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Explicit inverses of Toeplitz and
associated matrices

Murray Dow∗
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Abstract

We discuss Toeplitz and associated matrices which have
simple explicit expressions for their inverses. We first review
existing results and generalize these where possible, includ-
ing matrices with hyperbolic and trigonometric elements. In
§2 we discuss and generalize the Fiedler matrix. In §3 we
give an analytic procedure for inverting any band Toeplitz
matrix, in §4 we invert a tridiagonal Toeplitz matrix with
modified corner elements.
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1 Introduction and review

Toeplitz matrices were originally studied by Toeplitz [18, 29] who
called the related quadratic form an L-form. A Toeplitz matrix is
of the form Aij = ci−j with c−m the complex conjugate of cm, and
they occur in many fields [13, 22]. Here we report the results of our
search for real Toeplitz matrices with simple explicit inverses.

The matrices in this paper occur in many applications, and they
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are useful as test matrices for numerical routines. Band matrices
in particular occur frequently in linear equations; however, solution
via a Gaussian elimination method is usually preferable to using
a dense inverse, except when only a few elements of the solution
are required.

For example when solving the n linear equations Ax = b, where
A is the band matrix in §3.3, but only require x1, we have the exact

x1 =
1

(n + 2)(n + 3)

n∑
j=1

j(n + 1− j)(n + 2− j)bj

which is 5n + 2 flops, compared to about 16n flops for Gaussian
elimination.

There are times when an explicit inverse is required; for example
the determinant can usually be found once the inverse is known, as
is done in some of the proofs in this paper. See also [2, 7, 20].
Portions of explicit inverses can also be used as pre-conditioners for
the conjugate gradient method [8].

In section §1 we review existing results and generalize these,
notably finding the hyperbolic and trigonometric matrices, and in
§2 we generalize Fiedler’s matrix [28]. While Fiedler’s matrix is
not in general a Toeplitz matrix, it is closely related to a Toeplitz
matrix; for example its inverse has the same sparsity pattern as
many of the matrices in §1.

In §3 we give a simple method for finding the inverse of a band
Toeplitz matrix, which differs from Rozsa’s [24] approach. We use
these results to derive the inverse of a tridiagonal Toeplitz matrix,
taking care to consider all possible values of the diagonals. These
methods can be used to find the eigenvalues of these matrices (or an
expression proportional to the characteristic polynomial); however
the algebra is prohibitive except for very small bandwidth. Other
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methods, for example solving the recurrence relation in x that is
implicit in the eigenvalue equation Ax − λx = 0 [19] or via de-
terminants [9, 26], provide a more direct way to the characteristic
polynomial. We find that the solutions of the recurrence (4) provide
‘basis functions’ for the elements of A−1.

In §4 we illustrate the flexibility of this approach by deriving
the inverse of a tridiagonal matrix with constant diagonals, but
with modified corner elements.

In this paper we denote the order of the matrix A by n. We
begin by quoting examples from the literature.

1.1 Matrix 1: c + d|i − j|

In [28] the inverse of the matrix Aij = |i− j|, i, j = 1, . . . , n was
given; we generalize this (n > 2) to the matrix:

Aij =

{
c + d1|i− j|, i ≤ j, i, j = 1, . . . , n
c + d2|i− j|, i ≥ j, i, j = 1, . . . , n

which has the inverse

A−1 =
1

d1 + d2



−ξn−1/ξn 1 0 · · · 0 d2
1/ξn

1 −2 1 0 · · · 0
0 1 −2 1 0 0

. . . . . . . . .

0 · · · 0 1 −2 1
d2

2/ξn 0 · · · 0 1 −ξn−1/ξn


where ξn = c(d1 +d2)+d1d2(n−1) (see also [12, pp31,51] and [27]).

We shall see this sparsity pattern several times in this paper,
namely tridiagonal with constant diagonals except for the corner
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elements, and we shall see that this matrix is a particular case of
the generalized Fiedler matrix discussed in §2. The determinant is
|A| = −(−1)n(d1 + d2)

n−2ξn .

A band matrix form of this, namely Aij = k−|i−j| for |i−j| < k ,
zero otherwise, was inverted in [21].

1.2 Matrix 2: (−1)i−j(c + d|i − j|)

The corresponding result, in which the three diagonals of the
inverse have the same sign is of interest (n > 2):

Aij =

{
(−1)i−j(c + d1|i− j|), i ≤ j, i, j = 1, . . . , n
(−1)i−j(c + d2|i− j|), i ≥ j, i, j = 1, . . . , n

(1)

has the inverse

A−1 = − 1

d1 + d2



ξn−1/ξn 1 0 · · · 0 (−)nd2
1/ξn

1 2 1 0 · · · 0
0 1 2 1 0 0

. . . . . . . . .

0 · · · 0 1 2 1
(−)nd2

2/ξn · · · 0 0 1 ξn−1/ξn


where ξn and the determinant are the same as for Matrix 1.

1.3 KMS matrix: ρ|i−j|

The Kac-Murdock-Szegö matrix is the symmetric Toeplitz ma-
trix [13, 18, 33] (ρ 6= 1, n > 1):

Aij = ρ|i−j|, i, j = 1, . . . , n
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It has the simple tridiagonal inverse

A−1 =
1

1− ρ2



1 −ρ 0 · · · 0
−ρ 1 + ρ2 −ρ · · · 0

. . . . . . . . .

0 · · · −ρ 1 + ρ2 −ρ
0 · · · 0 −ρ 1

 .

The determinant is |A| = (1− ρ2)n−1. For a Matlab program which
generates the lu decomposition of this matrix, see kms.m in [15], and
for its eigenvalues see [13, p69]. This is the only form of a symmetric
Toeplitz matrix whose inverse is a tridiagonal matrix; this can be
shown by using the result that the inverse of a symmetric irreducible
nonsingular tridiagonal matrix T is of the general form [2, 4, 5, 23,
24]

T−1
ij =

{
uivj , i ≤ j
ujvi , i > j

(2)

The matrix P of [34] is a kms matrix, except it differs by the fac-
tor ρn−1, with ρ = 1/q . Given the matrix T the vectors u, v are
easy to derive, see §3.1 or [8]; this and similar results are constantly
being rediscovered [7, 17, 35, e.g.].

The kms matrix and some of its generalizations given below are
semiseparable matrices [10].

1.4 Nonsymmetric KMS matrix

The nonsymmetric version of the kms matrix is:

Aij =


ρj−i, i < j , i, j = 1, . . . , n
σi−j, i > j , i, j = 1, . . . , n
1 , i = j .
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Its inverse is

A−1 =
1

1− σρ



1 −ρ 0 · · · 0
−σ 1 + σρ −ρ · · · 0

. . . . . . . . .

0 · · · −σ 1 + σρ −ρ
0 · · · 0 −σ 1

 .

The determinant is |A| = (1− σρ)n−1.

1.5 Generalized KMS matrix: α + βρ|i−j|

A generalized symmetric kms matrix is:

Aij =

{
α + βρ|i−j|, i, j = 1, . . . , n
α + β , i = j

Its inverse is

A−1 =
1

fn(1− ρ2)



d0 a0 b · · · b b c
a0 d a e · · · e b
b a d a e · · · b

. . . . . . . . .

b e · · · e a d a0

c b b · · · b a0 d0


. (3)

where

d = −1− ρ− ρ2 − ρ3 + α{−n1 + n5ρ− n3ρ
2(1− ρ)}/β

a = ρ(1 + ρ) + α(1 + n3ρ− n5ρ
2 − ρ3)/β

a0 = ρ(1 + ρ) + α(1 + n2ρ− n3ρ
2)/β

d0 = −1− ρ + α(n3ρ− n1)/β
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b = (1 − ρ)2α/β , c = (1 − ρ)α/β , e = (1 − ρ)3α/β , nm = n −m ,
fn = −nα − β(1 + ρ) + n2αρ . For example (n = 8 , α = 1 , β = 2 ,
ρ = 2):

A−1 =



3 5 9 17 33 65 129 257
5 3 5 9 17 33 65 129
9 5 3 5 9 17 33 65

17 9 5 3 5 9 17 33
33 17 9 5 3 5 9 17
65 33 17 9 5 3 5 9

129 65 33 17 9 5 3 5
257 129 65 33 17 9 5 3



−1

= − 1

12



3 −5 −1 −1 −1 −1 −1 1
−5 11 −3 1 1 1 1 −1
−1 −3 11 −3 1 1 1 −1
−1 1 −3 11 −3 1 1 −1
−1 1 1 −3 11 −3 1 −1
−1 1 1 1 −3 11 −3 −1
−1 1 1 1 1 −3 11 −5

1 −1 −1 −1 −1 −1 −5 3


We have quoted this matrix partly because its inverse, which al-
though dense depends on only seven parameters, has a form which
occurs in other cases. We quote four of these:

1. the centrosymmetric [3] Toeplitz matrix (n > 2, d 6= 0)

Aij = c + d |i− j|+ e (i− j)2, i, j = 1, . . . , n ;

2. the matrix

Aij = c + d(−1)i−j|i− j|, i, j = 1, . . . , n

which is apparently similar to (1) but whose inverse is dense;
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3. the matrix

Aij = c + (−1)i−j{d |i− j|+ e (i− j)2}, i, j = 1, . . . , n ;

4. and finally the matrix

Aij = d + α sin(ρ|i− j|) + β cos(ρ|i− j|), i, j = 1, . . . , n .

Because the inverse of these matrices has the form (3) it is not
difficult to find explicit expressions for their inverses. We can also
obtain expressions for the nonsymmetric case but they are somewhat
more complex.

For another generalization of the kms matrix, see [30].

1.6 Hyperbolic matrix: αρ−|i−j| + βρ|i−j|

The symmetric Toeplitz matrix

Aij =

{
αρ−|i−j| + βρ|i−j| i, j = 1, . . . , n
α + β i = j

has the inverse

A−1 =
1

(α− β)(ρ2 − 1)



d0 −ρ 0 · · · 0 c
−ρ 1 + ρ2 −ρ 0 · · · 0
0 −ρ 1 + ρ2 −ρ 0 · · ·

. . . . . . . . .

0 · · · 0 −ρ 1 + ρ2 −ρ
c 0 · · · 0 −ρ d0


where d0 = ρ2f2n−4/f2n−2 , c = αβρn−1(1 − ρ2)/f2n−2 and fk =
α2 − β2ρk .
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The determinant of A is |A| = (α−β)n−2(ρ2−1)n−1f2n−2/ρ
2n−2.

We now write A in terms of hyperbolic functions, partly for
reasons of comparison with the next section, but also because of the
beauty of the matrix; we also generalize to a nonsymmetric matrix:

Aij =

{
α sinh(ρ|i− j|) + β cosh(ρ|i− j|) i ≤ j, i, j = 1, . . . , n,
γ sinh(ρ|i− j|) + β cosh(ρ|i− j|) i ≥ j, i, j = 1, . . . , n,

which has the inverse

A−1 =
1

α + γ



d0 a 0 · · · 0 f
a d a 0 · · · 0
0 a d a · · · 0

. . . . . . . . .

0 · · · 0 a d a
e 0 · · · 0 a d0


where

a = csch ρ

d = −2 coth ρ

e = −(βgn−2csch ρ + gn−1(γ − β coth ρ)/D

f = −(βhn−2csch ρ + hn−1(α− β coth ρ)/D

d0 = (gn−2hn−1csch ρ + β(γ − β coth ρ))/D

D = β2 − gn−1hn−1

hk = α sinh(ρk) + β cosh(ρk)

gk = γ sinh(ρk) + β cosh(ρk)

As we shall see this has a perfect analogue in the trigonometric
functions.
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1.7 Trigonometric matrix:
α sin(ρ|i − j|) + β cos(ρ|i − j|)

The previous matrix leads to our next matrix: the nonsymmetric
trigonometric Toeplitz matrix

Aij =

{
α sin(ρ|i− j|) + β cos(ρ|i− j|) i ≤ j, i, j = 1, . . . , n
γ sin(ρ|i− j|) + β cos(ρ|i− j|) i ≥ j, i, j = 1, . . . , n

which has the inverse

A−1 =
1

α + γ



d0 a 0 · · · 0 f
a d a 0 · · · 0
0 a d a · · · 0

. . . . . . . . .

0 · · · 0 a d a
e 0 · · · 0 a d0


where

a = csc ρ

d = −2 cot ρ

e = −(βgn−2 csc ρ + gn−1(γ − β cot ρ)/D

f = −(βhn−2 csc ρ + hn−1(α− β cot ρ)/D

d0 = (gn−2hn−1 csc ρ + β(γ − β cot ρ))/D

D = β2 − gn−1hn−1

hk = α sin(ρk) + β cos(ρk)

gk = γ sin(ρk) + β cos(ρk)

The curious thing about this matrix is that the asymmetry is con-
fined to the corner elements e and f . We will quote a (symmetric)
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example: let n = 8 , α = β = γ = 1 , ρ = π/4 then

A−1 =



1
√

2 1 0 −1 −
√

2 −1 0√
2 1

√
2 1 0 −1 −

√
2 −1

1
√

2 1
√

2 1 0 −1 −
√

2

0 1
√

2 1
√

2 1 0 −1

−1 0 1
√

2 1
√

2 1 0

−
√

2 −1 0 1
√

2 1
√

2 1

−1 −
√

2 −1 0 1
√

2 1
√

2

0 −1 −
√

2 −1 0 1
√

2 1



−1

=
1√
2



0 1 0 0 0 0 0 1

1 −
√

2 1 0 0 0 0 0

0 1 −
√

2 1 0 0 0 0

0 0 1 −
√

2 1 0 0 0

0 0 0 1 −
√

2 1 0 0

0 0 0 0 1 −
√

2 1 0

0 0 0 0 0 1 −
√

2 1
1 0 0 0 0 0 1 0



2 Fiedler’s matrix: cj − ci

In a surprising result, Fiedler [28], stated that the inverse of

Cij =


cj − ci, i < j, i, j = 1, . . . , n
ci − cj, i > j, i, j = 1, . . . , n

0, i = j,

(n > 2) is also given by a tridiagonal matrix except for c−1
1n and c−1

n1 6=
0: Put d1 = 1/(c1−c2)−1/(c1−cn) , di = 1/(ci−1−ci)+1/(ci−ci+1),



2 Fiedler’s matrix: cj − ci E197

i = 2, . . . , n− 1 , dn = 1/(cn−1 − cn)− 1/(c1 − cn) , then

C−1
ij =

1

2



d1
1

c2−c1
0 · · · 0 1

cn−c1
1

c2−c1
d2

1
c3−c2

0 · · · 0
. . . . . . . . .

. . . . . . . . .

0 · · · 0 1
cn−1−cn−2

dn−1
1

cn−cn−1
1

cn−c1
0 · · · 0 1

cn−cn−1
dn


We have printed this in full as there was a slight error in the original
publication. Fiedler also gave an expression for the determinant of
this matrix: |C| = −(−1)n2n−2 ∏n−1

j=1 (cj+1 − cj)(cn − c1) , (n > 1).

2.1 Generalized nonsymmetric Fiedler’s
matrix: d + pci + qcj

We have generalized Fiedler’s matrix to:

Cij =


d + pci + qcj , i < j, i, j = 1, . . . , n
d + rci + scj , i > j, i, j = 1, . . . , n
d + (p + q)ci , i = j,

where we require r+s = p+q to make the upper and lower triangles
consistent. The inverse is very similar to Fiedler’s matrix. Put

e = sr/ξ1n

f = pq/ξ1n

d1 =
ξ2n

(c1 − c2) ξ1n

dn =
ξ1n−1

(cn−1 − cn) ξ1n

ξij = d (p− r) + psci − qrcj
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otherwise di is as above, then provided C−1 exists, for n > 2 it is
given by

C−1
ij =

1

r − p



d1
1

c2−c1
· · · 0 f

1
c2−c1

d2
1

c3−c2
· · · 0

. . . . . . . . .

0 · · · 1
cn−1−cn−2

dn−1
1

cn−cn−1

e 0 · · · 1
cn−cn−1

dn



Example: n = 8, d = 2, p = 1, q = 1, r = 4, and
c = { 1 2 0 1 2 0 1 2 } :

A−1 =



4 5 3 4 5 3 4 5
8 6 4 5 6 4 5 6
0 −2 2 3 4 2 3 4
4 2 6 4 5 3 4 5
8 6 10 8 6 4 5 6
0 −2 2 0 −2 2 3 4
4 2 6 4 2 6 4 5
8 6 10 8 6 10 8 6



−1

=
1

6



−21
4

2 0 0 0 0 0 −1
8

2 −1 −1 0 0 0 0 0
0 −1 −1 2 0 0 0 0
0 0 2 −4 2 0 0 0
0 0 0 2 −1 −1 0 0
0 0 0 0 −1 −1 2 0
0 0 0 0 0 2 −4 2
1 0 0 0 0 0 2 −11

2


The only further generalization of this matrix which still has a sparse
inverse that we have found at this stage is to add the rank one term:
+ρcicj to C. The matrices of §1.1 and §1.2 are instances of a Fiedler
matrix.
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3 Inverse of band Toeplitz matrix

Rozsa [24] gave formulae for the inverses of band matrices; we will
derive equivalent results in a different and more direct way; note that
our definition of p and q is different to Rozsa. In his treatment, he
has to evaluate 4(p + q) determinants of order p + q , whereas here
we need to solve two systems of order p + q . The terms in Rozsa’s
expression for the inverse are more concise, being sums of rank p
or q (which agrees with Barrett [6]), whereas here we derive sums
of p + q terms.

Consider the band Toeplitz matrix

A =



c0 c1 · · · cq 0 0
c−1 c0 c1 · · · cq 0

. . . . . . . . .
. . . . . . . . .

0 · · · c−p · · · c0 c1

0 0 · · · c−p · · · c0


where p ≥ 0 , q ≥ 0 , p + q ≥ 1 . That is

Aij =

{
cj−i , −p ≤ j − i ≤ q
0 , otherwise.

We invert this matrix using solutions to the difference equation (4).

Theorem 1 1. Let rk(i), k = 1, . . . , p+q be a set of p+q linearly
independent solutions to the difference equation

c−pr(i− p) + c1−pr(i− p + 1) + · · ·+ cqr(i + q) = 0 , (4)

for i = . . . , 0, 1, 2, . . .
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2. Construct two solutions to (4):

Pij =
p+q∑
k=1

ak(j)rk(i) ;

Qij =
p+q∑
k=1

[ak(j)− zk(j)] rk(i) . (5)

3. To find ak and zk solve:

Pij = 0 , i = 1− p, . . . , 0, if p > 0 ; (6)

Qij = 0 , i = n, . . . , n + q, if q > 0 ; (7)

Pij = Qij , i = j − p + 1, . . . , j + q − 1,

if p + q > 1 ; (8)

c−pA
−1
j−p,j + c1−pA

−1
j−p+1,j + · · ·+ cqA

−1
j+q,j = 1 . (9)

Since P satisfies (4) the last condition becomes

− Pj+q,j + Qj+q,j = 1/cq , if p + q > 1 . (10)

We assert that the inverse of A is

A−1
ij =

{
Pij , 1 ≤ i ≤ j + q − 1
Qij , j − p + 1 ≤ i ≤ n

(11)

Proof: Because P , Q as functions of i satisfy the difference equa-
tion (4) it is clear that Bij =

∑
AikPkj (or AikQkj) will be zero in

general except perhaps for i near 1 or n . Equations (6) and (7)
ensure that Bij = 0 for i < p + 1 or i > n − q . Next, (10) ensures
that Bii = 1 , and finally (8) ensures that P and Q are consistent
over their common domain. Hence B = I and we have constructed
the inverse of A. ♠
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Because of the way we chose ak and zk , the system (6–10) of
2(p + q) equations for ak(j) and zk(j) separates into two systems of
size p + q .

To solve these, first we solve equations (8) and (10)

p+q∑
k=1

rk(j − p + l)zk(j) =

{
0 , l = 1, . . . , p + q − 1
−1/cq , l = p + q

(12)

These will always be solvable as the rk are linearly independent.
Then we solve the p + q equations

p+q∑
k=1

rk(l)ak(j) =

{
0 , l = 1− p, . . . , 0∑p+q

k=1 rk(l)zk(j) , l = n + 1, . . . , n + q
(13)

These equations should be solved symbolically, giving explicit ex-
pressions for ak(j) and zk(j) and hence P and Q, in terms of i and j.

We also note that if A is singular then the determinant

|rk(l)| = 0 (14)

where l = 1 − p, . . . , 0, n + 1, . . . , n + q . The reverse of this is
not necessarily true, thus (14) can have parasitic solutions, which
correspond to the occurrence of equal roots of (4). Thus we can
use (14) to obtain the eigenvalues of A, if we replace c0 by c0 −
λ . We do not need to solve (4) directly; rather we use symmetric
functions of the roots of (4) to simplify (14), for example if (4) has
the solutions r(i) = ri

k then we have
∏

rk = (−)p+qc−p/cq . We will
not explore this technique further, as other methods [19, 25] are
more direct.
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3.1 Example: General tridiagonal matrix

Consider the tridiagonal matrix

A =



c0 c1 0 · · · 0 0
c−1 c0 c1 0 · · · 0

. . . . . . . . .
. . . . . . . . .

0 · · · 0 c−1 c0 c1

0 0 · · · 0 c−1 c0


.

Many authors have inverted particular cases of this matrix [20], but
for the convenience of the reader we quote the general solution. To
find the inverse of A we first solve (4) in the usual way, putting
r(i) = ri , giving c−1 + rc0 + r2c1 = 0 . We need to consider three
cases: two unequal real roots, two equal roots or two complex roots.
We have p = q = 1 . First we solve (12) giving

z1(j) = −r2(j)/c1D(j) ,

z2(j) = r1(j)/c1D(j) ,

where
D(j) = r1(j + 1)r2(j)− r1(j)r2(j + 1) .

We then solve (13) for the three cases, the inverse being given
by (11).

Unequal real roots The roots are r1, r2 = (−c0±
√

c2
0 − 4c−1c1)/2c1 ,

and rk(i) = ri
k , r1 6= r2 . Then

Pij = −(ri
1 − ri

2)(r
n+1−j
1 − rn+1−j

2 )

c1(r1 − r2)(r
n+1
1 − rn+1

2 )
,
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Qij =
(r−j

1 − r−j
2 )(rn+1

1 ri
2 − rn+1

2 ri
1)

c1(r1 − r2)(r
n+1
1 − rn+1

2 )
. (15)

We also record the latter in a form emphasising the symmetry:

Qij = −(rj
1 − rj

2)(r
n+1−i
1 − rn+1−i

2 )

c1(r1 − r2)(r
n+1
1 − rn+1

2 )

(
c−1

c1

)i−j

.

Haley [14] gave these in terms of hyperbolic functions, and
we quote them here for completeness. We assume without
loss of generality that c0 > 0 . Put cosh θ = c0/2

√
c−1c1 ,

r = −
√

c−1/c1 if c1 > 0 and r =
√

c−1/c1 if c1 < 0 . Then

Pij =
ri−j sinh iθ sinh(n + 1− j)θ
√

c−1c1 sinh θ sinh(n + 1)θ
,

Qij =
ri−j sinh jθ sinh(n + 1− i)θ
√

c−1c1 sinh θ sinh(n + 1)θ
. (16)

These formulae still apply if c−1c1 < 0 but because of the
imaginary terms, (15) is to be preferred.

Equal roots Here r1(i) = ri, r2(i) = iri, r = −c0/2c1 . Then

Pij = −2ri−ji(j − n− 1)

c0(n + 1)
,

Qij = −2ri−jj(i− n− 1)

c0(n + 1)
.

Complex roots Here r1(i) = ri cos iθ , r2(i) = ri sin iθ , where r =√
c−1/c1 , cos θ = −c0/2rc1 . Then

Pij = −ri−j sin iθ sin(n + 1− j)θ
√

c−1c1 sin θ sin(n + 1)θ
,
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Qij = −ri−j sin jθ sin(n + 1− i)θ
√

c−1c1 sin θ sin(n + 1)θ
. (17)

If c1 < 0 , the signs of P and Q should be changed.

As our objective was to give explicit expressions for the inverse, we
will show how to avoid evaluating θ and the trigonometric functions
above. The Chebyshev polynomials [1] of the first and second kinds
are Tn(x) = cos nθ , Un(x) = sin(n + 1)θ/ sin θ , where x = cos θ ;
both satisfy the recurrence Tn = 2xTn−1− Tn−2 , the first few terms
being T0 = 1 , T1(x) = x , U0 = 1 , U1 = 2x . Putting x = cos θ =
−c0/2rc1 , (17) becomes

Pij = −ri−jUi−1(x)[Tj(x)− Uj−1(x)Tn+1(x)/Un(x)]/
√

c−1c1 ,

Qij = −ri−jUj−1(x)[Ti(x)− Ui−1(x)Tn+1(x)/Un(x)]/
√

c−1c1 .

Note in passing that these forms of the inverse agree with Bar-
rett’s theorem [6] that A is tridiagonal iff A−1 is of the form

A−1
i,j =

{
xiyj , i ≤ j
uivj , i > j

provided uivi = xiyi , i = 1, . . . , n .



3 Inverse of band Toeplitz matrix E205

3.2 Example: third order difference operator
matrix

Consider the nonsymmetric third order difference operator matrix
(p = 2, q = 1)

A =



3 −1 0 0 · · · 0
−3 3 −1 0 · · · 0
1 −3 3 −1 0

. . . . . . . . . . . .

0 1 −3 3 −1
0 · · · 0 1 −3 3



The inverse of this matrix is

A−1
ij =

{
a0(j)i(i + 1) , i ≤ j
b0(j)i

2 + b1(j)i + b2(j) , i ≥ j − 1

where
a0(j) = (1− j + n)(2− j + n)/c ,
b0(j) = j(−3 + j − 2n)/c ,
b1(j) = j(1 + j + 4n + 2n2)/c ,
b2(j) = −(−1 + j)j/2 ,
c = 2(n + 1)(n + 2) .

In this case P and Q are second-order polynomials in i and j, which
are equal for i = j − 1, j .

For example, the first column of A−1 is Qi1 = i(n+1−i)/(n+2).

Theorem 2 For n ≥ 1 , the determinant of the third order differ-
ence operator matrix An is

|An| = (n + 1)(n + 2)/2 .
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Proof: Partition An as

An+1 =

[
B C
D An

]

where B = 3 , D′ = [ −3 1 0 0 · · · ] and C = [ −1 0 0 · · · ].
Then using the well known result |An+1| = |An| |B − CA−1

n D| and
the above expression for the inverse, we get

CA−1
n D = 2n/(n + 1) .

The proof then follows by induction. ♠

3.3 Example: fourth order difference operator
matrix

Consider the symmetric Toeplitz matrix (p = q = 2)

A =



6 −4 1 0 · · · 0 0
−4 6 −4 1 0 · · · 0
1 −4 6 −4 1 0

. . . . . . . . . . . . . . .
. . . . . . . . . . . .

0 · · · 0 1 −4 6 −4
0 0 · · · 0 1 −4 6


(18)

This matrix was also considered in [2] and [16] using less general
methods. We can write down the first column of the inverse of this
matrix by inspection: since the solutions to the difference equa-
tion (4) in this case are r(i) = {1, i, i2, i3} and it follows from (7)
that Qi1 = 0 for i = 0, n + 1 and n + 2 we have

Qi1 = ci(n + 1− i)(n + 2− i)
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and c can be found from 6Q11 − 4Q21 + Q31 = 1 giving

A−1
i,1 = i

(n + 1− i)(n + 2− i)

(n + 2)(n + 3)
.

Note that since A is centrosymmetric, having found the first
column, we then have the other first and last columns and rows,
and we can then use the formula of Trench [32, p207], [11, 31, p188],
namely if Tn is a Toeplitz matrix, then putting T−1

n = (hij), provided
h00 6= 0 we have

hij = hi−1,j−1 + (h00)
−1[hi0h0j − hn−j+1,0h0,n−i+1], 0 ≤ i, j ≤ n .

In full, the inverse of the fourth-order difference operator ma-
trix (18) is

A−1
ij =

{
a0i

3 + a1i
2 + a2i , i ≤ j + 1

b0i
3 + b1i

2 + b2i + b3 , i ≥ j − 1

where we have dropped the j subscript to improve readability, and

a0 = −(3 + 2j + n)dj/c
a1 = 3j(1 + n)dj/c
a2 = (3 + 5j + n + 3jn)dj/c
b0 = (5− 2j + 3n)ej/c
b1 = −3(1 + n)(4− j + 2n)ej/c
b2 = (1 + 5j + 12n + 3jn + 12n2 + 3n3)ej/c
b3 = (1− j)ej/6

and dj = (n−j+1)(n−j+2), ej = j(j+1), c = 6(n+1)(n+2)(n+3).

Here P and Q are cubic polynomials in i and j, which are equal
for i = j − 1, j, j + 1 . The inverse is of course symmetric, so we do
not have to derive bk in this case.
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Theorem 3 For n ≥ 1 , the determinant of the fourth order differ-
ence operator matrix An is

|An| = (n + 1)(n + 2)2(n + 3)/12 .

Proof: Partition An as

An =

[
B D′

D An−1

]

where B = 6 , D′ = [ −4 1 0 0 · · · ]. Then using the well
known result |An| = |An−1| |B−D′A−1

n−1D| and the above expression
for the inverse, we get

D′A−1
n−1D = (5n + 6)(n− 1)/(n(n + 1)) .

The proof then follows by induction. ♠

4 Tridiagonal matrix with modified

corner elements

Because many of the above examples had an inverse which was a
tridiagonal matrix with constant diagonals except for the corner
elements, we will derive the inverse of a matrix of this form.

The method of §3 extends easily to this case, which amounts to
a change in the boundary conditions, and we can do the same for
any first and last row, but our ansatz (5) will not apply to all A−1

if we alter any other rows.
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Let

A =



d c1 0 . . . 0 e
c−1 c0 c1 0 . . . 0

. . . . . . . . .
. . . . . . . . .

0 . . . 0 c−1 c0 c1

e 0 . . . 0 c−1 d


.

In the above notation we have p = q = 1 , and rk(i) are two
independent solutions of the difference equation c−1r(i) + c0r(i +
1) + c1r(i + 2) = 0 . The inverse is

A−1
ij =

{
Pij , 1 ≤ i ≤ j
Qij , j ≤ i ≤ n

where P , Q are as in (5). Proceeding as above we multiply rows i =
1, j, n of A by column j of A−1 to get the equations

dP1,j + c1P2j + eQnj = 0 , (19)

−Pj+1,j + Qj+1,j = 1/c1 , (20)

eP1j + c−1Qn−1,j + dQnj = 0 , (21)

Pjj = Qjj . (22)

From (20,22) we have again

z1(j) = −r2(j)/c1D(j) ,

z2(j) = r1(j)/c1D(j) ,

as in (15), and (19,21) give

f1a1(j) + f2a2(j) = e
2∑
k

zk(j)rk(n) ,

g1a1(j) + g2a2(j) =
2∑
k

zk(j)(c−1rk(n− 1) + drk(n)) , (23)
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where
fk = drk(1) + c1rk(2) + erk(n) ,

gk = erk(1) + c−1rk(n− 1) + drk(n) .

Solving (23) gives ak and we apply (11) to give the inverse. It is
not immediately obvious that (19–22) apply for j = 1 and j = n;
however, by working out these cases separately, they can be shown
to conform to the above.

Example: d = e = 1 , c = {−2, 3,−1} we get r(i) = {1, 2i} then

A−1
ij =

{
2i−1 − 2n−1 + 2n−j , i ≤ j
2i−1 − 2n−1 + 2n−j + 1− 2i−j , i ≥ j

Comparing this to (15) we see that the inverse still consists of linear
combinations and products of 2i and 2−j. For n = 8 this is

A−1 =



1 −1 0 0 0 0 0 1
−2 3 −1 0 0 0 0 0

0 −2 3 −1 0 0 0 0
0 0 −2 3 −1 0 0 0
0 0 0 −2 3 −1 0 0
0 0 0 0 −2 3 −1 0
0 0 0 0 0 −2 3 −1
1 0 0 0 0 0 −2 1



−1

=



1 −63 −95 −111 −119 −123 −125 −126
1 −62 −94 −110 −118 −122 −124 −125
1 −61 −92 −108 −116 −120 −122 −123
1 −59 −89 −104 −112 −116 −118 −119
1 −55 −83 −97 −104 −108 −110 −111
1 −47 −71 −83 −89 −92 −94 −95
1 −31 −47 −55 −59 −61 −62 −63
1 1 1 1 1 1 1 1


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5 Conclusion

We have described fifteen matrices and six examples, some of which
are new, and all of which have easily constructible inverses. The
hyperbolic, trigonometric and generalized Fiedler matrices are par-
ticularly striking. We described a simple method for inverting band
Toeplitz matrices, which is extendable to other cases. We gave re-
sults for the tridiagonal case, in the hope that these were complete,
easily applicable and useful, as whereas many authors quote par-
ticular cases, the complete treatment for all cases of the diagonals
does not seem to be readily available. One form that recurs is the
tridiagonal with modified corner elements, which we inverted.

At the time of publishing, fortran programs which implement
the formulae in this paper are available from http://anusf.anu.

edu.au/~mld900/math/toeplitz/.
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Kac-Murdock-Szegö matrices, Structured Matrices in
Mathematics, Computer Science and Engineering II (Boulder,
CO, 1999) 233–245, Contemp. Math. 281, Amer. Math. Soc.,
Providence, RI, 2001 E193

[31] W. F. Trench, An algorithm for the inversion of finite Toeplitz
matrices, SIAM J., 12, (1964), 515–522. E207

[32] W. F. Trench, On the eigenvalue problem for Toeplitz band
matrices, Linear Algebra Appl., 64, (1985), 199–214. E207



References E215

[33] W. F. Trench, Numerical solution of the eigenvalue problem
for Hermitian Toeplitz matrices, SIAM J. Matrix Anal. Appl.,
10, (1989), 135–146. E189

[34] F. Valvi, Explicit presentation of the inverses of some types of
matrices, J. Inst. Maths Applics, (1977), 19, 107–117. E190

[35] H. A. Yamani and M. S. Abdelmonem, The analytic inversion
of any finite symmetric tridiagonal matrix, J. Phys. A:Math.
Gen., 30, (1997), 2889–2893. E190


	Introduction and review
	Matrix 1: c+d|i-j|
	Matrix 2: (-1)i-j(c+d|i-j|)
	KMS matrix: |i-j|
	Nonsymmetric KMS matrix
	Generalized KMS matrix: +|i-j|
	Hyperbolic matrix: -|i-j| + |i-j|
	Trigonometric matrix: sin(|i-j|) + cos(|i-j|)

	Fiedler's matrix: cj-ci
	Generalized nonsymmetric Fiedler's matrix: d+pci+qcj

	Inverse of band Toeplitz matrix
	Example: General tridiagonal matrix 
	Example: third order difference operator matrix
	Example: fourth order difference operator matrix

	Tridiagonal matrix with modified corner elements
	Conclusion
	References

