criteria in aiding decision making with the aim
of helping decision makers to identify a preferred course of action.
This is achieved through a process that identifies and structures the
criteria that characterise the available options and then uses this
framework to evaluate the options. By using a multiattribute value
function approach, Pratt and Belton [17] studied the problem of the
architectural options for a command, control, communications and
intelligence system.

2.3 Optimal control

On the other hand, undertaking a serious study of a specific dynamic
system is often a motivation to improve system behaviour. When
this motivation surfaces in explicit form, the subject of optimal
control provides a natural framework for problem definition. In the
general structure of an optimal control problem, there is a given
dynamic system (linear or nonlinear, discrete-time or continuous-
time) for which input functions can be specified. There is also an
objective function whose value is determined by system behaviour,
and is in some sense a measure of the quality of that behaviour.
The optimal control problem is that of selecting the input function
so as to optimize (maximize or minimize) the objective function.
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Optimal control theory has a long history, and research in this
area is still quite active now. For some representative work from past
to now, see [2, 29, 1, 4, 5, 25, 28, 26, 27, 13, 3, 9, 20, 21, 22, 24, 23]
and the references therein. In particular, an integral maximum prin-
ciple is developed in [29] for a class of nonlinear systems containing
time delays in state and control variables. Recently, using optimal
control approach to solve manpower planning problem has been
studied by the work of [13]. More recently, a number of researchers
have investigated the potential of applying control theory to mili-
tary operational analysis [11, 10, 6, 7]. Cruz and Simaan considered
multiagent optimization problems in which one agent is a leader and
the others are followers. The leader is that agent who can declare
his choice of control first. The concept of a control structure with
incentives is explored in which the leader seeks to induce the follow-
ers to choose their control vectors in such a way that the leader’s
objective function is globally optimized. Again, Cruz et al. [7] pre-
sented a nonlinear state space mathematical model for a class of
dynamical systems that can serve as the basis for a simulation test
bed for the investigation of enterprise control. While these works
provide military applications of optimal control theory, none of them
specifically deal with the area of military logistics.

In this paper, the problem of decision making concerning the
direction of resources within a network of military logistic support
is studied. Our formulation attempts to mimic key behavioural
characteristics of a logistics network that might be employed to
support future warfare. By using control theory we demonstrate
how to formulate the optimal control problem and apply known
results for its analysis.
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3 Optimal control and military

logistics

3.1 Problem concept

The network nature of future military logistics sees support affected
through a system of linked support hubs or nodes. Figure 1 schemat-
ically displays an example network topology of nodes and links.
The nodes on the directed graph include support bases, distribu-
tion hubs, exchange points and customer locations. The links are
the multimodal lines of communication or supply routes that con-
nect the nodes and along which logistic support moves.

Armed forces are pursuing these types of network topologies as
a means of supporting emergent warfare concepts and for deriving
efficiency and effectiveness gains. The provision of logistic support
based on a network enables the transfer of resources throughout
and across the system, enhancing the responsiveness and robust-
ness of support and reducing layering, linearity and the need for
excess redundancy. Historically, support networks would have been
more linear in nature with less interconnection between nodes and
greater resources located at each node. As a result these older types
of networks called on the employment of significantly more resources
overall and are thought to be incompatible with future warfare con-
cepts.

We address the problem of how to control a land based distribu-
tion system (along the lines shown in Figure 1) to support military
operations over time and to meet specific performance criteria. We
describe an optimal control model to design appropriate policy con-
structs for the direction of resources in the network. In terms of the
decision problem elements described earlier in the paper we have:
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Figure 1: Logistic Network
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The Decision Maker. the Logistic Commander who (aided by a
command and control system) is responsible for the direction
of logistic support throughout the network.

Alternative Courses of Action. the Logistic Commander must
make decisions at each phase of operations concerning the
movement and location of logistic resources (in our case in-
ventory or physical stock).

Events. the demand for logistic resources at each node in the net-
work, which is largely driven by the employment of combat
forces, must be taken into consideration when determining
the appropriate course of action.

Consequences. the decisions made by the Logistic Commander
will determine the amount of effort to be expended in moving
resources around the network and the level of resources re-
quired in the network. In terms of our optimal control problem
the network performance is fashioned on meeting the demand
for logistic support while optimising the following criteria:

Physical Distribution effort. we seek to minimise the com-
bat power required to maintain and protect the distribu-
tion of material throughout the network. Maintaining
safe lines of communication or supply routes throughout
the network can potentially divert significant combat and
combat support resources away from other operational
aims.

Footprint. we seek to minimise the amount of material lo-
cated throughout the network. The term footprint has
been loosely used to describe the presence projected by
support elements in an Area of Operations and is pre-
dominantly thought of in terms of personnel, equipment
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and supplies deployed. Reference to ’small’ or ’large’ lo-
gistic footprint is often made in military doctrinal think-
ing. All things being equal, smaller footprints are most
desired for combat effectiveness because, for example,
they reduce the potential for enemy detection and dis-
ruption, they reduce the need for force protection, they
enhance the mobility of a force, and provide for nim-
ble operational options. We use footprint to represent
another opportunity cost to combat power of having to
protect logistic resources located in the network.

3.2 General formulation of a logistic decision

making problem

The logistic commander makes decisions at each phase in keeping
with the overall mission intent and operational aims. Therefore, at
each phase, the decision set Y (t) consists of a number of components

Y (t) = {Y1(t), Y2(t), . . . , YL(t)} ,

where t stands for the phase and Yi(t) is the decision taken in rela-
tion to physical distribution along the ith supply route of the net-
work.

Each of the decisions is taken from among a discrete set of possi-
ble choices described above. The sequence of decisions taken by the
logistic commander over a time horizon is referred to as the decision
stream. We denote

Y = {Y (0), Y (1), . . . , Y (T − 1)} ,

as the decision stream for a T -phase operation. Clearly, the number
of possible decision streams for even a simple operation can eas-
ily become unmanageably large (owing to the number of options
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available at each cycle), and thus we are burdened by the curse
of dimensionality.

The consequences of the logistic commander’s decisions at each
time phase can be measured in several ways. Let

X(t) = [x1(t), x2(t), . . . , xN(t)] ,

be the vector of logistic resources at the N network nodes at op-
erational phase t, then the decision stream can be expressed as a
multistage decision process, incorporating time-delay, described by
a state-space model:

X(t + 1) = F [t, X(t), Y (t), Y (t − 1), W (t)] , (1)

where F [·] is a transition function. W (t), in mathematical terms,
represents a random disturbance for the system. At each phase,
that is, F [i, X(i), Y (i), Y (i−1)] → X(i+1), the logistic commander
wishes to select Y (t) so that a prescribed performance function

P =
T−1
∑

t=0

H[t, X(t), Y (t)] + g[X(T )] (2)

is optimised (minimised or maximized), where X(0) is the initial
logistic resources positioned at each location at the beginning of the
time horizon, and X(T ) is this same property at the end.

From (1) and (2), we can see that finding the optimal decision
stream Y is then an optimal control problem. The decision vari-
ables, Y (t), at each phase are control variables and the X(t) are the
state variables.

3.3 A tactical logistic decision analysis problem

Now, we formulate the tactical logistics decision analysis problem in
a mathematical model. For presentation convenience, we introduce
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the following notation: IRn and IRn×m denote, respectively, the n di-
mensional Euclidean space and the set of all n × m real matrices.
The superscript “T” denotes matrix transposition and the notation
X ≥ Y (respectively, X > Y ), means that X − Y is positive semi-
definite (respectively, positive definite). ‖ · ‖ denotes the Euclidean
vector norm.

Indices:

j: indices for location nodes, j ∈ N = {0, 1, . . . , N}

k: indices for supply routes, k ∈ L = {1, . . . , L}

t: time on time horizon [0, T ]

Sets:

• Sj = {k ∈ L such that logistics resources can be supplied
along route k to node j} ;

• Cj = {k ∈ L such that logistics resources can be supplied
along route k from node j} .

Variables:

• xj(t) = Stock of logistic resources at location j at the begin-
ning of time period t ;

• yk(t) = Stock dispatched for supply along route k during time
period t ;
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• wj(t) = Demand for stock at location node j during time
period t .

In a balanced situation the physical stock of logistic resources at
location j, j = 1, 2, . . . , N at the commencement of time period t+1
is

equal to The physical stock of logistic resources at location j at
the beginning of time period t: [xj(t)]

Plus The amount of stock received at location j from along route k

during time period t, where k ∈ Sj for all k: [yk(t−1)] (In our
model we assume there is a delay of one time period between
the dispatch of material from a supply location and receipt at
a receiving location.)

Less The amount of stock dispatched for supply from location j

along route k during time period t, where k ∈ Cj , for all k:
[yk(t)]

Less The local demand for stock at location j during time period t:
[wj(t)].

So, we have

xj(t + 1) = xj(t) +
∑

k∈Sj

yk(t − 1) −
∑

k∈Cj

yk(t) − wj(t) ,

j = 1, 2, . . . , N

x0(t) = M , yk(−1) = 0 (3)

where M is some fixed number.1

1
x0(t) in the mathematical model represents the originating source for stock

flowing into the network and therefore a system boundary.
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We now consider stock loss from this balanced situation due to
disruption from operational threats (enemy or neutral activity) or
environmental threats (stock contamination etc). We consider the
affect of this in two parts of the network: at location nodes and
along supply routes.

Let

• Aj = Proportion of stock at location j that is available for the
next time period, Aj ∈ [0, 1], j = 1, 2, . . . , N ;

• Bk = Proportion of stock along the supply route k that can
be successfully supplied, Bk ∈ [0, 1], k = 1, 2, . . . , L .

Aj and Bk reflect the level of support interdiction and general stock
losses within the network. We contend that it would be possible,
given situational awareness and intelligence concerning threats in
the network, to construct discrete probability distributions for each
Aj, j ∈ N and Bk, k ∈ L. We use Āj and B̄k to represent the
expected values for Aj and Bk respectively.

The transition function then becomes, for j = 1, 2, . . . , N ,

xj(t + 1) = Ājxj(t) +
∑

k∈Sj

B̄kyk(t − 1) −
∑

k∈Cj

yk(t) − wj(t) . (4)

More generally

X(t + 1) = AX(t) + B0Y (t) + B1Y (t − 1) − W (t) ,

X(0) = X0 , Y (−1) = 0 , (5)

Xmin ≤ X(t) ≤ Xmax , Ymin ≤ Y (t) ≤ Ymax , (6)

where the bounds on the state variable X(t) and the control vari-
able Y (t) reflect the physical limitations in capacity at locations
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and along supply routes, or in the case of Xmin the requirements for
reserve stock, and

X(t) =













x1(t)
x2(t)

...
xN (t)













, Y (t) =













y1(t)
y2(t)

...
yL(t)













,

Y (t − 1) =













y1(t − 1)
y2(t − 1)

...
yL(t − 1)













, W (t) =













w1(t)
w2(t)

...
wN(t)













,

A =













Ā1 0 · · · 0
0 Ā2 · · · 0
...

...
. . .

...
0 0 · · · ĀN













B0 = (B0)jk =

{

−1 if k ∈ Cj

0 otherwise

B1 = (B1)jk =

{

B̄k if k ∈ Sj

0 otherwise

With regard to the overall behaviour of the logistic network we are
interested in meeting the demand for logistic resources and optimis-
ing two performance criteria.

Let

Qj = Opportunity Cost to combat power of locating and pro-
tecting logistics resources at location j, j = 1, 2, . . . , N

Rk = Opportunity Cost to combat power of both maintaining
and protecting distribution effort along supply route k, k =
1, 2, . . . , L.
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Qj and Rk are theoretical constructs at this stage. However, as
with most distribution processes, it is common place in military
distribution networks to assign priorities (or levels of importance)
among locations and lines of communications. In this regard, we
might expect locations and supply routes that are accorded low
priority to present high opportunity costs for combat power. In
addition, the opportunity cost of protecting a supply route is likely
to be proportional to its length.

Using these parameters we define

R =













R1 0 · · · 0
0 R2 · · · 0
...

...
. . .

...
0 0 · · · RN













, Q =













Q1 0 · · · 0
0 Q2 · · · 0
...

...
. . .

...
0 0 · · · QL













.

Then in terms of our criteria previously outlined:

1. Footprint—We wish to minimise the average combat power
expended in protecting logistic resources located in the net-
work.

2. Physical Distribution Effort—We wish to minimise the aver-
age combat power expended in maintaining and protecting
distribution effort along supply routes.

Finally, with these performance criteria in mind we construct a rela-
tionship which we loosely define as the Combat Power Cost function.

P =
T−1
∑

t=0

(

XT (t)QX(t) + Y T (t)RY (t)
)

+ XT (T )QX(T ) . (7)

We are not aware of the exact form of the relationships between X(t),
Y (t) and the opportunity cost coefficients Q and R respectively
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but we postulate that they will not be linear. Smaller amounts of
stock positioned at locations and distributed along supply routes
may have combat power protection requirements met relatively eas-
ily, however, as these stock levels increase the protection require-
ments grow more quickly. For our purposes we have assumed a
quadratic relationship.

4 Problem solution—optimal control

approach

In this section, we solve the problem formulated in the previous
section by employing standard optimal control techniques (see for
example [2, 13]). To this end, recall some optimal control results.

Consider the following linear discrete-time system

x(t + 1) = Ax(t) + B0u(t) + B1u(t − 1) ,

x(0) = x0 , u(−1) = 0 (8)

xmin ≤ x(t) ≤ xmax , umin ≤ u(t) ≤ umax

where x(t) is a n-dimensional state vector, u(t) is a r-dimensional
control input vector, A, B0 and B1 are n × n and n × r known
constant matrices.

The system cost function is assumed to be quadratic:

JT =
1

2
xT (T )Qx(T ) +

T−1
∑

t=0

1

2

{

xT (t)Qx(t) + uT (t)Ru(t)
}

(9)

where the weighting matrices Q(t) and R(t) in (9) are positive def-
inite.
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The optimal control problem is to find a sequence of control
vectors u(0), u(1), . . . , u(T−1) such that (9) is minimised while (8)
are satisfied.

From the results in [14], we know that the optimal solution for (8)
and (9) is

x(t) = Satx

{

−Q−1

[

− λ(t) + AT λ(t + 1)
] }

, t = 1, 2, . . . , T(10)

u(t) = Satu

{

−R−1

[

BT
0 λ(t + 1) + BT

1 λ(t + 2)
] }

,

t = 1, . . . , T − 1 (11)

x(T ) = Satx{Q
−1λ(T )} (12)

where

Satx(vi) =











xmax,i if vi > xmax,i

vi if xmin,i ≤ vi ≤ xmax,i

xmin,i if vi < xmin,i

Satu(σj) =











umax,j if σj > umax,j

σj if umin,j ≤ σj ≤ umax,j

umin,j if σj < umin,j

and the indices i and j represent the ith and jth elements of state xi,
i = 1, 2, . . . , n and control uj, j = 1, 2, . . . , r respectively. While
λ(t), t = 0, 1, . . . , T is a vector of Lagrange multipliers at time t,
and λ(T + 1), . . . are defined as zero vectors.

To locate this optimal solution we employ the following time-
delay control design algorithm:

1. solve (10–12) for a fixed set of Lagrange multiplier vector λ(t),
t = 0, 1, . . . , T ;
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2. the value of λ(t) is improved through a gradient type iteration

λi+1(t) = λi(t) + δidi(t) , (13)

di(t) = Ax(t) + B0u(t) + B1u(t − 1) − x(t + 1) , (14)

where δi is a small number.

Remark: Indeed, we can remove the delay term u(t−1) by creat-
ing an extra state variable, that is, let z(t + 1) = u(t) and z(0) = 0,
then we have from (8)

x(t + 1) = Ax(t) + B0z(t + 1) + B1z(t) ,

x(0) = x0 , z(0) = 0 , (15)

xmin ≤ x(t) ≤ xmax , umin ≤ z(t) ≤ umax .

Define the Hamiltonian of system (15) with cost function (9) as

H(t) =
1

2

{

xT (t)Qx(t) + uT (t)Ru(t)
}

+ λT (t + 1)f(t) ,

where

f(t) = Ax(t) + B0z(t + 1) + B1z(t) .

By some standard manipulation on the Hamiltonian H(t), we have
the following

λ(T + 1) = 0 , (16)

λ(T ) = Qx(T ) , (17)

λ(t) = Qx(t) + AT λ(t + 1) , (18)

Ru(t) = BT
0 λ(t + 1) + BT

1 λ(t + 2) . (19)

See that the optimal solution for system (8) driven from (16–19) is
identical to that from (10–12). However, since (16–19) is derived by
the ‘delay-free’ system (15), this can be conveniently computed by
the software dmiser3 (see [8] for details).



5 Robust decision making modelling with uncertainties E103

5 Robust decision making modelling

with uncertainties

In this section we consider uncertainties that might exist in the lo-
gistic network and in our mathematical representation of it. Our
motivation is based on the fact that, in practice, it is almost impos-
sible to get an exact mathematical model of a dynamical system due
to the complexity of the system, the difficulty of measuring various
parameters, environmental noises, uncertain and/or time-varying
parameters, etc. Indeed, the model of a system to be controlled
must consider the affects of possible perturbations in order to de-
sign a robust controller.

In the general case, the perturbed linear stochastic system of (8)
is assumed to have the following form:

x(t + 1) = [A + ∆A] x(t) + B0u(t) + [B1 + ∆B1] u(t − 1)

x(0) = x0 , u(−1) = 0 (20)

xmin ≤ x(t) ≤ xmax , umin ≤ u(t) ≤ umax ,

where all the variables are as in (8), except the parameter uncer-
tainties ∆A and ∆B1 assumed to be bounded, that is,

‖∆A‖ ≤ a , ‖∆B1‖ ≤ b1 , (21)

where a and b1 are known positive numbers.

For the case of robust analysis on the problem formulated in
Section 3, we wish to investigate the effects of situational aware-
ness. Recall that in our logistic network decision problem Aj and Bk

are parameters measured with reference to our level of situational
awareness of operational and environmental threats across the net-
work. Our assumption is that for cases of high situational awareness
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we are capable of accurately estimating Āj and B̄k; and by extension
the possible ranges of A and B1 are quite small. For cases where we
are less situationally aware, this is not so and possible ranges of A

and B1 are much greater.

Hence, for robust analysis, the nominal model (5) should have
the following form

X(t + 1) = [A + ∆A]X(t) + B0Y (t)

+ [B1 + ∆B1]Y (t − 1) − W (t) , X(0) = X0 , (22)

Xmin ≤ X(t) ≤ Xmax , Ymin ≤ Y (t) ≤ Ymax . (23)

We wish to design an optimal control Y (t) (choose the best physical
distribution alternative) such that the Combat Power Cost Func-
tion (7) is minimised subject to (22–23). From Robust Optimal
Control Theory, we know that if we can solve this problem with the
upper bounds of the uncertainties (21) then the optimal solution
can also be applied to the situation when the uncertainties have a
smaller bound. Furthermore, if we cannot solve the above logistic
network control problem with the uncertainties described in (21)
then it is suggested that network redesign may be needed, for ex-
ample in terms of the capacity limitations described at (23).

6 Example

In this section, we use a numerical example to illustrate the mod-
elling concept and the solution approach to the logistic network
support decision making problem. The logistic network topology
for the example is shown in Figure 2. Applying the system (5–6)
and Combat Power Cost Function (7) to this example network for
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Figure 2: Example of Logistic Network
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a time horizon consisting of five phases (T = 5), we set

A =

















0.95 0 0 0 0
0 0.9 0 0 0
0 0 0.75 0 0
0 0 0 0.75 0
0 0 0 0 0.85

















B0 =

















0 −1 −1 0 0 0 0 0
0 0 0 −1 −1 −1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0

















B1 =

















0.95 0 0 0 0 0 0 0
0 0.87 0 0 0 0 0 0
0 0 0 0 0.75 0 0 0.7
0 0 0.8 0 0 0.8 0.7 0
0 0 0 0.85 0 0 0 0

















X(0) =

















3500
800
400
400
200

















, W (0) =

















1000
150
80
100
70

















, W (1) =

















750
200
250
150
50

















,

W (2) =

















700
300
200
75
100

















, W (3) = W (4) = W (5) =

















600
300
200
75
100

















,

Q =

















1 0 0 0 0
0 2 0 0 0
0 0 3 0 0
0 0 0 1.5 0
0 0 0 0 2.5
















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R =































1 0 0 0 0 0 0 0
0 5 0 0 0 0 0 0
0 0 5 0 0 0 0 0
0 0 0 2.5 0 0 0 0
0 0 0 0 3 0 0 0
0 0 0 0 0 4 0 0
0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 2































.

After around 400 iterations of the time-delay control design algo-
rithm described in Section 4 we obtained the minimal opportunity
cost described by the Combat Power Cost function. Figure 3 shows
an example of the convergence of d(k) within the algorithm. This
convergence reflects how iteratively the decisions concerning physi-
cal distribution (Y (t)) and the resultant location stock levels (X(t))
meet the boundary conditions (6), satisfy the local demand (that is,
meet the transition function (5)) and provide an optimal cost out-
come.

Figure 4 shows the progress of the Combat Power Cost func-
tion for each iteration of the algorithm. In the early iterations the
state and control variables meet the boundary conditions but fail
the transition function requirements, these are infeasible solutions,
that is, the function values are increasing because the iterates are
infeasible. As the algorithm progresses and these variables even-
tually meet the further constraints of the transition requirements,
feasible and optimal physical distribution decisions are derived for
the network. This explains the upward trajectory of Figure 4 even
though we are addressing a minimisation problem. Also, from our
analysis on the numerical simulation example, it is noted that the
starting/initial values for the co-state variables have some effect on
the overall state trajectories in a short time period, that is, the time
to meet the boundary conditions. But, if the final time T is rela-
tively large, then the effect will play a very little role. Also, note
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Figure 3: Convergence of d(k)
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Figure 4: Combat power opportunity cost versus iteration

that a computational procedure for solving combined discrete time
optimal control and optimal parameter selection problems subject
to general constraints is presented in [8] by converting the under-
lying problem into a nonlinear programming problem which can be
solved using standard optimization software.
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7 Conclusion

In this paper we have presented a mathematical model that is
aligned with contemporary military thought concerning the oper-
ation of future military logistic networks. The general nature of
the model is a multistage decision process, incorporating time de-
lays, which we solve using an algorithmic optimal control approach.
Furthermore, the problem is formulated for changing levels of situ-
ational awareness and a numerical example is provided to demon-
strate the feasibility of the time delay control design algorithm. We
do believe that this approach has potential and that with further
research has application in logistic decision support systems.
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